Skip to main content

Re-epithelialization

  • Chapter

Abstract

Central to the survival of each living organism is the protective outer layer separating the organism from the environment. In all but the simplest forms of life, the barrier is made up of cells that adhere tightly to one another. Such cells, referred to as epithelium or epidermis, generally form single-layered coverings in invertebrates and multilayered coverings in vertebrates. Wounding of this outer barrier layer is potentially lethal to the organism, as body fluids are lost to the environment or destructive environmental elements (chemicals or microorganisms) gain access into the organism. It is to the advantage of a wounded organism to close the rent rapidly, even before underlying tissue repair begins.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alitalo, K., Kuismanen, E., Myllyla, R., Kiistala, U., Askoseljavaara, S., and Vaheri, A., 1982, Extracellular matrix proteins of humanepidermal keratinocytes and feeder 3T3 cells, J. Cell. Biol. 94:497–505.

    Article  PubMed  CAS  Google Scholar 

  • Andersen, L., and Fejerskov, O., 1974, Ultrastructure of initial epithelial cell migration in palatal wounds of guinea pigs, J. Ultrastruct. Res. 48:313–324.

    Article  Google Scholar 

  • Arey, L. B., 1936, Wound healing, Physiol. Rev. 16:327–406.

    Google Scholar 

  • Barker, A. T., Jaffe, L. F., and Vanable, J. W., Jr., 1982, The glabrous epidermis of cavies contains a powerful battery, Am. J. Physiol. 242:R358-R366.

    Google Scholar 

  • Beerens, E. G. T., Slot, T. W., and Van der Leun, J. C., 1975, Rapid regeneration of the dermal-epidermal junction after partial separation by vacuum. An electron microscopic study, J. Invest. Dermatol. 65:513–521.

    Article  PubMed  CAS  Google Scholar 

  • Bellairs, R., 1963, Differentiation of the yolk sac of the chick studied by electron microscopy, J. Embryol. Exp. Morphol. 11:201–225.

    Google Scholar 

  • Bereiter-Hahn, J., Strohmeier, R., Kunzenbacher, I., Beck, K., and Voth, M., 1981, Locomotion of xenopus epidermis cells in primary culture, J. Cell. Sci. 52:289–311.

    PubMed  CAS  Google Scholar 

  • Betchaku, T., and Trinkaus, J. P., 1978, Contact relations, surface activity and cortical microfila-ments of marginal cells of the enveloping layer and of the yolk synctial and yolk cytoplasmic layers of fundulus before and during epiboly, J. Exp. Zool. 206:381–426.

    Article  PubMed  CAS  Google Scholar 

  • Briggaman, R. A., Dalldorf, F. G., and Wheeler, C. E., 1971, Formation and origin of basal lamina and anchoring fibrils in adult human skin, J. Cell. Biol. 51:384–395.

    Article  PubMed  CAS  Google Scholar 

  • Buck, R. C., 1979, Cell migration in repair of mouse corneal epithelium, Invest. OphthaImol. Vis. Sci. 18:767–784.

    CAS  Google Scholar 

  • Clark, R. A. F., Lanigan, J. M., DellaPelle, P., Manseau, E., Dvorak, H. F., and Colvin, R. B., 1982, Fibronectin and fibrin provide a provisional matrix for epidermal cell migration during wound reepithelialization, J. Invest. Dermatol. 79:264–269.

    Article  PubMed  CAS  Google Scholar 

  • Clark, R. A. F., Winn, H. J., Dvorak, H. F., and Colvin, R. B., 1983, Fibronectin beneath reepithelialization epidermis in vivo: Sources and significance, J. Invest. Dermatol. (Suppl.)80:26S–30S.

    Article  CAS  Google Scholar 

  • Clark, R. A. F., Folkvord, J. M., and Wertz, R. L., 1985, Fibronectin, as well as other extracellular matrix proteins, mediate human keratinocyte adherence, J. Invest. Dermatol. 85:378-373.

    Google Scholar 

  • Couchman, J. R., Gibson, W. T., Thorn, D., Weaver, A. C., Rees, D. A., and Parish, W. E., 1979, Fibronectin distribution in epithelial and associated tissues of the rat, Arch. Dermatol. Res. 266:295–310.

    Article  PubMed  CAS  Google Scholar 

  • Croft, C. B., and Tarin, D., 1970, Ultrastructural studies on wound healing in mouse skin. I. Epithelial behavior, J. Anat. 106:63–77.

    CAS  Google Scholar 

  • Dahlback, B., and Podack, E. R., 1985, Characterization of human S protein, an inhibitor of the membrane attack complex of complement. Denaturation of a free reactive thiol group, Biochemistry 24:2368–2374.

    Article  PubMed  CAS  Google Scholar 

  • DiPasquale, A., 1975, Locomotion of epithelial cells, Exp. Cell Res. 95:425–439.

    Article  PubMed  CAS  Google Scholar 

  • Donaldson, D. J., and Mahan, J. T., 1983, Fibrinogen and fibronectin on substrates from epidermal cell migration during wound closure, J. Cell Sci. 62:117–123.

    PubMed  CAS  Google Scholar 

  • Donaldson, D. J., and Mahan, J. T., 1984, Influence of catecholamines on epidermal cell migration during wound closure in adult newts, Comp. Biochem. Physiol. 78C:267–270.

    CAS  Google Scholar 

  • Donaldson, D. J., and Mason, J. M., 1977, Inhibition of epidermal cell migration by concanavalin A in skin wounds on the adult newt, J. Exp. Zool. 200:55–64.

    Article  PubMed  CAS  Google Scholar 

  • Donaldson, D. J., and Mason, J. M., 1978, Inhibition of protein synthesis in newt. Epidermal cells: Effects on cell migration and concanavalin A-mediated inhibition of migration in vivo, Growth 42:243–252.

    Google Scholar 

  • Donaldson, D. J., Smith, G. N., and Kang, A. H., 1982, Epidermal cell migration on collagen and collagen-derived peptides, J. Cell Sci. 57:15–23.

    PubMed  CAS  Google Scholar 

  • Donaldson, D. J., Mahan, J. T., Hasty, D. L., McCarthy, J. B., and Furcht, L. T., 1985, Location of a fibronectin domain involved in newt epidermal cell migration, J. Cell Biol. 101:73–78.

    Article  PubMed  CAS  Google Scholar 

  • Donoff, R. B., 1970, Wound healing biochemical events and potential role of collagenase, J. Oral Surg. 28:356–363.

    PubMed  CAS  Google Scholar 

  • Dunlap, M. K., 1980, Cyclic AMP levels in migrating and non-migrating newt epidermal cells. J. Cell Physiol. 104:367–373.

    Article  PubMed  CAS  Google Scholar 

  • Dunlap, M. K., and Donaldson, D. J., 1978, Inability of colchicine to inhibit newt epidermal cell migration or prevent concanavalin A-mediated inhibition of migration studies in vivo, Exp. Cell Res. 116:15–19.

    Article  PubMed  CAS  Google Scholar 

  • Federgreen, W. R., and Stenn, K. S., 1980, Fibronectin does not support epithelial cell spreading, J. Invest. Dermatol. 75:261–263.

    Article  PubMed  CAS  Google Scholar 

  • Fejerskov, O., 1972, Excision wounds in palatal epithelium in guinea pigs, Scand. J. Dent. Res. 80:139–154.

    PubMed  CAS  Google Scholar 

  • Foidart, J. M., and Yaar, M., 1981, Type IV collagen, laminin and fibronectin at the dermo-epider-mal junction, Front. Matrix Biol. 9:175–188.

    CAS  Google Scholar 

  • Freeman, A. E., Eigel, H. J., Herman, B. J., Kleinfeld, K. L., 1976, Growth and characterization of human skin epithelial cell cultures, In Vitro 12:352–358.

    Article  CAS  Google Scholar 

  • Fritsch, P., Tappeiner, G., and Huspek, G., 1979, Keratinocyte substrate adhesion is magnesium-dependent and calcium independent, Cell Biol. Int. Rep. 3:593–598.

    Article  PubMed  CAS  Google Scholar 

  • Fuchs, E., and Green, H., 1980, Changes in keratin gene expression during terminal differentiation of the keratinocyte, Cell 19:1033–1042.

    Article  PubMed  CAS  Google Scholar 

  • Fujikawa, L. S., Foster, S., Harrist, T. J., Lanigan, J. M., and Colvin, R. B., 1981, Fibronectin in healing rabbit corneal wounds, Lab. Invest. 45:120–129.

    PubMed  CAS  Google Scholar 

  • Fyrand, O., 1979, Studies on fibronectin in the skin, Br. J. Dermatol. 101:263–269.

    Article  PubMed  CAS  Google Scholar 

  • Gabbiani, G., and Ryan, G. B., 1974, Development of a contractile apparatus in epithelial cells during epidermal and liver regeneration, J. Submicrisc. Cytol. 6:143–157.

    Google Scholar 

  • Gabbiani, G., Chaponnier, C., and Huttner, I., 1978, Cytoplasmic filament and gap functions in epithelial cells and myofibroblasts during wound healing, J. Cell Biol. 76:561–568.

    Article  PubMed  CAS  Google Scholar 

  • Ginnins, J. R., 1968, Migration of stratified squamous epithelium in vivo, Am. J. Pathol. 53:929–941.

    Google Scholar 

  • Gibbins, J. R., 1972, Metabolic requirements for epithelial migration as defined by the use of metabolic inhibitors in organ culture, Exp. Cell Res. 71:329–337.

    Article  PubMed  CAS  Google Scholar 

  • Gibbins, J. R., 1973, Epithelial migration in organ culture. Role of protein synthesis as determined by metabolic inhibitors, Exp. Cell Res. 80:281–290.

    Article  PubMed  CAS  Google Scholar 

  • Gibbins, J. R., 1978, Epithelial migration in organ culture. A morphological and time lapse cinematographic analysis of migrating stratified squamous epithelium, Pathology 10:207–218.

    Article  PubMed  CAS  Google Scholar 

  • Gilchrest, B. A., Nemore, R. E., and Maciag, T., 1980, Growth of human keratinocytes on fibronec-tin-coated plates, Cell Biol. Int. Rep. 4:1009–1016.

    Article  PubMed  CAS  Google Scholar 

  • Gillman, T., Penn, J., Brooks, D., and Roux, M., 1963, Reactions of healing wounds and granulation tissue in man to auto-thiersch, autodermal and homodermal grafts, Br. J. Plast. Surg. 6:153–223.

    Article  Google Scholar 

  • Gipson, I. K., and Anderson, R. A., 1980, Effect of lectin on migration of the corneal epithelium, Invest. Ophthalmol Vis. Sci. 19:341–349.

    PubMed  CAS  Google Scholar 

  • Gipson, I. K., and Kiorpes, T. C., 1982, Epithelial sheet movement: Protein and glycoprotein synthesis, Dev. Biol. 92:259–262.

    Article  PubMed  CAS  Google Scholar 

  • Gipson, I. K., Westcott, M. J., and Brooksby, N. G., 1982, Effects of cytochalasins B and D and colchicine on migration of the corneal epithelium, Invest. Ophthal. Vis. Sci. 22:633–642.

    PubMed  CAS  Google Scholar 

  • Gipson, I. K., Grill, S. M., Spurr, S. J., and Brennan, S. J., 1983a, Hemidesmosome formation in vitro, J. Cell Biol. 97:849–857.

    Article  PubMed  CAS  Google Scholar 

  • Gipson, I. K., Riddle, C. V., Kiorpes, T. C., and Spurr, S. J., 1983b, Lectin binding to cell surfaces: Comparisons between normal and migrating corneal epithelium, Dev. Biol. 96:337–345.

    Article  PubMed  CAS  Google Scholar 

  • Gipson, I. K., Kiorpes, T. C., and Brennan, S. J., 1984, Epithelial sheet movement: Effects of tunicamycin on migration and glycoprutein synthesis, Dev. Biol. 101:212–220.

    Article  PubMed  CAS  Google Scholar 

  • Grillo, H. C., and Gross, J., 1968, Collagenolytic activity during mammalian wound repair, Dev. Biol. 15:300–317.

    Article  Google Scholar 

  • Hennings, H. R., Michael, D., Cheng, C., Steinert, P., Holbrook, K., and Yuspa, S. H., 1980, Calcium regulation of growth and differentiation of mouse epidermal cells in culture, Cell 19:245–254.

    Article  PubMed  CAS  Google Scholar 

  • Hinshaw, J. R., and Miller, E. R., 1965, Histology of healing split-thickness, full thickness autogenous skin grafts and donor sites, Arch. Surg. 91:658–670.

    Article  PubMed  CAS  Google Scholar 

  • Hintner, H., Fritsch, P. O., Foidart, T. M., Stingl, G., Schuler, G., and Katz, S. I., 1980, Expression of basement membrane zone antigens at the dermo-epibolic junction in organ cultures of human skin, J. Invest. Dermatol. 74:200–204.

    Article  PubMed  CAS  Google Scholar 

  • Hughes, R. C., Mills, G., and Courtois, Y., 1979, Role of fibronectin in the adhesiveness of bovine lens epithelial cells, Biol. Cell. 36:321–330.

    CAS  Google Scholar 

  • Kariniemi, A. L., Lehto, V. P., Vartio, T., and Virtanen, I., 1982, Cytoskeleton and pericellular matrix organization of pure adult human keratinocytes cultured from suction-blister roof epidermis, J. Cell Sci. 58:49–61.

    PubMed  CAS  Google Scholar 

  • Katz, S. I., 1984, The epidermal basement membrane, Ciba Found. Symp. 108:243–259.

    PubMed  CAS  Google Scholar 

  • Keller, R. E., 1978, Time lapse cinemicrographic analysis of superficial cell behavior during and prior to gastrolation, J. Morphol. 157:223–248.

    Article  Google Scholar 

  • Krawczyk, W. S., 1971, A pattern of epidermal cell migration during wound healing, J. Cell Biol. 49:247–263.

    Article  PubMed  CAS  Google Scholar 

  • Kubo, M., Norris, D. A., Howell, S. A., Ryan, S. R., and Clark, R. A. F., 1984, Human keratinocytes synthesize, recreate and deposit fibronectin in the pericellular matrix, J. Invest. Dermatol. 82:580–586.

    Article  PubMed  CAS  Google Scholar 

  • Kuwabara, T., Perkins, D. G., and Cogan, D. G., 1976, Sliding of the epithelium in experimental corneal wounds, Invest. Ophthalmol. 15:4–14.

    PubMed  CAS  Google Scholar 

  • Levine, M., 1972, The growth of adult human skin in vitro, Br. J. Dermatol. 86:481–490.

    Article  PubMed  CAS  Google Scholar 

  • Marks, R., and Nishikawa, T., 1973, Active epidermal movement in human skin in vitro, Br. J. Dermatol. 88:245–248.

    Article  PubMed  CAS  Google Scholar 

  • Marks, R., Abell, E., and Nishikawa, T., 1975, The junctional zone beneath migrating epidermis, Br. J. Dermatol. 92:311–319.

    Article  PubMed  CAS  Google Scholar 

  • Martinez, I. R., 1972, Fine structural studies of migrating epidermal cells following incision wound, in: Epidermal wound Healing (H. I. Maibach and D. T. Rovee, eds.), pp. 323–342, Year Book, Chicago.

    Google Scholar 

  • Middleton, C. A., and Sharp, J. A., 1984, Cell Locomotion In Vitro. Techniques and Observations, Croom and Helm, London.

    Google Scholar 

  • Miller, T. A., 1980, The healing of partial thickness skin injuries, in: Wound Healing and Wound Infection (T. K. Hunt, ed.), pp. 81–96, Appleton-Century-Crofts, New York.

    Google Scholar 

  • Mitrani, E., and Marks, R., 1978, Towards characterization of epidermal cell migration promoting activity in serum, Br. J. Dermatol. 99:513–518.

    Article  PubMed  CAS  Google Scholar 

  • Morioka, S., Jensen, P. J., and Lazarus, G. S., 1985, Association of plasminogen activator with epidermal cell differentiation and migration, J. Invest. Dermatol. 84:305 (abst).

    Google Scholar 

  • Murray, J. C., Stingl, G., Kleinman, H., Martin, G. R., and Katz, S. I., 1979, Epidermal cells adhere preferentially to type IV collagen, J. Cell Biol. 80:197–202.

    Article  PubMed  CAS  Google Scholar 

  • Nishida, T., Nakagawa, S., Awata, T., Ohashi, Y., Watanabe, K., and Manabe, R., 1983, Fibronectin promotes epithelial migration of cultured rabbit cornea in situ, J. Cell Biol. 97:1653–1657.

    Article  PubMed  CAS  Google Scholar 

  • ödland, G., and Ross, R., 1968, Human wound repair. I. Epidermal regeneration, J. Cell Biol. 39:135–151.

    Article  PubMed  Google Scholar 

  • Oikarinen, A., Savolainen, E.-R., Tryggvasum, K., Foidart, J. M., and Kiistala, U., 1982, Basement membrane components and galactosylhydroxylysyl glucosyltransferase in suction blisters of human skin, Br. J. Dermatol. 106:257–266.

    Article  PubMed  CAS  Google Scholar 

  • O’Keefe, E. J., Woodley, D., Castillo, G., Russell, N., and Payne, R. E., 1984, Production of soluble and cell associated fibronectin by cultured keratinocytes, J. Invest. Dermatol. 82:150–155.

    Article  PubMed  Google Scholar 

  • O’Keefe, E. J., Payne, R. E., Russell, N., and Woodley, D. T., 1985, Spreading and enhanced motility of human keratinocytes on fibronectin, J. Invest. Dermatol. 85:125–130.

    Article  PubMed  Google Scholar 

  • Ortonne, J. P., Loning, T., Schmitt, D., and Thivolet, J., 1981, Immunomorphological and ultrastructural aspects of keratinocyte migration in epidermal wound healing, Virchows Arch. [A] 392:217–230.

    Article  CAS  Google Scholar 

  • Pfister, R. R., and Burnstein, N., 1976. The alkali burned cornea. I. Epithelial and stromal repair, Exp. Eye Res. 23:519–535.

    Article  PubMed  CAS  Google Scholar 

  • Pang, S. C., Daniels, W. H., and Buck, R. C., 1978, Epidermal migration during the healing of suction blisters in rat skin: A scanning and transmission electron microscopic study, Am. J. Anat. 153:177–191.

    Article  PubMed  CAS  Google Scholar 

  • Radice, G., 1980, The spreading of epithelial cells during wound closure in xenopus larvae, Dev. Biol. 76:26–46.

    Article  PubMed  CAS  Google Scholar 

  • Rocha, V., Horn, Y. K., and Marinkovich, M. P., 1986, Basal lamina inhibition suppresses synthesis of calcium-dependent proteins associated with mammary epithelial cell spreading, Exp. Cell Res. 165:450–460.

    Article  PubMed  CAS  Google Scholar 

  • Rubin, K. M., Hook, B., Obrik, B., and Timpl, R., 1981, Substrate adhesion of rat hepatocytes: Mechanism of attachment to collagen substrates, Cell 24:463–470.

    Article  PubMed  CAS  Google Scholar 

  • Sciubba, J. J., 1977, Regeneration of the basal lamina complex during epithelial wound healing, J. Periodont. Res. 12:204–217.

    Article  PubMed  CAS  Google Scholar 

  • Silnutzer, T., and Barnes, D. W., 1984, Human serum spreading factor: Assay, preparation and use in serum-free cell culture, Cell Cult. Methods Mol. Cell Biol. 1:245–268.

    CAS  Google Scholar 

  • Smith, L. T., Holbrook, K. A., and Madri, J. A., 1986, Collagen types I, III, and V in human embryonic and fetal skin, Am. J. Anat. 175:507–521.

    Article  PubMed  CAS  Google Scholar 

  • Stanley, J. R., Hawley-Nelson, P., Poirer, M., Katz, S. I., and Yuspa, S., 1980, Detection of pemphi-goid antigen, pemphigus antigen and keratin filaments by indirect immunofluorescence in cultured human epidermal cells, J. Invest. Dermatol. 75:183–186.

    Article  PubMed  CAS  Google Scholar 

  • Stanley, J. R., Alvarez, O. M., Bere, E. W., Eaglestein, W. H., and Katz, S. I., 1981, Detection of membrane zone antigens during epidermal wound healing in pigs, J. Invest. Dermatol. 7:240–243.

    Article  Google Scholar 

  • Stenman, S., and Vaheri, A., 1978, Distribution of a major connective tissue protein, fibronectin, in human tissues, J. Exp. Med. 147:1054–1063.

    Article  PubMed  CAS  Google Scholar 

  • Stenn, K. S., 1978, The role of serum in the epithelial outgrowth of mouse skin expiants, Br. J. Dermatol. 98:411–416.

    Article  PubMed  CAS  Google Scholar 

  • Stenn, K. S., 1981, Epibolin: A protein of human plasma which supports epithelial cell movement, Proc. Natl. Acad. Sci. USA 78:6907–6911.

    Article  PubMed  CAS  Google Scholar 

  • Stenn, K. S., 1987, Coephibolin, the activity of human serum that enhances the cell-spreading properties of epibolin, associates with albumin, J. Invest. Dermatol. 89:59–63.

    Article  PubMed  CAS  Google Scholar 

  • Stenn, K. S., and Core, N. G., 1986, Cation dependence of guinea pig epidermal cell spreading, In Vitro Cell. Dev. Biol. 22:217–222.

    Article  CAS  Google Scholar 

  • Stenn, K. S., and Dvoretzky, I., 1979, Human serum and epithelial spread in tissue culture, Arch. Dermatol. Res. 246:3–15.

    Article  Google Scholar 

  • Stenn, K. S., and Milstone, L. M., 1984, Epidermal cell confluence and implications for a two step mechanism of wound closure, J. Invest. Dermatol. 83:445–447.

    Article  PubMed  CAS  Google Scholar 

  • Stenn, K. S., Madri, J. A., and Roll, F. J., 1979, Migrating epidermis produces AB2 collagen and requires continual collagen synthesis for movement, Nature (Lond.) 277:229–232

    Article  CAS  Google Scholar 

  • Stenn, K. S., Madri, J. A., Tinghitella, T., and Teranova, V., 1983, Multiple mechanism of dissociated epidermal cell spreading, J. Cell Biol. 96:63–67.

    Article  PubMed  CAS  Google Scholar 

  • Stenn, K. S., Core, N. G., and Halaban, R., 1987, Phorbol ester serves as a coepibolin in the spreading of primary guinea pig epidermal cells, J. Invest. Dermatol. 87:754–757.

    Article  Google Scholar 

  • Suzuki, S., Pierschbacher, M. D., Hayman E. G., Nguyen, K., Ohgren, Y., and Ryoslahti, E., 1984, Domain structure of vitronectin, J. Biol. Chem. 259:15307–15314.

    PubMed  CAS  Google Scholar 

  • Takashima, A., and Grinnell, F., 1984, Human keratinocyte adhesion and phagocytosis promoted by fibronectin, J. Invest. Dermatol. 83:352–358.

    Article  PubMed  CAS  Google Scholar 

  • Terranova, V., Rohrbach, D. H., and Martin, G. R., 1980, Role of laminin in the attachments of PAM 12 cells to basement membrane collagen, Cell 22:719–726.

    Article  PubMed  CAS  Google Scholar 

  • Trinkaus, J. P., 1984, Cells into Organs. The Forces That Shape the Embryo, 2nd ed., Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Trinkaus-Randall, V., and Gipson, L. K., 1984, Role of calcium and calmodulin in hemidesmosome formation in vitro, J. Cell Biol. 98:1565–1571.

    Article  PubMed  CAS  Google Scholar 

  • Vaughan, R. B., and Trinkaus, J. P., 1966, Movements of epithelial cell sheets in vitro. J. Cell. Sci. 1:407–413.

    PubMed  CAS  Google Scholar 

  • Weiss, P., 1961, The biological foundations of wound repair, Harvey Lecture 55:13–42.

    CAS  Google Scholar 

  • Westgate, G. E., Weaver, A. C., and Couchman, J. R., 1985, Bullous pemphigoid antigen localization suggests an intracellular association with hemidesmosomes, J. Invest. Dermatol. 84:218–224.

    Article  PubMed  CAS  Google Scholar 

  • Whatley, T. G., and Knox, P., 1980, Isolation of a serum component that stimulates the spreading of cells in culture, Biochem. J. 185:349–354.

    Google Scholar 

  • Winter, G. D., 1964, Movement of epidermal cells over the wound surface, Adv. Biol. Skin 5:113–127.

    Google Scholar 

  • Winter, G. D., 1972, Epidermal regeneration studied in the domestic pig, in: Epidermal Wound Heading (H. I. Maibach and D. T. Rovee, eds.), pp. 71–112, Year Book, Chicago.

    Google Scholar 

  • Woodley, D. T., Regnier, M., and Prunieras, M., 1980a, In vitro basal lamina formations may require non-epidermal cell living substrate, Br. J. Dermatol. 103:397–404.

    Article  PubMed  CAS  Google Scholar 

  • Woodley, D. T., Didierjean, L., Regnier, M., Saurat, J., and Prunieras, M., 1980b, Bullous pemphigoid antigen synthesized in vitro by human epidermal cells, J. Invest. Dermatol. 75:148–151.

    Article  PubMed  CAS  Google Scholar 

  • Woodley, D. T., Liotta, L. A., and Brundage, R., 1982, Adult human epidermal cells migrating on nonviable matrix produce a Type IV collagenase, Clin. Res. 30:266 (abst.).

    Google Scholar 

  • Woodley, D. T., O’Keefe, E. J., and Prunieras, M., 1985a, Cutaneous wound healing: A model for cell-matrix interactions, J. Am. Acad. Dermatol. 12:420–433.

    Article  PubMed  CAS  Google Scholar 

  • Woodley, D. T., O’Keefe, E. J., Briggaman, R. A,, Reese, M. J., and Gammon, W. R., 1985b, Specific binding of fibronectin to epidermolysis bullosa acquisita antigen, J. Invest. Dermatol. 84:356 (abs.).

    Google Scholar 

  • Woodley, D. T., Briggaman, R. A., Gammon, W. R., and O’Keefe, E. J., 1985c, Epidermolysis bullosa acquisita antigen is synthesized by human keratinocytes cultured in serum-free medium, Biochem. Biophys. Res. Commun. 130:1267–1272.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stenn, K.S., Depalma, L. (1988). Re-epithelialization. In: Clark, R.A.F., Henson, P.M. (eds) The Molecular and Cellular Biology of Wound Repair. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1795-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1795-5_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5725-4

  • Online ISBN: 978-1-4615-1795-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics