Factors That Affect Vessel Reactivity and Leukocyte Emigration

  • Timothy J. Williams


The first phase of wound healing consists of an inflammatory response. It was the study of wounds that first led to the proposal that the visual manifestations of inflammation are caused by changes in blood vessels: dilatation underlying redness and plasma extravasation underlying tissue swelling (Hunter, 1794). Inflammation is important in wound healing because the associated micro-vascular changes result in the transfer of blood constituents from the vessels to the tissues. Thus, intradermal injection of autologous blood into rat skin, 2 days before an incision was found to result in accelerated healing (Myers and Rightor, 1978).


Vasoactive Intestinal Polypeptide Microvascular Permeability Neutrophil Accumulation Local Blood Flow Rabbit Skin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abelous, J. E., and Bardier, E., 1909, De l’action hypotensive et myotique de l’urine humaine normales, C. R. Soc. Biol. (Paris) 66:876.Google Scholar
  2. Amara, S. G., Jonas, V., Rosenfeld, M. G., Ong, E. S., and Evans, R. M., 1982, Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products, Nature (Lond.) 298:240–244.CrossRefGoogle Scholar
  3. Amelang, E., Prasad, C. M., Raymond, R. M., and Grega, G. J., 1981, Interactions among inflammatory mediators on edema formation in the canine forelimb, Circ. Res. 49:298–306.PubMedCrossRefGoogle Scholar
  4. Anand, P., Bloom, S. R., and McGregor, G. P., 1983, Topical capsaicin pretreatment inhibits axon reflex vasodilatation caused by somatostatin and vasoactive intestinal polypeptide in human skin, Br. J. Pharmacol. 77:505–509.Google Scholar
  5. Armstrong, J. M., Lattimer, N., Moncada, S., and Vane, J. R., 1978, Comparison of the vasodepressor effects of prostacyclin and 6-oxo-prostaglandin F with those of prostaglandin E2 in rats and rabbits, Br. J. Pharmacol 62:125–130.PubMedCrossRefGoogle Scholar
  6. Arnout, M. A., Tod III, R. F., Dana, N., Melamed, J., Schlossman, S. F., and Colten, H. R., 1983, Inhibition of phagocytosis of complement C3 or immunoglobulin G-coated particles and of C3bi binding by monoclonal antibodies to a monocyte-granulocyte membrane glycoprotein (Mo-1), J. Clin. Invest. 72:171–179.CrossRefGoogle Scholar
  7. Arthurson, G., 1979, Microvascular permeability to macromolecules in thermal injury, Physiol. Scand. (Suppl.) J 463:111–122.Google Scholar
  8. Ash, A. S. F., and Schild, H. O., 1966, Receptors mediating some actions of histamine, Br. J. Pharmacol. 27:427–439.Google Scholar
  9. Atherton, A., and Born, G. V. R., 1973, Relationship between the velocity of rolling granulocytes and that of blood flow in venules, J. Physiol (Lond.) 233:157–165.Google Scholar
  10. Bayliss, W. M., 1901, On the origin from the spinal cord of the vasodilator fibres of the hind limb, and on the nature of these fibres, J. Physiol (Lond.) 26:173–209.Google Scholar
  11. Benveniste, J., Tence, M., Varenne, P., Bidault, J., Boullet, C., and Polonsky, J., 1979, Semi-synthèse et structure proposée du facteur activant les plaquettes (P.A.F.): PAF-acether, un alkyl ether analogue de la lysophosphatidylcholine, C. R. Acad. Sci. Paris 289:1037–1042.Google Scholar
  12. Bergstrom, S., Duner, H., von Euler, U. S., Pernow, B., and Sjovall, J., 1959, Observations on the effects of infusion of prostaglandin E in man, Acta Physiol. Scand. 45:145–151.PubMedCrossRefGoogle Scholar
  13. Bisgaard, H., Kristensen, J., and Sondergaard, J., 1982, The effect of leukotriene C4 and D4 on cutaneous blood flow in humans, Prostaglandins 23:797–801.PubMedCrossRefGoogle Scholar
  14. Björk, J., and Smedegard, G., 1983, Acute microvascular effects of PAF-Acether, as studied by intravital microscopy, Eur. J. Pharmacol 96:87–94.PubMedCrossRefGoogle Scholar
  15. Björk, J., Hedqvist, P., and Arfors, K-E., 1982, Increase in vascular permeability induced by leukotriene B4 and the role of polymorphonuclear leukocytes, Inflammation 6:189–200.PubMedCrossRefGoogle Scholar
  16. Björk, J., Hugli, T. E., and Smedegard, G., 1983, Microvascular effects of anaphylatoxins C3a and C5a, J. Immunol. 134:1115–1119.Google Scholar
  17. Black, J. W., Duncan, W. A. M., Durant, C. J., Ganellin, C. R., and Parsons, E. M., 1972, Definition and antagonism of histamine H2-receptors, Nature (Lond.) 236:385–390.CrossRefGoogle Scholar
  18. Black, J. W., Owen, D. A. A., and Parsons, M. E., 1975, An analysis of the depressor responses to histamine in the cat and dog: Involvement of both H1-and H2-receptors, Br. J. Pharmacol. 54:319–324.PubMedCrossRefGoogle Scholar
  19. Blank, M. L., Snyder, F., Byers, L. W., Brooks, B., and Muirhead, E. E., 1979, Antihypertensive activity of an alkyl ether analog of phosphatidylcholine, Biochem. Biophys. Res. Commun. 90:1194–1200.PubMedCrossRefGoogle Scholar
  20. Bloom, S. R., and Polack, J. M., 1983, Regulatory peptides and the skin, Clin. Exp. Dermatol. 8:3–18.PubMedCrossRefGoogle Scholar
  21. Boxer, L. A., Allen, J. M., Schmidt, M., Yoder, M., and Baehner, R. L., 1980, Inhibition of polymorphonuclear leukocyte adherence by prostacyclin, J. Lab. Clin. Med. 95:672–678.PubMedGoogle Scholar
  22. Boyce, M. J. and Wareham, K., 1980, Histamine H1-and H2-receptors in the cardiovascular system of man, in: H2-antagonists (A. Torsoli, P. E. Lucchelli, and R. W. Brimblecombe, eds.), pp. 280–294, Excerpta Medica, Amsterdam.Google Scholar
  23. Brain, S. D., and Williams, T. J., 1985, Inflammatory oedema induced by synergism between calcitonin gene-related peptide (CGRP) and mediators of increased vascular permeability, Br. J. Pharmacol. 86:855–860.PubMedCrossRefGoogle Scholar
  24. Brain, S. D., Williams, T. J., Tippins, J. R., Morris, H. R., and Maclntyre, I., 1985, Calcitonin generelated peptide is a potent vasodilator, Nature (Lond.) 313:54–56.CrossRefGoogle Scholar
  25. Brocklehurst, W. E., 1960, The release of histamine and formation of a slow-reacting substance (SRS-A) during anaphylactic shock, J. Physiol (Lond.) 151:416–435.Google Scholar
  26. Brown, K. A., and Collins, A. J., 1977, Action of nonsteroidal, anti-inflammatory drugs on human and rat peripheral leukocyte migration in vitro, Ann. Rheum. Dis. 36:239–243.PubMedCrossRefGoogle Scholar
  27. Chahl, L. A., 1977, Interactions of substance P with putative mediators of inflammation and ATP, Eur. J. Pharmacol. 44:45–49.PubMedCrossRefGoogle Scholar
  28. Cherry, P. D., Furchgott, R. F., Zawadzki, J. V., and Jothianandan, D., 1982, Role of endothelial cells in relaxation of isolated arteries by bradykinin, Proc. Natl. Acad. Sci. USA 72:2106–2110.CrossRefGoogle Scholar
  29. Chipman, P., and Glover, W. E., 1976, Histamine H2-receptors in the human peripheral circulation, Br. J. Pharmacol. 56:494–496.PubMedCrossRefGoogle Scholar
  30. Clark, E. R., and Clark, E. L., 1935, Observations on changes in blood vascular endothelium in the living animal, Am. J. Anat. 57:385–438.CrossRefGoogle Scholar
  31. Cochrane, C. G., Unanue, E. R., and Dixon, F. J., 1965, A role of polymorphonuclear leukocytes and complement in nephrotoxic nephritis, J. Exp. Med. 122:99–114.PubMedCrossRefGoogle Scholar
  32. Colditz, I. G., and Movat, H. Z., 1984a, Desensitization of acute inflammatory lesions to chemotaxins and endotoxin, J. Immunol. 133:2163–2168.PubMedGoogle Scholar
  33. Colditz, I. G., and Movat, H. Z., 1984b, Kinetics of neutrophil accumulation in acute inflammatory lesions induced by chemotaxins and chemotaxinigens, J. Immunol. 133:2169–2173.PubMedGoogle Scholar
  34. Coste, H., Gaspach, C., and Abita, J.-P., 1981, Effect of indomethacin on the binding of the chemotactic peptide formyl-Met-Leu-Phe on human polymorphonuclear leukocytes, FEBS Lett. 132:85–88.CrossRefGoogle Scholar
  35. Dahindin, C., and Fehr, J., 1980, Receptor-directed inhibition of chemotactic factor-induced neutrophil hyperactivity by Pyrazolon Derivatives, J. Clin. Invest. 66:884–891.CrossRefGoogle Scholar
  36. Dahlen, S.-E., Bjork, J., Hedqvist, P., Arfors, K. E., Hammarstrom, S., Lindgren, J.-A., and Samuelsson, B., 1981, Leukotrienes promote plasma leakage and leukocyte adhesion in postcapillary venules: In vivo effects with relevance to the acute inflammatory response, Proc. Natl. Acad. Sci. USA 78:3887–3891.PubMedCrossRefGoogle Scholar
  37. Dale, H. H., 1913, The anaphylactic reaction of plain muscle in the guinea pig, J. Pharmacol. Exp. Ther. 4:167.Google Scholar
  38. Dale, H. H., and Laidlaw, P. P., 1910, The physiological action of β-iminazolylethylamine, J. Physiol. (Lond.) 41:318–344.Google Scholar
  39. Damerau, B., and Vogt, W., 1976, Effect of hog anaphylatoxin (C5a) on vascular permeability and leukocyte emigration in vivo, Naunyn Schmiedeberg’s Arch. Pharmacol. 255:237–241.CrossRefGoogle Scholar
  40. Davies, J. M., and Williams, K. I., 1984, Endothelial-dependent relaxant effects of vasoactive intestinal polypeptide and arachidonic acid in rat aortic strips, Prostaglandins 27:195–202.PubMedCrossRefGoogle Scholar
  41. Demopoulos, C. A., Pinckard, R. N., and Hanahan, D. J., 1979, Evidence for 1-0-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine as the active component (a new class of lipid chemical mediators), J. Biol. Chem. 254:9355–9358.PubMedGoogle Scholar
  42. Desai, U., Kreutzer, D. L., Showell, H., Arroyave, C. V., and Ward, P. A., 1979, Acute inflammatory pulmonary reactions induced by chemotactic factors, Am. J. Pathol. 96:71–84.PubMedGoogle Scholar
  43. Dobbins, D. E., Solika, C. Y., Premen, A. J., Grega, G. J., and Dabney, J. M., 1982, Blockade of histamine and bradykinin-induced increases in lymph flow, protein concentration, and protein transport by terbutaline in vivo, Microcirculation 2/2:127–150.Google Scholar
  44. Drazen, J. M., Austen, K. F., Lewis, R. A., Clark, D. A., Goto, G., Marfat, A., and Cory, E. J., 1980, Comparative airway and vascular activités of leukotrienes C-I and D in vivo and in vitro, Proc. Natl. Acad. Sci. USA 77:4354–4358.PubMedCrossRefGoogle Scholar
  45. Ebbecke, U., 1923, Über Gewebsreizung and Gefässreaktion, Pfluger’s Arch. 199:197–216.CrossRefGoogle Scholar
  46. Feldberg, W., and Kellaway, C. H., 1938, Liberation of histamine and formation of a lysocithin-like substance by cobra venom, J. Physiol (Lond.) 94:187–226.Google Scholar
  47. Fernandez, H. N., and Hugli, T. E., 1978, Primary structural analysis of the polypeptide portion of human C5a anaphylatoxin, J. Biol. Chem. 253:6955–6964.PubMedGoogle Scholar
  48. Feuerstein, G., 1984, Leukotrienes and the cardiovascular system, Prostaglandins 27:781–802.PubMedCrossRefGoogle Scholar
  49. Fisher, L.A., Kikkawa, D. O., Rivier, J. E., Amara, S. G., Evans, R. M., Rosenfeld, M. G., Vale, W. W., and Brown, M. R., 1983, Stimulation of noradrenergic sympathetic outflow by calcitonin generelated peptide, Nature (Lond.) 305:534–536.CrossRefGoogle Scholar
  50. Flynn, P. J., Becker, W. K., Vercellotti, G. M., Weisdord, D. J., Craddock, P. R., Hammerschmidi, D. E., Lillehei, R. C., and Jacob, H. S., 1984, Ibuprofen inhibits granulocyte responses to inflammatory mediators: A proposed mechanism for reduction of experimental myocardial infact size, Inflammation 8:33–44.PubMedCrossRefGoogle Scholar
  51. Folkow, B., Haeger, K., and Kahlson, G., 1948, Observations on reactive hyperaemia as related to histamine on drugs antagonising vasodilatation induced by histamine and on vasodilator properties of adenosine triphosphate, Acta Physiol. Scand. 15:264–278.CrossRefGoogle Scholar
  52. Ford-Hutchinson, A. W., Bray, M. A., Doig, M. V., Shipley, M. E., and Smith, M. J. H., 1980, Leukotriene B, a potent chemokinetic and aggregating substance released from polymorphonuclear leukocytes, Nature (Lond.) 286:264–265.CrossRefGoogle Scholar
  53. Foreman, J. C., Jordan, C. C., Oehme, P., and Renner, H., 1983, Structure-activity relationships for some substance P-related peptides that cause wheal and flare reactions in human skin, J. Physiol. (Lond.) 335:449–465.Google Scholar
  54. Forrest, M. J., Jose, P. J., and Williams, T. J., 1986, Kinetics of the generation and action of chemical mediators in zymosan-induced inflammation of the rabbit peritoneal cavity, Br. J. Pharmacol. 89:719–730.PubMedCrossRefGoogle Scholar
  55. Frey, E. K., and Kraut, H., 1928, Ein neues Kreislaufhormon and seine Wirking, Arch. Exp. Pathol. Pharmakol. 133:1–56.CrossRefGoogle Scholar
  56. Friedberger, E., 1910, Weitere Untersuchungen über Eiweissanaphylaxie, Z. Immunitaets/orsch. 4:636.Google Scholar
  57. Furchgott, R. F., 1981, The requirement for endothelial cells in the relaxation of arteries by acetylcholine and some other vasodilators, Trends Pharmacol. Sci. 2:173–176.CrossRefGoogle Scholar
  58. Furchgott, R. F., and Zawadzki, J. V., 1980, The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine, Nature (Lond.) 288:373–376.CrossRefGoogle Scholar
  59. Gallin, J. I., 1980, Degranulating stimuli decrease the negative surface charge and increase the adhesiveness of human neutrophils, J. Clin. Invest. 65:298–306.PubMedCrossRefGoogle Scholar
  60. Gallin, J. I., and Quie, P. G., 1978, Leukocyte Chemotaxis: Methods, Physiology and Clinical Implications, Raven, New York.Google Scholar
  61. Gerard, C., and Hugli, T. E., 1981, Identification of classical anaphylatoxin as the des-Arg form of the C5a molecule: Evidence of a modulator role for the oligosaccharide unit in human des-Arg74-C5a, Proc. Natl. Acad. Sci. USA 78:1833–1837.PubMedCrossRefGoogle Scholar
  62. Goetzl, E. J., Brash, A. R., Tauber, A. I., Oates, J. A., and Hubbard, W. C., 1980, Modulation of human neutrophil function by mon-hydroxy-eicosatetraenoic acids, Immunology 39:491–501.PubMedGoogle Scholar
  63. Goldblatt, M. W., 1935, Properties of human seminal fluid, J. Physiol. (Lond.) 84:208–218.Google Scholar
  64. Greutter, C. A., Barry, B. K., McNamara, D. B., Greutter, D. Y., Kadowitz, P. J., and Ignarro, L. J., 1979, Relaxation of bovine coronary artery and activation of coronary arterial guanylate cyclase by nitric oxide, nitroprusside and a carcinogenic nitrosoamine, J. Cyclic Nucleotide Res. 5:211–224.Google Scholar
  65. Griffith, T. M., Edwards, D. H., Lewis, M. J., Newby, A. C., and Henderson, A. H., 1984, The nature of the endothelium-derived vascular relaxant factor, Nature (Lond.) 308:645–647.CrossRefGoogle Scholar
  66. Hagermark, O., Hokfelt, T., and Pernow, B., 1978, Flare and itch induced by substance P in human skin, J. Invest. Dermatol. 71:233–235.PubMedCrossRefGoogle Scholar
  67. Hahn, F., and Oberdorf, A., 1950, Antihistaminica and anaphylaktoide, Z. Immunitaetsforsch. 107:528–538.Google Scholar
  68. Halonen, M., Palmer, J. D., Lohman, I. C., McManus, L. M., and Pinckard, R. N., 1980, Respiratory and circulatory alterations induced by acetyl glyceryl ether phosphorylcholine (AGEPC), a mediator of IgE anaphylaxis in the rabbit, Am. Rev. Respir. Dis. 122:915–924.PubMedGoogle Scholar
  69. Halpern, B. N., 1942, Les antihistaminiques de synthèse: Essais de chimiotherapie des états allergiques, Arch. Int. Pharmacodyn. Ther. 68:339–408.Google Scholar
  70. Hamberg, M., Svensson, J., and Samuelsson, B., 1975, Thromboxanes: A new group of biologically active compounds derived from prostaglandin endoperodixes, Proc. Natl. Acad. Sci. USA 72:2994–2998.PubMedCrossRefGoogle Scholar
  71. Heltianu, C., Simionescu, M., and Simionescu, N., 1982, Histamine receptors of the microvascular endothelium revealed in situ with a histamine-ferritin conjugate: characteristic high-affinity binding sites in venules, J. Cell Biol. 93:357–364.PubMedCrossRefGoogle Scholar
  72. Henson, P. M., Larsen, G. L., Webster, R. O., Mitchell, R. C., Goins, A. J., and Henson, J. E., 1982, Pulmonary microvascular alterations and injury induced by complement fragments: Synergistic effect of complement activation, neutrophils sequestration, and prostaglandins, Ann. NY Acad. Sci. 384:287–300.PubMedCrossRefGoogle Scholar
  73. Higgs, G. A., 1984, The effects of lipoxygenase inhibitors in anaphylactic and inflammatory responses in vivo, Prostaglandins Leukotrienes Medicine 13:89–92.CrossRefGoogle Scholar
  74. Higgs, G. A., Flower, R. J., and Vane, J. R., 1979, A new approach to anti-inflammatory drugs, Biochem. Pharmacol. 28:1959–1981.PubMedCrossRefGoogle Scholar
  75. Higgs, G. A., Eakins, K. E., Mugridge, K. G., Moncada, S., and Vane, J. R., 1980, The effects on nonsteroid anti-inflammatory drugs on leukocyte migration in carragheenin-induced inflammation, Eur. J. Pharmacol. 66:81–86.PubMedCrossRefGoogle Scholar
  76. Holmdahl, G., Hakanson, R., Leander, S., Roseel, S., Folders, F., and Sundler, F., 1981, A substance P antagonist, (D-Pro 2, D-Trp 7,9), inhibits inflammatory responses in the rabbit eye, Science 214:1029–1031.PubMedCrossRefGoogle Scholar
  77. Holzmann, S., 1982, Endothelium-induced relaxation by acetylcholine associated with larger rises in cyclic GMP in coronary arterial strips, J. Cyclic Nucleotide Res. 8:409–419.PubMedGoogle Scholar
  78. Hoover, R. L., Folger, R., Haering, W. A., Ware, B. R., and Karrovs, M. J., 1980, Adhesion of leukocytes to endothelium: Roles of divalent cations, surface charge, chemotactic agents and substrate, J. Cell. Sci. 45:73–86.PubMedGoogle Scholar
  79. Hoover, R. L., Karnovsky, M. J., Auster, K. F., Corey, E. J., and Lewis, R. A., 1984, Leukotriene B4 action on endothelium mediates augmented neutrophil/endothelial adhesion, Proc. Natl. Acad. Sci. USA 81:2191–2193.PubMedCrossRefGoogle Scholar
  80. Huey, R. Kawahara, M. S., and Hugli, T. E., 1983, Potentiation of the anaphylatoxins in vivo using an inhibitor of serum carboxypeptidase N(SCPN), Am. J. Pathol. 112:48–60.PubMedGoogle Scholar
  81. Humphrey, J. H., 1955, The mechanism of Arthus reactions. 1. The role of polymorphonuclear leukocytes and other factors in reversed passive Arthus reactions in rabbits, Br. J. Exp. Pathol. 36:268–282.PubMedGoogle Scholar
  82. Humphrey, D. M., Hanahan, D. J., and Pinckard, R. N., 1982, Induction of leukocytic infiltrates in rabbit skin by acetyl glyceryl ether phosphorylcholine, Lab. Invest. 47:227–234.PubMedGoogle Scholar
  83. Hunter, 1794, A treatise on the blood, in: Inflammation and Gun-shot Wounds, G. Nicol, London.Google Scholar
  84. Hurley, J. V., 1963, An electron microscopic study of leukocyte emigration and vascular permeability in rat skin, Aust. J. Exp. Biol. Med. Sci. 41:171–186.PubMedCrossRefGoogle Scholar
  85. Hurley, J. V., Edwards, B., and Ham, K. N., 1970, The response of newly formed blood vessels in healing wounds to histamine and other permeability factors, Pathology 2:133–145.PubMedCrossRefGoogle Scholar
  86. Ignarro, L. J., Burke, T. M., Wood, K. S., Wolin, M. S., and Kadowitz, P. J., 1984, Association between cyclic GMP accumulation and acetylcholine-elicited relaxation of bovine intrapulmonary artery, J. Pharmacol. Exp. Ther. 228:682–690.PubMedGoogle Scholar
  87. Issekutz, A. C., 1981, Vascular responses during acute neutropholic inflammation. Their relationship to in vivo neutrophil emigration, Lab. Invest. 45:435–441.PubMedGoogle Scholar
  88. Issekutz, A. C., and Bhimji, S., 1982, The effect of nonsteroidal anti-inflammatory agents on E. coli-induced inflammation, Immunopharmacology 42:11–22.CrossRefGoogle Scholar
  89. Issekutz, A. C., and Movat, H. Z., 1979, The effect of vasodilator prostaglandins on polymorphonuclear leukocyte infiltration and vascular injury, Pathology 107:300–309.Google Scholar
  90. Johnson, K. J., and Ward, P. E., 1981, Role of oxygen metabolites in immune complex injury of lung, J. Immunol. 126:2365–2369.PubMedGoogle Scholar
  91. Johnston, M. G., Hay, J. B., and Movat, H. Z., 1976, The modulation of enhanced vascular permeability by prostaglandins through alterations in blood flow, Agents Actions 6:705–711.PubMedCrossRefGoogle Scholar
  92. Jones, G., and Hurley, J. V., 1984, The effect of prostacyclin on the adhesion of leukocytes to injured vascular endothelium, J. Pathol. 142:51–59.PubMedCrossRefGoogle Scholar
  93. Joris, I., Majno, G., and Ryan, G. B., 1972, Endothelial contraction in vivo: A study of the rat mesentery, Virchows Arch. [B] 12:73–83.Google Scholar
  94. Jose, P. J., Peck, M. J., Robinson, C., and Williams, T. J., 1978, Characterization of a histamineindependent vascular permeability-increasing factor generated on exposure of rabbit plasma to zymosan, J. Physiol. (Lond.) 281:13–14.Google Scholar
  95. Jose, P. J., Forrest, M. J., and Williams, T. J., 1983, Detection of the complement fragment C5a in inflammatory exudates from the rabbit peritoneal cavity using radioimmunoassay, J. Exp. Med. 158:2177–2182.PubMedCrossRefGoogle Scholar
  96. Juhlin, S., and Michaelsson, G., 1969, Cutaneous vascular reactions to prostaglandins in healthy subjects and in patients with urticaria and atopic dermatitis, Acta Derm. Venereol. (Stockh.) 49:251–261.Google Scholar
  97. Kahlson, G., and Rosengren, E., 1971, New approaches to the physiology of histamine, Physiol. Rev. 48:155–196.Google Scholar
  98. Kangawa, K., Minamino, N., Fukada, N., and Matsuo, H., 1983, Neuromedin K: A novel mammalian tachykinin identified in porcine spinal cord, Biochem. Biophys. Res. Commun. 114:533–540.PubMedCrossRefGoogle Scholar
  99. Kaplan, B. K., Edelson, H. S., Korchak, H. M., Given, W. P., Abrahamson, S., and Weissmann, G., 1984, Effects of non-steroidal anti-inflammatory agents on human neutrophil functions in vitro and in vivo, Biochem. Pharmacol. 33:371–378.PubMedCrossRefGoogle Scholar
  100. Katsuki, S., Arnold, W., Mittal, C. K., and Murad, F., 1977, Stimulation of guanylate cyclase by sodium nitroprusside, nitroglycerin and nitric oxide in various tissue preparations and comparison to the effects of sodium azide and hydroxylamine, J. Cyclic Nucleotide Res. 3:23–25.PubMedGoogle Scholar
  101. Kenaway, S. A., Lewis, G. P., and Williams, T. J., 1978, The effects of α-and β-adrenoceptor agonists on inflammatory exudation in rabbit and guinea pig skin, Br. J. Pharmacol. 64:447–448.Google Scholar
  102. Kimura, H., Mittal, C. K., and Murad, F., 1975, Activation of guanylate cyclase from rat liver and other tissues by sodium azide, J. Biol. Chem. 250:8016–8022.PubMedGoogle Scholar
  103. Kraut, H., Frey, E. K., and Werle, E., 1930, Der Nachweis eines Kreislaufhormons in der Pankeasdruse. IV. Mitt. Über dieses kreislaufhormon, Z. Physiol. Chem. 189:97–106.CrossRefGoogle Scholar
  104. Kurzrok, R., and Lieb, C. C., 1930, Biochemical studies of human semen. II. The action of semen on the human uterus, Proc. Soc. Exp. Biol. Med. 28:268–272.Google Scholar
  105. Lembeck, F., and Holzer, P., 1979, Substance P as neurogenic mediator of antidromic vasodilation and neurogenic plasma extravasation, Naunyn Schmiedeberg Arch. Pharmacol. 310:175–183.CrossRefGoogle Scholar
  106. Lembeck, F., Donnerer, J., and Bartho, L., 1982, Inhibition of neurogenic vasodilation and plasma extravasation by substance P antagonists, somatostatin and (D-met 2,pro5) enkephalinamide, Eur. J. Pharmacol. 85:171–176.PubMedCrossRefGoogle Scholar
  107. Levi, R., Owen, D. A. A., and Trzeciakowski, J., 1982, Actions of histamine on the heart and vasculature, in: Pharmacology of Histamine Receptors (C. R. Ganellin and M. E. Parsons, eds.), pp. 236–297, PSG-Wright, London.Google Scholar
  108. Lewis, T., 1927, The Blood Vessels of the Human Skin and Their Responses, Shaw & Sons, London.Google Scholar
  109. Lewis, T., and Grant, R. I., 1924, Vascular reactions of the skin to injury. Part II. The liberation of a histamine-like substance in injured skin; the underlying cause of factitious urticaria and of wheals produced by burning, and observations upon the nervous control of certain skin reactions, Heart 11:209–265.Google Scholar
  110. Lin, A. H., Morton, D. R., and Gorman, R. R., 1982, Acetyl glyceryl ether phosphorylcholine stimulates leukotriene B4, synthesis in human polymorphonuclear leukocytes, J. Clin. Invest. 70:1058–1065.PubMedCrossRefGoogle Scholar
  111. Lo, T. N., Almeida, A.P., and Beaven, M. A., 1984, Effect of indomethacin on generation of chemotactic activity in inflammatory exudates induced by carrageenan, Eur. J. Pharmacol. 99:31–43.PubMedCrossRefGoogle Scholar
  112. Lundberg, C., and Gerdin, B., 1984, The inflammatory reaction in an experimental model of open wounds in the rat. The effect of arachidonic acid metabolites, Eur. J. Pharmacol. 97:229–238.PubMedCrossRefGoogle Scholar
  113. Lundberg, J. M., and Saria, A., 1983, Capsaicin-induced desensitization of airway mucosa to cigarette smoke, mechanical and chemical irritants, Nature (Lond.) 302:251–253.CrossRefGoogle Scholar
  114. Lundberg, J. M., Saria, A., Brodin, E., Rosell, S., and Folkers, K., 1983, A substance P antagonist inhibits vagally induced increase in vascular permeability and bronchial smooth muscle contraction in the guinea pig, Proc. Natl. Acad. Sci. USA 80:1120–1124.PubMedCrossRefGoogle Scholar
  115. MacGregor, R. R., Spognuolo, P. J., and Lentnek, A. L., 1974, Inhibition of granulocyte adherence by ethanol, prednisone, and aspirin, measured with an assay system, N. Engl. J. Med. 29:642–646.CrossRefGoogle Scholar
  116. Maderazo, E. G., Breaux, S. P., and Woronick, C. L., 1984, Inhibition of human polymorphonuclear leukocyte cell responses by ibuprofen, J. Pharm. Sci. 19:1403–1406.CrossRefGoogle Scholar
  117. Majno, G., and Palade, G. E., 1961, Studies on inflammation. I. The effect of histamine and serotonin on vascular permeability: An electron microscopic study, J. Biol. Phys. Biochem. Cytol. 11:571–605.CrossRefGoogle Scholar
  118. Majno, G., Schoefl, G. I., and Palade, G., 1961, Studies on inflammation. II. The site of action of histamine and serotonin on the vascular tree; a topographic study, J. Biophys. Biochem. Cytol. 11:607–626.PubMedCrossRefGoogle Scholar
  119. Majno, G., Shea, S. M., and Leventhal, M., 1969, Endothelial contraction induced by histaminetype mediators. An electron microscopic study, J. Cell Biol. 42:647–672.PubMedCrossRefGoogle Scholar
  120. Marasco, W. A., Phan, S. H., Krutzsch, H., Showell, H. J., Feltner, D. E., Nairn, R., Becker, E. L., and Ward, P. A., 1984, Purification and identification of formyl-methionyl-leucyl-phenyalalanine as the major peptide neutrophil chemotactic factor produced by Escherichia coli, J. Biol. Chem. 259:5430–5439.PubMedGoogle Scholar
  121. Martin, W. J., 1984, Neutrophils kill pulmonary endothelial cells by a hydrogen-peroxide dependent pathway. An in vitro model of neutrophil-mediated lung injury, Am. Rev. Respir. Dis. 130:209–213.PubMedGoogle Scholar
  122. Martin, W., Villani, G. M., Jothianandan, D., and Furchgott, R. F., 1985, Selective blockade of endothelim-dependent and glyceral trinitrate-induced relaxation by hemoglobin and methylene blue in rabbit aorta, J. Pharmacol. Exp. Ther. 232:708–716.PubMedGoogle Scholar
  123. Matzner, Y., Drexler, R., and Levy, M., 1984, Effect of dipyrone, acetylsalicylic acid and acetaminophen on human neutrophil chemotaxis, Eur. J. Clin. Invest. 14:440–443.PubMedCrossRefGoogle Scholar
  124. McManus, L. M., Pinckard, R. N., Fitzpatrick, F. F., O’Rourke, R. A., Johanson, W. G., and Hanahan, D. J., 1981, Acetyl glyceryl ether phosphorylcholine (AGEPC): Intravascular alterations following intravenous infusion in the baboon, Lab. Invest. 45:303–307.PubMedGoogle Scholar
  125. Menkin, V., 1938a, Studies in inflammation. XIV. Isolation of the factor concerned with increased capillary permeability in injury, J. Exp. Med. 67:129–144.PubMedCrossRefGoogle Scholar
  126. Menkin, V., 1938b, Studies on inflammation. XVI. On the formation of a chemotactic substance by enzymic actions, J. Exp. Med. 67:153–158.PubMedCrossRefGoogle Scholar
  127. Miki, N., Kawabe, Y., and Kuriyama, K., 1977, Activation of cerebral guanylate cyclase by nitric oxide, Biochem. Biophys. Res. Commun. 75:851–856.PubMedCrossRefGoogle Scholar
  128. Moncada, S. (ed.), 1983, Prostacyclin, thromboxane and leukotrienes, Br. Med. Bull. 39(3):209–300.Google Scholar
  129. Moncada, S., Ferreira, S. H., and Vane, J. R., 1973, Prostaglandins, aspirin-like drugs and the oedema of inflammation, Nature (Lond.) 246:217–219.CrossRefGoogle Scholar
  130. Morris, H. R., Taylor, G. W., Piper, P. J., and Tippins, J. R., 1980, The structure elucidation of slowreacting substance of anaphylaxis (SRS-A) from guinea pig lung, Nature (Lond.) 285:104–106.CrossRefGoogle Scholar
  131. Morris, H. R., Panico, M., Etienne, T., Tippins, J. R., Girgis, S. I., and Maclntyre, I., 1984, Isolation and characterization of human calcitonin gene-related peptide, Nature (Lond.) 308:746–748.CrossRefGoogle Scholar
  132. Murphy, R. C., Hammerstrom, S., and Samuelsson, B., 1979, Leukotriene C: A slow-reacting substance from murine mastocytoma cells, Proc. Natl. Acad. Sci. USA 76:4275–4279.PubMedCrossRefGoogle Scholar
  133. Myers, B., and Rightor, M., 1978, Augmentation of wound tensile strength in rats by induction of inflammation with autogenous blood, Surgery 83:78–82.PubMedGoogle Scholar
  134. Nawa, H., Kotani, H., and Nakanishi, S., 1984, Tissue-specific generation of two prepro-tachykinin mRNAs from one gene by alternative RNA splicing, Nature (Lond.) 312:729–734.CrossRefGoogle Scholar
  135. O’Donnell, S. R., and Persson, C. G. A., 1978,-adrenoceptor mediate inhibition by terbutaline of histamine effects on vascular permeability, Br. J. Pharmacol. 62:321–324.PubMedCrossRefGoogle Scholar
  136. Pavek, K. P., and Smedegard, G., 1979, Anaphylatoxin-induced shock and two patterns of anaphylactic shock hemodynamics and mediators, Acta Physiol. Scand. 105:393–403.PubMedCrossRefGoogle Scholar
  137. Peck, M. J., and Williams, T. J., 1978, Prostacyclin (PGI2) potentiates bradykinin-induced plasma exudation in rabbit skin, Br. J. Pharmacol. 62:464–465.Google Scholar
  138. Peck, M. J., Piper, P. J., and Williams, T. J., 1981, The effect of leukotrienes C4 and D4 on the microvasculature of guinea pig skin, Prostaglandins 21:315–321.PubMedCrossRefGoogle Scholar
  139. Perez, H. D., Goldstein, I. M., Chernoff, D., Webster, R. O., and Henson, P. M., 1980, Chemotactic activity of C5a des Arg: Evidence of a requirement for an anionic peptide “helper factor” and inhibition by a cationic protein in serum from patients with systemic lupus erythematosus, Mol. Immunol. 17:163–169.PubMedCrossRefGoogle Scholar
  140. Pham Huy, D., Roch-Arveilher, M., Muntaner, O., and Girand, J. P., 1985, Effect of some antiinflammatory drugs on FMLP-induced chemotaxis and random migration of rat polymorphonuclear leukocytes, Eur. J. Pharmacol. 111:251–256.PubMedCrossRefGoogle Scholar
  141. Phelps, P., and McCarty, D. J., 1966, Crystal-induced inflammation of canine joints. II. Importance of polymorphonuclear leukocytes, J. Exp. Med. 124:115–125.PubMedCrossRefGoogle Scholar
  142. Rampart, M., and Williams, T. J., 1986, Suppression of inflammatory oedema by ibuprofen involving a mechanism independent of cyclo-oxygenase inhibition, Biochem. Pharmacol. 35:581–586.PubMedCrossRefGoogle Scholar
  143. Pinckard, R. N., McManus, L. M., and Hanahan, D. J., 1982, Chemistry and biology of acetyl glyceryl ether phosphorylcholine (platelet-activating factor), in:Advances in Inflammation Research, Vol. 4 (G. Weissmann, ed.), pp. 147–180, Raven, New York.Google Scholar
  144. Rampart, M., and Williams, T. J., 1985, Inhibition of PMN-dependent oedema formation in rabbit skin by systemic treatment with catalase and 15-methyl PGE2, Br. J. Pharmacol. 85:274.Google Scholar
  145. Ramsdell, S. G., 1928, The use of tryphan blue to demonstrate the immediate skin reaction in rabbits and guinea pigs, J. Immunol. 15:305–311.Google Scholar
  146. Rapoport, R. M., Draznin, M. B., and Murad, F., 1983, Endothelium-dependent relaxation in rat aorta may be mediated through cyclic GMP-dependent protein phosphorylation, Nature (Lond.) 306:174–176.CrossRefGoogle Scholar
  147. Rapport, M. M., Green, A. A., and Page, I. H., 1948, Serum vasoconstrictor (serotonin). IV. Isolation and characterization, J. Biol. Chem. 176:1243–1251.PubMedGoogle Scholar
  148. Regoli, D., and Barabe, J., 1980, Pharmacology of bradykinin and related kinins, Pharmacol. Rev. 32:1–46.PubMedGoogle Scholar
  149. Regoli, D., Barabe, J., and Park, W. K., 1977, Receptors for bradykinin in rabbit aorta, Can. J. Physiol. Pharmacol. 55:855–867.PubMedCrossRefGoogle Scholar
  150. Regoli, D., Marcaeu, F., and Barabe, J., 1978, De novo formation of vascular receptors for bradykinin, Can. J. Physiol. Pharmacol. 56:674–677.PubMedCrossRefGoogle Scholar
  151. Rochae Silva, M., Beraldo, W. T., and Rosenfeld, G., 1949, Bradykinin a hypotensive and smooth muscle stimulating factor released from plasma globulin by snake venom and by trypsin, Am. J. Physiol. 156:261–273.Google Scholar
  152. Rosenfeld, M. G., Mermod, J. J., Amara, S. G., Swanson, L. W., Sawchenko, P. E., Rivier, J., Vale, W. W., and Evans, R. M., 1983, Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing, Nature (Lond.) 304:129–135.CrossRefGoogle Scholar
  153. Sacks, T., Moldow, C. F., Craddock, P. R., Bowers, T. K., and Jacob, H. S., 1978, Oxygen radicals mediate endothelial cell damage by complement-stimulated granulocytes. An in vitro model of immune vascular damage, J. Clin. Invest. 61:1161–1167.PubMedCrossRefGoogle Scholar
  154. Said, S. I., and Mutt, V., 1970, Polypeptide with broad biological activity: Isolation from small intestine, Science 169:1217–1218.PubMedCrossRefGoogle Scholar
  155. Saldeen, T., 1983, Vasoactive peptides derived from degradation of fibrinogen and fibrin, Ann. NY Acad Sci. 408:424–437.PubMedCrossRefGoogle Scholar
  156. Saria, A., and Lundberg, J. M., 1985, Neurogenic inflammation, in: Inflammatory Mediators (G. A. Higgs, and T. J. Williams, eds.), pp. 73–85, Macmillan, New York.Google Scholar
  157. Schayer, R. W., 1965, Histamine and circulatory homeostasis, Fed. Proc. Fed. Am. Soc. Exp. Biol. 24:1295–1297.Google Scholar
  158. Schiffmann, E., Corcoran, B. A., and Wahl, S. A., 1975, N-formylmethionyl peptide as chemoattractants for leukocytes, Proc. Natl. Acad. Sci. USA 72:1059–1062.PubMedCrossRefGoogle Scholar
  159. Schoefl, G. I., 1963, Studies on inflammation. III. Growing capillaries: Their structure and permeability, Virchows Arch. [A] 337:97–141.CrossRefGoogle Scholar
  160. Schultz, H. E., 1910, Physiological studies in anaphylaxis. I. The reaction of smooth muscle of the guinea pig sensitised with horse serum, J. Pharmacol. Exp. Ther. 1:549.Google Scholar
  161. Shaw, J. O., Henson, P. M., Henson, J., and Webster, R. O., 1980, Lung inflammation induced by complement-derived chemotactic fragments in the alveolus, Lab. Invest. 42:547–558.PubMedGoogle Scholar
  162. Showell, H. J., Freer, R. J., Zigmond, S. H., Schiffmann, E., Aswanikumar, S., Corcoran, B., and Becker, E. L., 1976, The structure-activity relations of synthetic peptides as chemotactic factors and inducers of lysosomal enzyme secretion for neutrophils, J. Exp. Med. 143:1154–1169.PubMedCrossRefGoogle Scholar
  163. Snyderman, R., Phillips, J., and Mergenhagen, S. E., 1970, Polymorphonuclear leukocyte chemotactic activity in rabbit serum and guinea pig serum treated with immune complexes: Evidence for C5a as the major chemotactic factor, Infect. Immun. 1:521–525.PubMedGoogle Scholar
  164. Sondergaard, J., and Greaves, M. W., 1971, Prostaglandin E1: Effect on human cutaneous vasculature and skin histamine, Br. J. Dermatol. 84:424–428.PubMedCrossRefGoogle Scholar
  165. Spilberg, I., and Mehta, J., 1979, Demonstration of a specific neutrophil receptor for a cell-derived chemotactic factor, J. Clin. Invest. 63:85–88.PubMedCrossRefGoogle Scholar
  166. Springer, T. A., Teplow, D. B., and Dreyer, W. J., 1985, Sequence homology of the LFA-1 and the Mac-1 leukocyte adhesion glycoproteins and unexpected relation to leukocyte interferon, Nature (Lond.) 314:540–542.CrossRefGoogle Scholar
  167. Stetson, C. A., 1951, Similarities in the mechanisms determining the Arthus and Schwartzman Phenomena, J. Exp. Med. 94:347–358.PubMedCrossRefGoogle Scholar
  168. Stimler, N. P., Bach, M. K., Bloor, C. M., and Hugli, T. E., 1982, Release of leukotrienes from guinea pig lung stimulated by C5a des Arg anaphylatoxin, J. Immunol. 128:2247–2252.PubMedGoogle Scholar
  169. Sugio, K., and Daly, J. W., 1984, Adenosine analogs: Potentiation of bradykinin-induced plasma exudation in rat skin and prevention by caffeine and theophylline, Life Sci. 35:1575–1583.PubMedCrossRefGoogle Scholar
  170. Svensjo, E., Persson, C. G. A., and Rutili, G., 1977, Inhibition of bradykinin induced macromolecular leakage from postcapillary venules by a β2-adrenoceptor stimulant, terbutaline, Acta Physiol. Scand. 101:504–506.PubMedCrossRefGoogle Scholar
  171. Terragno, N. A., Lonigro, A. J., Malik, K. U., and McGiff, J. C., 1972, The relationship of the renal vasodilator action of bradykinin to the release of a prostaglandin E-like substance, Experientia 28:437–439.PubMedCrossRefGoogle Scholar
  172. Till, G. O., Johnson, K. J., Kunkel, R., and Ward, P. A., 1982, Intravascular activation of complement and acute lung injury. Dependency on neutrophils and toxic oxygen metabolites, J. Clin. Invest. 69:1126–1135.PubMedCrossRefGoogle Scholar
  173. Tonnesen, M. G., Smedley, L., Goins, A., and Henson, P. M., 1982, Interaction between neutrophils and vascular endothelial cells in: Agents and Actions, Cologne Atherosclerosis Conference, Vol. XI, pp. 25–38, (M. J. Parnham, and J. Winkelmann, eds.), Birkhauser Verlag, Basel.Google Scholar
  174. Tonnesen, M. G., Smedley, L. A., and Henson, P. M., 1984, Neutrophil-endothelial cell interactions. Modulation of neutrophil adhesiveness induced by complement fragments C5a and C5a des Arg and Formyl-methionyl-leucyl-phenylalaline in vitro, J. Clin. Invest. 74:1581–1592.PubMedCrossRefGoogle Scholar
  175. Tregear, G. W., Niall, H. D., Potts, J. T. Jr., Leeman, S. E., and Chang, M. M., 1971, Synthesis of substance P, Nature (New Biol.) 232:870–889.Google Scholar
  176. Tsurufuji, S., Sugio, K., and Takemasa, F., 1979, The role of glucocorticoid receptor and gene expression in the anti-inflammatory action of dexamethasone, Nature 280:408–410.PubMedCrossRefGoogle Scholar
  177. Turner, S. R., Trainer, J. A., and Lynn, W. S., 1975, Biogenesis of chemotactic molecules by the arachidonate lipoxygenase system of platelets, Nature (Lond.) 257:680–681.CrossRefGoogle Scholar
  178. Van de Coorde, J., and Leusen, I., 1983, Role of endothelium in the vasodilator response of rat thoracic aorta to histamine, Eur. J. Pharmacol. 87:113–120.CrossRefGoogle Scholar
  179. Vargaftig, B. B., and Ferreira, S. H., 1981, Blockade of the inflammatory effects of platelet-activating factor by cyclo-oxygenase inhibitors, Br. J. Med. Res. 14:187–189.Google Scholar
  180. Voelkel, N. F., Worthen, S., Reeves, J. T., Henson, P. M., and Murphy, R. C., 1982, Nonimmunological production of leukotrienes induced by platelet-activating factor, Science 218:286–288.PubMedCrossRefGoogle Scholar
  181. von Euler, U. S., 1936, On the specific vasodilating and plain muscle stimulating substance from accessory genital glands in man and certain animals (prostaglandin and vesiglandin), J. Physiol. (Lond.J 88:213–234.Google Scholar
  182. von Euler, U. S., and Pernow, B. (eds.), 1977, Substance P, Raven, New York.Google Scholar
  183. Wedmore, C. V., and Williams, T. J., 1981a, Platelet-activating factor (PAF), a secretory product of polymorphonuclear leukocytes, increases vascular permeability in rabbit skin, Br. J. Pharmacol. 74:916–917.Google Scholar
  184. Wedmore, C. V., and Williams, T. J., 1981b, Control of vascular permeability by polymorphonuclear leukocytes in inflammation, Nature (Lond.) 289:646–650.CrossRefGoogle Scholar
  185. Werle, E., 1937, Uber die Wirkung des Kallikreins auf den isolierten Darm and uber eine neue dermakontrahierende Substanz, Biochem. Z. 289:217–233.Google Scholar
  186. Wilkinson, P. C., 1982, Chemotaxis and Inflammation, 2nd ed., Churchill Livingstone, London.Google Scholar
  187. Williams, T. J., 1976, The pro-inflammatory activity of E-, A-, D-and F-type prostaglandins and analogues 16, 16-dimethyl-PGE2 and (15S)-15-methyl-PGE2 in rabbit skin; the relationship between potentiating of plasma exudation and local blood flow changes, Br. J. Pharmacol. 56:341–352.Google Scholar
  188. Williams, T. J., 1978, A proposed mediator of increased vascular permeability in acute inflammation in the rabbit, J. Physiol. (Lond.) 281:44–45.Google Scholar
  189. Williams, T. J., 1979, Prostaglandin E2, prostaglandin I2 and the vascular changes in inflammation, Br. J. Pharmacol. 65:517–524.PubMedCrossRefGoogle Scholar
  190. Williams, T. J., 1982, Vasoactive intestinal polypeptide is more potent than prostaglandin E2 as a vasodilator and oedema potentiator in rabbit skin, Br. J. Pharmacol. 77:505–509.PubMedCrossRefGoogle Scholar
  191. Williams, T. J., and Jose, P. J., 1981, Mediation of increased vascular permeability after complement activation: Histamine-independent action of rabbit C5a, J. Exp. Med. 153:136–153.PubMedCrossRefGoogle Scholar
  192. Williams, T. J., and Morley, J., 1973, Prostaglandins as potentiators of increased vascular permeability in inflammation, Nature (Lond.) 246:215–217.CrossRefGoogle Scholar
  193. Williams, T. J., and Peck, M. J., 1977, Role of prostaglandin-mediated vasodilatation in inflammation, Nature (Lond.) 270:530–532.CrossRefGoogle Scholar
  194. Williams, T. J., and Piper, P. J., 1980, The action of chemically pure SRS-A on the microcirculation in vivo, Prostaglandins 19:779–789.PubMedCrossRefGoogle Scholar
  195. Williams, T. J., Jose, P. J., Forrest, L. H., Smaje, L. H., and Clough, G. F., 1984, Inflammatory oedema induced by synergism between prostaglandins and C5a: The importance of the interaction between neutrophils and venular endothelial cells, in: Progress in Microcirculation Research. Vol. II (F. C. Courtice, D. G. Garlick, and M. A. Perry, eds.), pp. 439–448, Committee in Postgraduate Medical Education, University of New South Wales, Sydney.Google Scholar
  196. Williamson, L. M., Sheppard, K., Davies, J. M., and Fletcher, J., 1986, Neutrophils are involved in the increased vascular permeability produced by activated complement in man, Br. J. Haemotol. 64:375–384.CrossRefGoogle Scholar
  197. Yancey, K. B., Hammer, C. H., Harvath, L., Renfer, L., Frank, M. M., and Lawley, T. J., 1985, Studies of human C5a as a mediator of inflammation in normal human skin, J. Clin. Invest. 75:486–495.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Timothy J. Williams
    • 1
  1. 1.Section of Vascular BiologyMRC Clinical Research CentreHarrow, MiddlesexEngland

Personalised recommendations