Infrared Spectroscopic Studies of Adsorbed Methane on Oxide Surfaces at Low Temperatures

  • Can Li
  • Guoqiang Li
  • Weihong Yan
  • Qin Xin


Methane activation has long been a challenging task in catalysis. There has been much theoretical and experimental work done for methane activation on metal and oxide surfaces,1–5 and especially significant achievements have been made in oxidative coupling of methane6–8 since 1982. But at a fundamental level, the mechanism of methane activation including how methane interacts with surface and how the C-H bond cleaves, is still not well understood. It is difficult to obtain experimental information on methane activation at catalyst surfaces because the surface reaction of methane normally takes place at high temperatures where methane collides on the surface and subsequently, surface-generated radical fragments or methane itself leave the surface instantaneously. For example, a general conclusion from methane oxidative coupling is that the reaction involves generation of methyl radicals at the catalyst surface which is then followed by radical coupling in the gas phase at high temperatures.9,10 From the catalysis principle, the adsorption of methane on catalyst is a necessary step for methane activation, although the residence time of methane at the surface is very short at high temperatures.11 However, methane is the most inert molecule among hydrocarbons and it is difficult to adsorb on catalyst surface even at room temperature. An expedient measure to approach the activation mechanism is to study the adsorption of methane at low temperatures where methane may be adsorbed on the catalyst surface.


Catalyst Surface Lewis Acid Site Active Oxygen Species Adsorbed State Adsorbed Methane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. B. Anderson, in: “Theoretical Aspects of Heterogeneous Catalysis,” J. B. Moftat, ed., Van Nostrand Reinhold, New York (1990).Google Scholar
  2. 2.
    M. C. McMaster, and R. J. Madix, J. Phys. Chem. 98:9963(1993).CrossRefGoogle Scholar
  3. 3.
    O. Swang, K. Faegri, Jr., and O. Gropen, J. Phys. Chem. 98:3006(1994).CrossRefGoogle Scholar
  4. 4.
    S. G. Brass, and G. Ehrlich, Surf. Sci. 197:21(1987).CrossRefGoogle Scholar
  5. 5.
    Q. Y. Yang, A. D. Johnson, K. J. Maynard, S. T. Ceyer, J. Am. Chem. Soc. 111:8748(1989).CrossRefGoogle Scholar
  6. 6.
    G. E. Keller, and M. M. Bashin, J. Catal 73: 9(1982).CrossRefGoogle Scholar
  7. 7.
    J. H. Lunsford, Studies in Surface Science and Catalysis 75:103(1992).CrossRefGoogle Scholar
  8. 8.
    M. Baerns, and J. R. H. Ross, in: “Perspectives in Catalysis,” J. M. Thomas, and K. I. Zamaraev, eds., Oxford Blackwell Scientific Publications, London(1992).Google Scholar
  9. 9.
    D. J. Driscoll, K. D. Campbell, and J. H. Lunsford, Adv. in Catal. 35:139(1987).CrossRefGoogle Scholar
  10. 10.
    T. A. Garibyan, and L. Ya. Margolis, Catal. Rev.-Sci. Eng. 31:355(1989-1990).CrossRefGoogle Scholar
  11. 11.
    D. J. Statman, J. T. Gleaves, D. McNamara, P. L. Mills, G. Fornasari, and J. R. H. Ross, Appl. Catal 77:45(1991).CrossRefGoogle Scholar
  12. 12.
    C. Li, K. Domen, K. Maruya, and T. Onishi, J. Am. Chem. Soc. 111:7683(1989).CrossRefGoogle Scholar
  13. 13.
    C. Li, and Q. Xin, J. Phys. Chem. 96:7714(1992).CrossRefGoogle Scholar
  14. 14.
    N. Sheppard, and D. J. C. Yates, Proc. R. Soc. London A238:69(1956).Google Scholar
  15. 15.
    C. Li, and Q. Xin, J. Chem. Soc, Chem. Commun. 782(1992).Google Scholar
  16. 16.
    C. Li, G.-Q. Li, and Q. Xin, J. Phys. Chem 98:1933(1994).CrossRefGoogle Scholar
  17. 17.
    M. R. A. Blomberg, P. E. M. Siegbahn, and M. Svensson, J. Phys. Chem. 98:2062(1994).CrossRefGoogle Scholar
  18. 18.
    V. R. Choudhary, and V. H. Rane, J. Catal. 130:411(1991).CrossRefGoogle Scholar
  19. 19.
    C. Li, W.-H. Yan, and Q. Xin, Catal. Lett. 24:249(1994).CrossRefGoogle Scholar
  20. 20.
    C. Li, G.-Q. Li, Z.-M. Liu, and Q. Xin, Progress in Natural Sciences(China) (1994).Google Scholar
  21. 21.
    S. T. Ceyer, Langmuir 6:82(1990).CrossRefGoogle Scholar
  22. 22.
    F. F. Crim, Science 249:1387(1990).CrossRefGoogle Scholar
  23. 23.
    M. B. Lee, Q. Y. Yang, and S. T. Ceyer, J. Chem. Phys. 87:2724(1987).CrossRefGoogle Scholar
  24. 24.
    G. C. Bond, Catal. Today 17:399(1993).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Can Li
    • 1
  • Guoqiang Li
    • 1
  • Weihong Yan
    • 1
  • Qin Xin
    • 1
  1. 1.State Key Laboratory of Catalysis, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina

Personalised recommendations