Proteoglycans and Wound Repair

  • John R. Couchman
  • Magnus Höök

Abstract

Proteoglycans consist of a protein core to which linear polysaccharides called glycosaminoglycans are covalently linked. This chapter discusses not only proteoglycans, but also hyaluronic acid, which is not covalently bound to protein and therefore does not qualify as a proteoglycan. However, since hyaluronic acid with its repeating disaccharide structure belongs to the family of glycosaminoglycans and has important biologic functions, it is included. The structure of proteoglycans may vary considerably, depending on the size and composition of the core proteins and the size and number of polysaccha-ride chains. The number of glycosaminoglycan classes is quite small, but some contain a heterodisperse population, in which fine structural variability results in the potential for hundreds of glycosaminoglycan species. It is also becoming clear that each proteoglycan class may contain members with distinctly different core proteins. The net result is the potential for a large variety of proteoglycans within the vertebrate body. Some of these proteoglycans appear to have a general distribution throughout the animal body, whereas others show a high degree of tissue specificity.

Keywords

Migration Xylose Oligosaccharide Galactose Dermatol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abercrombie, M. Dunn, G. A., and Heath, J. P., 1977, Locomotion and contraction in nonmuscle cells, in: Contractile Systems in Non-Muscle Tissues (S. V. Perry, A. Margreth, and R. S. Adelstein, eds.), pp. 3–11. North-Holland, Amsterdam.Google Scholar
  2. Alexander, S. A., and Donoff, R. B., 1980, The glycosaminoglycans of open wounds, J. Surg. Res. 29:422–429.PubMedGoogle Scholar
  3. Ali, I. U., and Hynes, R. O., 1978, Effects of LETS glycoprotein on cell motility, Cell 14:439–446.PubMedGoogle Scholar
  4. Arnold, E. A., Yawn, D. H., Brown, D. G., Wyllie, R. C., and Coffey, D. S., 1972, Structural alteration in rat liver nuclei after removal of template restrictions by polyanions, J. Cell Biol. 53:737–757.PubMedGoogle Scholar
  5. Ausprunk, D. H., 1984, Distribution of hyaluronate and sulfated glycosaminoglycans during capillary migration and development in the chick chorioallantoic membrane, J. Cell Biol. 99:168 (abst).Google Scholar
  6. Ausprunk, D. H., and Folkman, J., 1977, Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis, Microvasc. Res. 14:53–65.PubMedGoogle Scholar
  7. Avnur, Z., and Geiger, B., 1984, Immunocytochemical localization of native chondroitin-sulfate in tissues and cultured cells using specific monoclonal antibody, Cell 38:811–822.PubMedGoogle Scholar
  8. Azizkhan, R. G., Azizkhan, J. C., Zetter, B. R., and Folkman, J., 1980, Mast cell heparin stimulates migration of capillary endothelial cells in vitro, J. Exp. Med. 152:931–944.PubMedGoogle Scholar
  9. Baker, S. R., Blithe, D. L., Buck, C. A., and Warren, L., 1980, Glycosaminoglycans and other carbohydrate groups bound to proteins of control and transformed cells, J. Biol. Chem. 255:8719–8728.PubMedGoogle Scholar
  10. Balazs, E. A., and Darzynkiewicz, Z., 1973, The effect of hyaluronic acid on fibroblast, mononuclear phagocytes and lymphocytes, in: The Biology of the Fihrohlast (E. Kulonen and J. Pikkarainen, eds.), pp. 237–252, Academic, London.Google Scholar
  11. Bernfield, M., and Banerjee, S. D., 1982, The turnover of basal lamina glycosaminoglyan correlates with epithelial morphogenesis, Dev. Biol. 90:291–305.PubMedGoogle Scholar
  12. Bernfield, M., Banerjee, S. D., Koda, J. E., and Rapraeger, A. C, 1984, Remodeling of the basement membrane: Morphogenesis and maturation, Ciba Found. Symp. 108:179–196.PubMedGoogle Scholar
  13. Bhavanandan, V. P., and Davidson, E. A., 1975, Mucopolysaccharides associated with nuclei of cultured mammalian cells, Proc. Natl. Acad. Sci. USA 72:2032–2036.PubMedGoogle Scholar
  14. Bjork, I., and Lindahl, U., 1982, Mechanism of the anticoagulant action of heparin. Mol. Cell. Biochem. 48:161–182.PubMedGoogle Scholar
  15. Boucaut, J. C., Darribère, T., Boulekbache, H., and Thiery, J. P., 1984a, Antibodies to fibronectin prevent gastrulation but do not perturb neurulation in gastrulated amphibian embryos, Nature (London) 307:364–367.Google Scholar
  16. Boucaut, J. C, Darribère, T., Poole, T. J., Aoyama, H., Yamada, K. M., and Thiery, J. P., 1984b, Biologically active synthetic peptides as probes of embryonic development: A competitive peptide inhibitor of fibronectin function inhibits gastrulation in amphibian embryos and neural crest cell migration in avian embryo, J. Cell Biol. 99:1822–1830.PubMedGoogle Scholar
  17. Bourdon, M. A., Oldberg, A., Pierschbacher, M., and Ruoslahti, E., 1985, Molecular cloning and sequence analysis of a chondroitin sulfate proteoglycan cDNA, Proc. Natl. Acad. Sci. USA 82:1321–1325.Google Scholar
  18. Bourdon, M. A., Shiga, M., and Ruoslahti, E., 1986, Identification from cDNA of the precursor form of a chondroitin sulfate proteoglycan core protein, J. Biol. Chem. 261:12534–12537.PubMedGoogle Scholar
  19. Brennan, M. J., Oldberg, A., Hayman, E. G., and Ruoslahti, E., 1983, Effect of a proteoglycan produced by rat tumor cells on their adhesion to fibronectin—collagen substrata, Cancer Res. 43:4302–4307.PubMedGoogle Scholar
  20. Cardin, A. D., Witt, K. R., and Jackson, R. L., 1984, Visualization of heparin-binding proteins by ligand blotting with 125I-heparin, Anal. Biochem. 137:368–373.PubMedGoogle Scholar
  21. Castellot, J. J., Favreau, L. V., Karnovsky, M. J., and Rosenberg, R. D., 1982, Inhibition of vascular smooth muscle cell growth by endothelial cell-derived heparin, J. Biol. Chem. 257:11256–11260.PubMedGoogle Scholar
  22. Castellot, J. J., Wong, K., Herman, B., Hoover, R. L., Albertini, D. F., Wright, T. C, Caleb, B. L., and Karnovsky, M. J., 1985, Binding and internalization of heparin by vascular smooth muscle cells, J. Cell. Physiol. 124:13–20.PubMedGoogle Scholar
  23. Castellot, J. J., Choay, J., Lormeau, J.-C, Petitou, M., Sache, E., and Karnovsky, M. J., 1986, Structural determinants of the capacity of heparin to inhibit the proliferation of vascular smooth muscle cells. II. Evidence for a pentasaccharide sequence that contains a 3-0-sulfate group, J. Cell Biol. 102:1979–1984.PubMedGoogle Scholar
  24. Cheng, C.-F., Oosta, G. M., Bensadoun, A., and Rosenberg, R. D., 1981, Binding of lipoprotein lipase to endothelial cells in culture, J. Biol. Chem. 256:12893–12898.PubMedGoogle Scholar
  25. Choay, J., Petitou, M., Lormeau, J. C, Sinay, P., Lasu, B., and Gatti, G., 1983, Structure-activity relationship in heparin: A synthetic pentasaccharide with high affinity for antithrombin III and eliciting high anti-factor Xa activity, Biochem. Biophys. Res. Commun. 116:492–499.PubMedGoogle Scholar
  26. Christner, J. E., Brown, M. L., and Dziewiatkowski, D. D., 1979, Interactions of cartilage pro-teoglycans with hyaluronate, J. Biol. Chem. 254:4624–4630.PubMedGoogle Scholar
  27. Clowes, A. W., and Karnovsky, M. J., 1977, Suppression by heparin of smooth muscle cell proliferation in injured arteries, Nature (Lond.) 265:625–626.Google Scholar
  28. Cohn, R. H., Cassiman, J. J., and Bernfield, M. R., 1976, Relationship of transformation, cell density and growth control to the cellular distribution of newly synthesized glycosaminoglycan, J. Cell Biol. 71:280–294.PubMedGoogle Scholar
  29. Cole, G. J., and Glaser, L., 1986, A heparin-binding domain from N-CAM is involved in neural cell-substratum adhesion, J. Cell Biol. 102:403–412.PubMedGoogle Scholar
  30. Cole, G. J., Loewy, A., Cross, N. V., Abseson, R., and Glaser, L., 1986, Topographic localization of the heparin-binding domain of the neural cell adhesion molecule N-CAM, J. Cell Biol. 103:1739–1744.PubMedGoogle Scholar
  31. Comper, W. W., and Laurent, T. C, 1978, Physiological function of connective tissue polysaccharides, Physiol. Rev. 58:255–315.PubMedGoogle Scholar
  32. Cossu, G., and Warren, L., 1983, Lactosaminoglycan and heparan sulfate are covalently bound to fibronectins synthesized by mouse stem teratocarcinoma cells, J. Biol. Chem. 258:5603–5607.PubMedGoogle Scholar
  33. Couchman, J. R., and Blencowe, S., 1985, Adhesion and cell surface relationships during fibroblast and epithelial migration in vitro, Exp. Biol. Med. 10:23–38.Google Scholar
  34. Couchman, J. R., and Rees, D. A., 1979, The behavior of fibroblasts migrating from chick heart expiants. Changes in adhesion, locomotion, and growth, and in the distribution of actomyosin and fibronectin, J. Cell Sci. 39:149–165.PubMedGoogle Scholar
  35. Couchman, J. R., Rees, D. A., Green, M. R., and Smith, C. G., 1982, Fibronectin has a dual role in locomotion and anchorage of primary chick fibroblasts and can promote entry into the division cycle, J. Cell Biol. 93:402–410.PubMedGoogle Scholar
  36. Danielson, Å., Raub, E., Lindahl, U., and Björk, I., 1986, Role of ternary complexes, in which heparin binds both antithrombin and proteinase, in the acceleration of the reactions between antithrombin and thrombin or factor Xa, J. Biol. Chem. 261:15467–15473.Google Scholar
  37. David, G., and Van den Berghe, H., 1985, Heparan sulfate—chondroitin sulfate hybrid proteoglycan of the cell surface and basement membrane of mouse mammary epithelial cells, J. Biol. Chem. 260:11067–11074.PubMedGoogle Scholar
  38. Delauney, A., and Bazin, S., 1974, Mucopolysaccharides, collagen, and non-fibrillar proteins in inflammation, Int. Rev. Connective Tissue Res. 2:301–325.Google Scholar
  39. Del Rosso, M., Cappelletti, R., Viti, M., Vannucchi, S., and Chiarugi, V., 1981, Binding of the basement-membrane glycoprotein laminin to glycosaminoglycans, Biochem. J. 199:699–704.PubMedGoogle Scholar
  40. Donaldson, D. J., Mahan, J. T., Hasty, D. L., McCarthy, J. B., and Furcht, L. T., 1985, Location of a fibronectin domain involved in newt epidermal cell migration, J. Cell Biol. 101:73–78.PubMedGoogle Scholar
  41. Donecke, D., 1981, Effect of heparin on isolated nuclei, Biochem. Int. 3:73–80.Google Scholar
  42. Dorfman, A., 1981, Proteoglycan biosynthesis, in: Cell Biology of Extracellular Matrix (E. D. Hay, ed.), pp. 115–138, Plenum, New York.Google Scholar
  43. Durum, S. K., Schmidt, J. A., and Oppenheim, J. J., 1985, Interleukin 1: An immunological perspective, Annu. Rev. Immunol. 3:263–287.PubMedGoogle Scholar
  44. Dvorak, A. M., Mihm, M. C, and Dvorak, H. F., 1976, Morphology of delayed-type hypersensitivity reactions in man. IL Ultrastructural alterations affecting the microvasculature and the tissue mast cells, Lab. Invest. 34:179–191.PubMedGoogle Scholar
  45. Edelman, G. M., 1986, Cell adhesion molecules in the regulation of animal form and tissue pattern, Annu. Rev. Cell Biol. 2:81–116.PubMedGoogle Scholar
  46. Edgar, D., Timpl, R., and Thoenen, H., 1984, The heparin-binding domain of laminin is responsible for its effects on neurite outgrowth and neuronal survivial, EMBO J. 3:1463–1468.PubMedGoogle Scholar
  47. Fedarko, N. S., and Conrad, H. E., 1986, A unique heparan sulfate in the nuclei of hepatocytes: Structural changes with the growth state of the cell, J. Cell Biol. 102:587–599.PubMedGoogle Scholar
  48. Folkman, J., and Klagsbrun, M., 1987, Angiogenic factors. Science 235:442–447.PubMedGoogle Scholar
  49. Folkman, J., Longer, R., Linhardt, R. J., Hauderschild, C, and Taylor, S., 1983, Angiogenesis inhibition and tumor regression caused by heparin or a heparin fragment in the presence of cortisone, Science 221:719–725.PubMedGoogle Scholar
  50. Forrester, J. V., and Balazs, E. A., 1980, Inhibition of phagocytosis by high molecular weight hyaluronate, Immunology 40:435–446.PubMedGoogle Scholar
  51. Forrester, J. V., and Lackie, J. M., 1981, Effect of hyaluronic acid on neutrophil adhesion, J. Cell Sci. 50:329–344.PubMedGoogle Scholar
  52. Forrester, J. V., and Wilkinson, P. C, 1981, Inhibition of leukocyte locomotion by hyaluronic acid, J. Cell Sci. 48:315–331.PubMedGoogle Scholar
  53. Fransson, L.-Å., Cöster, L., Malmström, A., and Sheehan, J. K., 1982, Self-association of scierai proteodermatan sulfate, J. Biol. Chem. 257:6333–6338.PubMedGoogle Scholar
  54. Fransson, L.-Å., Havsmark, B., and Sheehan, J. K., 1981, Self-association of heparan sulfate, J. Biol. Chem. 256:13039–13043.PubMedGoogle Scholar
  55. Fritze, L. M. S., and Rosenberg, R. D., 1983, Bovine aortic smooth muscle cells produce an inhibitor or smooth muscle cell growth in vitro, J. Cell Biol. 97:90 (abst).Google Scholar
  56. Fritze, L. M. S., Reilly, C. F., and Rosenberg, R. D., 1985, An antiproliferative heparan sulfate species produced by postconfluent smooth muscle cells, J. Cell Biol. 100:1041–1049.PubMedGoogle Scholar
  57. Fromme, H. F., Buddecke, E., von Figura, K., and Kresse, H., 1976, Localization of sulfated glycosaminoglycans within cell nuclei by high resolution autoradiography, Exp. Cell Res. 102:445–449.Google Scholar
  58. Funderburg, F. M., and Markwald, R. R., 1986, Conditioning of native substrates by chondroitin sulfate proteoglycan during cardiac mesenchymal cell migration, J. Cell Biol. 103:2475–2487.PubMedGoogle Scholar
  59. Furakawa, K., and Terayama, H., 1977, Isolation and identification of glycosaminoglycans associated with purified nuclei from rat liver, Biochim. Biophys. Acta 499:278–289.Google Scholar
  60. Furakawa, K., and Terayama, H., 1979, Pattern of glycosaminoglycans and glycoproteins associated with nuclei of regenerating rat liver, Biochim. Biophys. Acta 585:575–588.Google Scholar
  61. Furakawa, K., and Bhavanandan, V. P., 1983, Influences of anionic polysaccharides on DNA synthesis in isolated nuclei and by DNA polymerase alpha: Correlations of observed effects with properties of the polysaccharides, Biochim. Biophys. Ada 740:466–474.Google Scholar
  62. Gallagher, J. T., Gasiunas, N., and Schor, S. L., 1983, Specific association of iduronic acid-rich dermatan sulfate with the extracellular matrix of human skin fibroblasts cultured on collagen gels, Biochem. J. 215:107–116.PubMedGoogle Scholar
  63. Gallagher, J. T., Lyon, M., and Steward, W. P., 1986, Structure and function of heparan sulphate proteoglycans, Biochem. J. 236:313–325.PubMedGoogle Scholar
  64. Glossl, J., Schubert-Prinz, R., Gregory, J. D., Damle, S. P., von Figura, K., and Kresse, H., 1983, Receptor-mediated endocytosis of proteoglycans by human fibroblasts involves recognition of protein core, Biochem. J. 215:295–301.PubMedGoogle Scholar
  65. Grimes, N. L., 1981, The role of hyaluronate and hyaluronidase in cell migration during the rabbit ear regenerative healing response, Anat. Rec. 199:100 (abst).Google Scholar
  66. Håkansson, L., Hallgren, R., and Venge, P., 1980, Regulation of granulocyte function by hyaluronic acid: In vitro and in vivo effects on phagocytosis, locomotion, and metabolism, J. Clin. Invest. 66:298–305.PubMedGoogle Scholar
  67. Handley, C., and Lowther, D. A., 1976, Inhibition of proteoglycan biosynthesis by hyaluronic acid in chondrocytes in cell culture, Biochem. Biophys. Ada 444:69–74.Google Scholar
  68. Hascall, V. C, and Hascall, G. K., 1981, Proteoglycans, in: Cell Biology of Extracellular Matrix (E. D. Hay, ed.), pp. 39–63, Plenum, New York.Google Scholar
  69. Hassell, J. R., Kimura, J. H., and Hascall, V. C, 1986, Proteoglycan core protein families, Annu. Rev. Biochem. 55:539–567.PubMedGoogle Scholar
  70. Hassell, J. R., Robey, P. G., Barrach, M.-J., Wilczek, J., Rennard, S. I., and Martin, G. R., 1980, Isolation of a heparan sulfate-containing proteoglycan from basement membrane, Proc. Natl. Acad. Sci. USA 77:4494–4498.PubMedGoogle Scholar
  71. Heasman, J., Hynes, R. O., Swan, A. P., Thomas, V., and Wylie, C. C, 1981, Primordial germ cells of Xenopus embryos: The role of fibronectin in their adhesion during migration, Cell 27:437–447.PubMedGoogle Scholar
  72. Hedman, K., Christner, J., Julkunen, I., and Vaheri, A., 1983, Chondroitin sulfate at the plasma membranes of cultured fibroblasts, J. Cell Biol. 97:1288–1293.PubMedGoogle Scholar
  73. Heinegård, D., Franzén, A., Hedbom, E., and Sommarin, Y., 1986, Common structures of the core proteins of interstitial proteoglycans, in: Functions of the Proteoglycans, Ciba Foundation Symposium 124 (D. Evered and J. Whelen, eds.), pp. 65–88, Wiley, New York.Google Scholar
  74. Höök, M., Kjellén, L., Johansson, S., and Robinson, J., 1984, Cell-surface glycosaminoglycans, Annu. Rev. Biochem. 53:847–869.PubMedGoogle Scholar
  75. Hopwood, J. J., and Dorfman, A., 1977, Isolation of lipid glucuronic acid and N-acetylglucosamine from a rat fibrosarcoma, Biochem. Biophys. Res. Commun. 75:472–479.PubMedGoogle Scholar
  76. Hynes, R. O., and Destree, A. T., 1978, Relationships between fibronection (LETS protein) and actin, Cell 15:875–885.PubMedGoogle Scholar
  77. Ishihara, M., Fedarko, N. S., and Conrad, H. E., 1987, Involvement of phosphatidylinositol and insulin in the coordinate regulation of protoheparan sulfate metabolism and hepatocyte growth, J. Biol. Chem. 262:4708–4716.PubMedGoogle Scholar
  78. Jalkanen, M., Nguyen, H., Rapraeger, A., Klein, N., and Bernfield, M., 1985, Heparan sulfate proteoglycan from mouse mammary epithelial cells: Localization on the cell surface with a monoclonal antibody, J. CelJ Biol. 101:976–984.Google Scholar
  79. Kanwar, Y. S., and Farquhar, M. G., 1979, Isolation of glycosaminoglycans (heparan sulfate) from glomerular basement membranes, Proc. Natl. Acad. Sci. USA 76:4493–4497.PubMedGoogle Scholar
  80. Kawakami, H., and Terayama, H., 1981, Liver plasma membranes and proteoglycans prepared therefrom inhibit the growth of hepatoma cells in vitro, Biochim. Biophys. Acta 646:161–168.PubMedGoogle Scholar
  81. Kimura, J. H., Thonar, E. J.-M., Hascall, V. C, Reiner, A., and Poole, A. R., 1981, Identification of core protein, an intermediate in proteoglycan biosynthesis in cultured chondrocytes from the Swarm rat chondrosarcoma, J. Biol. Chem. 256:7890–7897.PubMedGoogle Scholar
  82. Kinoshita, S., and Saiga, H., 1979, The role of proteoglycan in the development of sea urchins, Exp. Cell Res. 123:229–236.PubMedGoogle Scholar
  83. Kinsella, M. G., and Wight, T. N., 1986, Modulation of sulfated proteoglycan synthesis by bovine aortic endothelial cells during migration, J. Cell Biol. 102:679–687.PubMedGoogle Scholar
  84. Kjellén, L., Pettersson, I., and Höök, M., 1981, Cell-surface heparan sulfate: An intercalated membrane proteoglycan, Proc. Natl. Acad. Sci. USA 78:5371–5375.PubMedGoogle Scholar
  85. Knox, P., and Wells, P., 1979, Cell adhesion and proteoglycans, J. Cell Sci. 40:77–88.PubMedGoogle Scholar
  86. Knudson, C. B., and Toole, B. P., 1985, Fluorescent morphological probe for hyaluronate, J. Cell Biol. 100:1753–1758.PubMedGoogle Scholar
  87. Kobayashi, S., Oguri, K., Kobayashi, K., and Okayama, M., 1983, Isolation and characterization of proteoheparan sulfate synthesized in vitro by rat glomeruli, J. Biol. Chem. 258:12051–12057.PubMedGoogle Scholar
  88. Kovacs, J., Frey, A., and Seifert, K. H., 1981, Activation of transcription complexes of RNA polymerase B by the polyanion heparin, Biochem. Int. 3:645–653.Google Scholar
  89. Kraemer, R. J., and Coffey, D. S., 1970, The interaction of natural and synthetic polyanions with nuclei. I. DNA synthesis, Biochim. Biophys. Acta 224:553–567.PubMedGoogle Scholar
  90. Krawczyk, W. S., 1971, A pattern of epidermal cell migration during wound healing, J. Cell Biol. 49:247–263.PubMedGoogle Scholar
  91. Krusius, T., and Rouslahti, E., 1986, Primary structure of an extracellular matrix proteoglycan core protein deduced from cloned cDNA, Proc. Natl. Acad. Sci. USA 83:7683–7687.PubMedGoogle Scholar
  92. Lane, D. A., Pejler, G., Flynn, A. M., Thompson, E. A., and Lindahl, U., 1986, Neutralization of heparin-related saccharides by histidine-rich glycoprotein and platelet factor 4, J. Biol. Chem. 261:3980–3986.PubMedGoogle Scholar
  93. Lark, M. W., and Culp, L. A., 1984, Multiple classes of heparan sulfate proteoglycans from fibroblast substratum adhesion sites, J. Biol. Chem. 259:6773–6782.PubMedGoogle Scholar
  94. Laterra, J., Ansbacher, R., and Culp, L. A., 1980, Glycosaminoglycans that bind cold-insoluble globulin in cell-substratum adhesion sites of murine fibroblasts, Proc. NatJ. Acad. Sci. USA 77:6662–6666.Google Scholar
  95. Laterra, J., Silbert, J. E., and Culp, L. A., 1983, Cell surface heparan sulfate mediated some adhesion responses to glycosaminoglycan-binding matrices, including fibronectin, J. Cell Biol. 96:112–123.PubMedGoogle Scholar
  96. Lembach, K. J., 1976, Enhanced synthesis and extracellular accumulation of hyaluronic acid during stimulation of quiescent human fibroblasts by mouse epidermal growth factor, J. Cell Physiol. 89:277–288.PubMedGoogle Scholar
  97. Lindahl, U., and Höök, M., 1978, Glycosaminoglycans and their binding to biological mac-romolecules, Annu. Bev. Biochem. 47:385–417.Google Scholar
  98. Lindahl, U., Bäckström, G., Höök, M., Thunberg, L., Fransson, L. A., and Linker, A., 1979, Structure of the antithrombin-binding site in heparin, Proc. NatJ. Acad. Sci. USA 76:3198–3202.Google Scholar
  99. Lindahl, U., Thunberg, L., Bäckström, G., Riesenfeld, J., Nordling, K., and Björk, L, 1984, Extension and structural variability of the antithrombin-binding sequence in heparin, J. Biol. Chem. 259:12368–12376.PubMedGoogle Scholar
  100. Lohmander, L. S., DeLuca, S., Nilsson, B., Hascall, V. C, Caputo, C. B., Kimura, J. H., and Heine-gard, D., 1980, Oligosaccharides on proteoglycans from the Swarm rat chondrosarcoma, J. Biol. Chem. 255:6084–6091.PubMedGoogle Scholar
  101. Mahley, R. W., Weisgraber, K. H., and Innerarity, T. L., 1979, Interactions of plasma lipoproteins containing apolipoproteins B and E with heparin and cell surface receptors, Biochim. Biophys. Acta 575:81–91.PubMedGoogle Scholar
  102. Majack, R. A., and Clowes, A. W., 1984, Inhibition of vascular smooth muscle cell migration by heparin-like glycosaminoglycans, J. Cell Physiol. 118:253–256.PubMedGoogle Scholar
  103. Marcum, J. A., and Rosenberg, R. D., 1984, Anticoagulantly active heparin-like molecules from vascular tissue, Biochemistry 23:1730–1737.PubMedGoogle Scholar
  104. Margolis, R. K., Crockett, C. P., Kiang, W. L., and Margolis, R. V., 1976, Glycosaminoglycans and glycoproteins associated with rat brain nuclei, Biochim. Biophys. Acta 451:461–469.Google Scholar
  105. Markwald, R. R., Fitzharris, T. P., Bank, H., and Bernanke, D. H., 1978, Structural analysis on the matrical organization of glycosaminoglycans in developing endocardial cushions, Dev. Biol. 62:292–316.PubMedGoogle Scholar
  106. Martin, B. M., Gimbrone, M. A., Unanue, E. R., Cotran, R. S., 1981, Stimulation of nonlymphoid mesenchymal cell proliferation by a macrophage-derived growth factor, J. Immunol. 126:1510–1515.PubMedGoogle Scholar
  107. Mathews, M. B., 1975, Connective tissues macromolecular structure and evolution, MoJ. Biol. Biochem. Biophys.19:1–318.Google Scholar
  108. McCarthy, J. B., and Furcht, L. T., 1984, Laminin and fibronectin promote the haptotactic migration of B16 mouse melanoma cells in vitro, J. Cell Biol. 98:1474–1480.PubMedGoogle Scholar
  109. Meier, S., and Hay, E. D., 1974a, Control of corneal differentiation by extracellular materials. Collagen as a promoter and stabilizer of epithelial stroma production, Dev. Biol. 38:249–270.PubMedGoogle Scholar
  110. Meier, S., and Hay, E. D., 1974b, Stimulation of extracellular matrix synthesis in the developing cornea by glycosaminoglycans, Proc. Natl. Acad. Sci. USA 71:2310–2313.PubMedGoogle Scholar
  111. Mian, N., 1986a, Analysis of cell-growth-phase-related variations in hyaluronate synthase activity of isolated plasma-membrane fractions of cultured human skin fibroblasts, Biochem. J. 237:333–342.PubMedGoogle Scholar
  112. Mian, N., 1986b, Characterization of a high-Mr plasma-membrane-bound protein and assessment of its role as a constituent of hyaluronate synthase complex, Biochem. J. 237:343–357.PubMedGoogle Scholar
  113. Mikuni-Takagaki, Y., and Toole, B. P., 1981, Hyaluronate-protein complex of Rous Sarcoma Virus transformed chick embryo fibroblasts, J. Biol. Chem. 256:8463–8469.PubMedGoogle Scholar
  114. Moscatelli, D., and Rubin, H., 1975, Increased hyaluronic acid production on stimulation of DNA synthesis in chick embryo fibroblasts, Nature (Lond.) 254:65–66.Google Scholar
  115. Neame, P. J., Perin, J.-P., Bonnet, F., Christner, J. E., Jollen, P., and Baker, J. R., 1985, An amino acid sequence common to both cartilage proteoglycans and link protein, J. Biol. Chem. 260:12402–12404.PubMedGoogle Scholar
  116. Neame, P. J., Christner, J. E., and Baker, J. R., 1986, The primary structure of link protein from rat chondrosarcoma proteoglycan aggregate, J. Biol. Chem. 261:3519–3535.PubMedGoogle Scholar
  117. Nishida, T., Nakagawa, S., Awata, T., Ohashi, Y., Watanabe, K., and Mauabe, R., 1983, Fibronectin promotes epithelial migration of cultured rabbit cornea in situ, J. Cell Biol. 97:1653–1657.PubMedGoogle Scholar
  118. Norling, B., Glimelius, B., and Wasteson, A., 1981, Heparan sulfate proteoglycan of cultured cells: Demonstration of a lipid and a matrix-associated form, Biochem. Biophys. Res. Commun. 103:1265–1272.PubMedGoogle Scholar
  119. Norris, D. A., Clark, R. A. F., Swigart, L. M., Huff, J. C, Weston, W. L., and Howell, S. E., 1982, Fibronectin fragments are chemotactic for human peripheral blood monocytes, J. Immunol. 129:1612–1618.PubMedGoogle Scholar
  120. Oldberg, Å., Heldin, C.-H., Wasteson, Å., Busch, C, and Höök, M., 1980, Characterization of a platelet endoglycosidase degrading heparin-like polysaccharides, Biochemistry 19:5755–5762.PubMedGoogle Scholar
  121. Olivecrona, T., Egelrud, T., Iverius, P.-H., and Lindahl, U., 1971, Evidence for an ionic binding of lipoprotein lipase to heparin, Biochem. Biophys. Res. Commun. 43:524–529.Google Scholar
  122. Oohira, A., Wight, T. N., and Bornstein, P., 1983, Sulfated proteoglycans synthesized by vascular endothelial cells in culture, J. Biol. Chem. 258:2014–2021.PubMedGoogle Scholar
  123. Parthasarathy, N., and Spiro, R. C., 1984, Isolation and characterization of the heparan sulfate proteoglycan of the bovine glomerular basement membrane, J. Biol. Chem. 259:12749–12755.PubMedGoogle Scholar
  124. Paulsson, M., Fujiwara, S., Dziadek, M., Timpl, R., Pejler, G., Bäckström, G., Lindahl, U., and Engel, J., 1986, Structure and function of basement membrane proteoglycans, in: Functions of the Proteoglycans, Ciba Foundation Symposium 124 (D. Evered and J. Whelan, eds.), pp. 189–203, Wiley, New York.Google Scholar
  125. Pierschbacher, M. D., and Ruoslahti, E., 1984, Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule, Nature (Lond.) 309:30–33.Google Scholar
  126. Pierschbacher, M. D., Ruoslahti, E., Sundelin, J., Lind, P., and Peterson, P. A., 1982, The cell attachment domain of fibronectin. Determination of the primary structure, J. Biol. Chem. 267:9593–9597.Google Scholar
  127. Pinter, J. E., 1978, Distribution and synthesis of glycosaminoglycans during quail neural crest morphogenesis, Dev. Biol. 67:444–464.Google Scholar
  128. Poole, A. R., 1986, Proteoglycans in health and disease: Structures and functions, Biochem. J. 236:1–14.PubMedGoogle Scholar
  129. Postlethwaite, A. E., Keski-Oja, J., Bakan, G., Kang, A. H., 1981, Induction of fibroblast chemotaxis by fibronectin, J. Exp. Med. 153:494–499.PubMedGoogle Scholar
  130. Pratt, R. M., Larson, M. A., and Johnston, M. C, 1975, Migration of cranial neural crest cells in a cell-free hyaluronate-rich matrix, Dev. Biol. 44:298–305.PubMedGoogle Scholar
  131. Prehm, P., 1983a, Synthesis of hyaluronate in differentiated teratocarcinoma cells: Characterization of the synthase, Biochem. J. 211:181–189.PubMedGoogle Scholar
  132. Prehm, P., 1983b, Synthesis of hylauronate in differentiated teratocarcinoma cells: Mechanism of chain growth, Biochem. J. 211:191–198.PubMedGoogle Scholar
  133. Rapraeger, A., and Bernfield, M., 1982, An integral membrane proteoglycan is capable of binding components of the cytoskeleton and the extracellular matrix, in: Extracellular Matrix (S. P. Hawkes and J. L. Wang, eds.), pp. 265–269, Academic, New York.Google Scholar
  134. Rapraeger, A., and Bernfield, M., 1985, Cell surface proteoglycan of mammary epithelial cells. Proteases release a heparan sulfate-rich ectodomain from a putative membrane-anchored domain, J. Biol. Chem. 260:4103–4109.PubMedGoogle Scholar
  135. Rapraeger, A., Jalkanen, M., Endo, E., Koda, J., and Bernfield, M., 1985, The cell surface proteoglycan from mouse mammary epithelial cells bears chondroitin sulfate and heparan sulfate glycosaminoglycans, J. Biol. Chem. 260:11046–11052.PubMedGoogle Scholar
  136. Rich, A. M., Pearlstein, E., Weissman, C, and Hoffstein, S. T., 1981, Cartilage proteoglycans inhibit fibronectin-mediated adhesion, Nature (Lond.) 293:224–226.Google Scholar
  137. Riesenfeld, J., Höök, M., and Lindahl, U., 1982, Biosynthesis of heparin. Concerted action of early polymer-modification reactions, J. Biol. Chem. 257:421–424.PubMedGoogle Scholar
  138. Risau, W., and Ekblom, P., 1986, Production of a heparin-binding angiogenesis factor by the embryonic kidney, J. Cell Biol. 103:1101–1107.PubMedGoogle Scholar
  139. Robinson, H. C, Horner, A. A., Höök, M., ögren, S., and Lindahl, U., 1978, A proteoglycan form of heparin and its degradation to single-chain molecules, J. Biol. Chem. 253:6687–6693.PubMedGoogle Scholar
  140. Robinson, J., Viti, M., and Höök, M., 1984, Structure and properties of an under-sulfated heparan sulfate proteoglycan synthesized by a rat hepatoma cell line, J. Cell Biol. 98:946–953.PubMedGoogle Scholar
  141. Rolin, R., Albert, S. O., Gelb, N. A., and Black, D. H., 1975, Cell surface changes correlated with density-dependent growth inhibition. Glycosaminoglycan metabolism in 3T3, SV3T3 and Con A selected revertant cells, Biochemistry 14:347–357.Google Scholar
  142. Rosenberg, L. C, Shoi, H. U., Poole, A. R., Lewandowska, K., and Culp, L. A., 1986, Biological roles of dermatan sulfate proteoglycans, Ciba Found. Symp. 124:47–68.PubMedGoogle Scholar
  143. Ross, R., and Glomset, J. A., 1976, The pathogenesis of atherosclerosis, N. Engl. J. Med. 295:369–377.PubMedGoogle Scholar
  144. Ruoslahti, E., and Engvall, E., 1980, Complexing of fibronectin, glycosaminoglycans and collagen, Biochim. Biophys. Acta 631:350–358.Google Scholar
  145. Sai, S., Tanaka, T., Kosho, R. A., and Tanzer, M. L., 1986, Cloning and sequence analysis of a partial cDNA for chicken cartilage proteoglycan core protein, Proc. NatJ. Acad. Sci. USA 83:5081–5085.Google Scholar
  146. Sakashita, S., Engvall, E., and Ruoslahti, E., 1980, Basement membrane glycoprotein laminin binds to heparin, FEBS Lett. 116:243–246.PubMedGoogle Scholar
  147. Schreiber, A. B., Kenney, J., Kowalski, J., Thomas, K. A., Gimenez-Gallego, G., Rios-Candelore, M., DiSalvo J., Barritault, D., Courty, J., Courtois, Y., Moenner, M., Loret, C, Burgess, W. H., Mehlman, T., Friesel, R., Johnson, W., and Maciag, T., 1985, A unique family of endothelial cell polypeptide mitogens: The antigenic and receptor cross-reactivity of bovine endothelial cell growth factor brain-derived acidic fibroblast growth factor, and eye-derived growth factor-II, J. Cell Biol. 101:1623–1626.PubMedGoogle Scholar
  148. Scott, J. E., and Orford, C. R., 1981, Dermatan sulfate-rich proteoglycan associated with rat tail-tendon cartilage at the d band in the gap region, Biochem. J. 197:213–216.PubMedGoogle Scholar
  149. Seppa, H. E. J., Yamada, K. M., Seppa, S. T., Silver, M. H., Kleinman, H. K., and Schiffman, E., 1981, The cell binding fragment of fibronectin is chemotactic for fibroblasts, Cell Biol. Int. Rep. 5:813–819.Google Scholar
  150. Shelburne, F. A., and Quarfordt, S. H., 1977, The interaction of heparin with an apoprotein of human very low density lipoprotein, J. Clin. Invest. 60:944–950.PubMedGoogle Scholar
  151. Shetlar, M. R., Davitt, W. F., Shellar, M. F., Posett, R. L., Cross, M. F., and Lautsch, F. V., 1978, Glycosaminoglycan changes in healing myocardial infarctions, Proc. Soc. Exp. Biol. Med. 158:210–214.PubMedGoogle Scholar
  152. Shing, Y., Folkman, J., Sullivan, R., Butterfield, C, Murray, J., and Klagsbrun, M., 1984, Heparin affinity: Purification of a tumor derived capillary endothelial cell growth factor, Science 223:1269–1299.Google Scholar
  153. Singer, I. I., 1979, The fibronexus: A transmembrane association of fibronectin-containing fibers and bundles of Snm microfilaments in hamster and human fibroblasts, Cell 16:675–685.PubMedGoogle Scholar
  154. Singer, I. I., Kawka, D. W., Kazazis, D. M., and Clark, R. A. F., 1984, In vivo co-distribution of fibronectin and actin fibers in granulation tissue: Immunofluorescence and electron microscope studies of the fibronexus at the myofibroblast surface, J. Cell Biol. 98:2091–2096.PubMedGoogle Scholar
  155. Solursh, M., Mitchell, S. L., and Katow, H., 1986, Inhibition of cell migration in sea urchin embryos by β-D-xyloside, Dev. Biol. 118:325–332.PubMedGoogle Scholar
  156. Solursh, M., and Morriss, G. M., 1977, Glycosaminoglycan synthesis in rat embryos during the formation of the primary mesenchyme and neural folds, Dev. Biol. 57:75–86.PubMedGoogle Scholar
  157. Solursh, M., Vaerewyck, S. A., and Reiter, R. S., 1974, Depression by hyaluronic acid of glycosaminoglycan synthesis by cultured chick embryo chondrocytes, Dev. Biol. 41:233–244.PubMedGoogle Scholar
  158. Sommarin, Y., and Heinegård, D., 1983, Specific interaction between cartilage proteoglycans and hyaluronic acid at the chondrocyte cell surface, Biochem. J. 214:777–784.PubMedGoogle Scholar
  159. Stein, G. S., Roberts, R. M., Davis, J. L., Head, W. J., Stein, J. L., Thrall, C. L., van Veen, J., and Welch, D. W., 1975, Are glycoproteins and glycosaminoglycans components of the eukaryotic genome?, Nature (Lond.) 258:639–641.Google Scholar
  160. Stevens, R. L., 1986, Secretory granule proteoglycans of mast cells on natural killer cells, in: Functions of the Proteoglycans, Ciba Foundation Symposium 125 (D. Evered and J. Whelan, eds.), pp. 272–285, Wiley, New York.Google Scholar
  161. Stoolmiller, A. C, and Dorfman, A., 1969, The biosynthesis of hyaluronic acid by Streptococcus, J. Biol. Chem. 244:236–246.PubMedGoogle Scholar
  162. Sugahara, K., Schwartz, N., and Dorfman, A., 1979, Biosynthesis of hyaluronic acid by Streptococcus, J. Biol. Chem. 254:6252–6261.PubMedGoogle Scholar
  163. Suzuki, S., Pierschbacher, M. D., Hayman, E. G., Nguyen, K., öhgren, Y., and Ruoslahti, E., 1984, Domain structure of vitronectin, J. Biol. Chem. 259:15307–15314.PubMedGoogle Scholar
  164. Takashima, A., and Grinnell, F., 1985, Fibronectin-mediated keratinocyte migration and initiation of fibronectin receptor function in vitro, J. Invest. Dermatol. 85:304–308.PubMedGoogle Scholar
  165. Taylor, S., and Folkman, J., 1982, Protamine is an inhibitor of angiogenesis, Nature (Lond.) 297:307–312.Google Scholar
  166. Thiery, J. P., Duband, J. L., and Tucker, G. C, 1985, Cell migration in the vertebrate embryo: Role of cell adhesion and tissue environment in pattern formation, Annu. Rev. Cell Biol. 1:91–113.PubMedGoogle Scholar
  167. Thornton, S. C, Mueller, S. N., and Levine, E. M., 1983, Human endothelial cells: Use of heparin in cloning and long-term serial cultivation, Science 222:623–625.PubMedGoogle Scholar
  168. Thunberg, L., Backstrom, G., and Lindahl, U., 1982, Further characterization of the antithrombin binding sequence in heparin, Carbohydrate Res. 100:393–410.Google Scholar
  169. Timpl, R., Fujiwara, S., Dziadek, M., Aumailley, M., Weber, S., and Engel, J., 1984, Laminin, proteoglycan, nidogen and collagen. IV. Structural models and molecular interactions, Ciba Found. Symp. 108:25–43.PubMedGoogle Scholar
  170. Tomida, M., Koyama, H., and Ono, T., 1974, Hyaluronic acid synthetase in cultured mammalian cells producing hyaluronic acid. Oscillatory change during the growth phase and suppression by 5-bromodeoxyuridine, Biochim. Biophys. Acta 338:352–363.Google Scholar
  171. Toole, B. P., 1981, Glycosaminoglycans in morphogenesis, in: Cell Biology of Extracellular Matrix (E. D. Hay, ed.), Academic Press, New York, pp. 259–294.Google Scholar
  172. Toole, B. P., and Gross, J., 1971, The extracellular matrix of the regenerating newt limb: Synthesis and removal of hyaluronate prior to differentiation, Dev. Biol. 25:57–77.PubMedGoogle Scholar
  173. Toole, B. P., and Trelstad, R. L., 1971, Hyaluronate production and removal during corneal development in the chick, Dev. Biol. 26:28–35.PubMedGoogle Scholar
  174. Treadwell, B. V., Mankin, D. P., Ho, P. K., and Mankin, H. J., 1980, Cell-free synthesis of cartilage proteins: Partial identification of proteoglycan core and link proteins, Biochem. 19:2269–2275.Google Scholar
  175. Triscott, M. X., and van de Rijn, I., 1986, Solubilization of hyaluronic acid synthetic activity from streptococci and its activation with phospholipids, J. Biol. Chem. 261:6004–6009.PubMedGoogle Scholar
  176. Turley, E. A., 1982, Purification of a hyaluronate-binding protein fraction that modifies cell social behavior, Biochem. Biophys. Res. Commun. 108:1016–1024.PubMedGoogle Scholar
  177. Turner, D. C, Lawton, J., Dollenmeier, P., Ehrismann, R., and Chiquet, M., 1983, Guidance of myogenic cell migration by oriented deposits of fibronectin, Dev. Biol. 95:497–504.PubMedGoogle Scholar
  178. Underhill, C. B., and Toole, B. P., 1979, Binding of hyaluronate to the surface of cultured cells, J. Cell Biol. 82:475–484.PubMedGoogle Scholar
  179. Underhill, C. B., and Toole, B. P., 1980, Physical characteristics of hyaluronate binding to the surface of Simian virus 40-transformed 3T3 cells, J. Biol. Chem. 255:4544–4549.PubMedGoogle Scholar
  180. Underhill, C. B., Chi-Rosso, G., and Toole, B. P., 1983, Effects of detergent solubilization on the hyaluronate-binding protein from membranes of Simian virus 40-transformed 3T3 cells, J. Biol. Chem. 258:8056–8091.Google Scholar
  181. Upholt, W. B., Vertel, B. M., and Dorfman, A., 1979, Translation and characterization of messenger RNAs in differentiating chicken cartilage, Proc. Natl. Acad. Sci. USA 76:4847–4851.PubMedGoogle Scholar
  182. van de Rijn, I., 1983, Streptococcal hyaluronic acid: Proposed mechanisms of degradation and loss of synthesis during stationary phase, J. Bacteriol. 156:1059–1065.PubMedGoogle Scholar
  183. Venge, P., HÅkansson, L., and Hallgren, R., 1982, The effect of hyaluronic acid on neutrophil function in vitro and in vivo, Adv. Exp. Med. Biol. 141:559–565.PubMedGoogle Scholar
  184. Weisgraber, K. H., Rall, S. C, Mahley, R. W., Milne, R. W., Marcely, Y. L., and Sparrow, J. T., 1986, Human apolipoprotein E: Determination of the heparin binding sites of apolipoprotein E3, J. Biol. Chem. 261:2068–2076.PubMedGoogle Scholar
  185. Wiebkin, O. W., and Muir, H., 1973, The inhibition of sulfate incorporation in isolated adult chondrocytes by hyaluronic acid, FEBS Lett. 37:42–46.PubMedGoogle Scholar
  186. Woods, A., Höök, M., Kjellén, L., Smith, C. G., and Rees, D. A., 1984, Relationship of heparan sulfate proteoglycans to the cytoskeleton and extracellular matrix of cultured fibroblasts, J. Cell Biol. 99:1743–1753.PubMedGoogle Scholar
  187. Woods, A., Couchman, J. R., and Höök, M., 1985, Heparan sulfate proteoglycans of rat embryo fibroblasts, J. Biol. Chem. 260:10872–10879.PubMedGoogle Scholar
  188. Woods, A., Couchman, J. R., Johansson, S., and Höök, M., 1986, Adhesion and cytoskeletal organization of fibroblasts in response to fibronectin fragments, EMBO J. 5:665–670.PubMedGoogle Scholar
  189. Yamagata, M., Yamada, K. M., Yaneda, M., Suzuki, S., and Kimata, K., 1986, Chondroitin sulfate proteoglycan (PG-M-like proteoglycan) is involved in the binding of hyaluronic acid to cellular fibronectin, J. Biol. Chem. 261:13526–13535.PubMedGoogle Scholar
  190. Yurt, R. W., Leid, R. W., Austen, K. F., and Silbert, J. E., 1977, Native heparin from rat peritoneal mast cells, J. Biol. Chem. 252:518–521.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • John R. Couchman
    • 1
  • Magnus Höök
    • 2
  1. 1.Connective Tissue Laboratory, Department of Medicine, B. R. Boshell Diabetes HospitalUniversity of Alabama in BirminghamBirminghamUSA
  2. 2.Department of Biochemistry, Connective Tissue Laboratory, B. R. Boshell Diabetes HospitalUniversity of Alabama in BirminghamBirminghamUSA

Personalised recommendations