Skip to main content

Corrinoid-Dependent Mechanism of Acetogenesis from Methanol

  • Chapter
Acetogenesis

Part of the book series: Chapman & Hall Microbiology Series ((CHMBS))

Abstract

More than 13 reactions are catalyzed by corrinoid-containing enzymes in prokaryotes and eukaryotes. These reactions were reviewed previously (Stadtman, 1971; Halpern, 1985) but some additional corrinoid-dependent reactions have been discovered since then. For example, the methanol conversion into methane proceeds via a corrinoid-dependent methyltransferase (van der Meijden et al., 1984a). The enzyme from Methanosarcina barkeri provides the methyl group from methanol to the specific methanogenic cofactor 2-mercaptoethanesulfonic acid (HS-CoM) after the protein is reductively activated by H2 and ATP. That enzyme revealed an α2β structure and it contained 3–4 mol loosely bound corrinoid per mole of protein. In vitro studies with mixed cell-free extracts of Methanosarcina barkeri and Eubacterium limosum indicated that the acetogenic bacterium also possesses a methylated corrinoid enzyme. This enzyme was demethylated in the presence of methylcobalamin: coenzyme M methyltransferase from the methanogenic bacterium with concomitant formation of methyl-coenzyme M (van der Meijden et al., 1984b).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Banerjee, R. V., and G. Matthews. 1990. Cobalamin-dependent methionine synthase. FASEB J. 4:1450–1459.

    PubMed  CAS  Google Scholar 

  • Banerjee, R. V., S. R. Harder, S. W. Ragsdale, and R. G. Matthews. 1990. Mechanism of reductive activation of cobalamin-dependent methionine synthase: An electron paramagnetic resonance spectroelectrochemical study. Biochemistry 29:1129–1135.

    Article  PubMed  CAS  Google Scholar 

  • Berman, M. H., and A. C. Frazer. 1992. Importance of tetrahydrofolate and ATP in the anaerobic O-demethylation reaction for phenylmethylethers. Appl. Environ. Microbiol. 58:925–931.

    PubMed  CAS  Google Scholar 

  • Blow, D. M. 1971. The structure of chymotrypsin. In: The Enzymes, 3rd ed., P. D. Boyer (ed.), Vol. 3, pp. 185–212. Academic Press, New York.

    Google Scholar 

  • Brown, K. 1982. Synthesis of organocobalt complexes. In: B 12, D. Dolphin, (ed.), Vol. 1, pp. 245–294. Wiley, New York.

    Google Scholar 

  • Chemaly, S. M., and J. M. Pratt. 1984. The chemistry of vitamin B12. Part 24. Evidence for hydride complexes of the cobalt (III) corrinoids. J. Chem. Soc. Dalton Trans. 1984:595–599.

    Article  Google Scholar 

  • Finke, R. G., and B. D. Martin. 1990. Coenzyme AdoB12 vs AdoB12-homolytic Co-C cleavage following electron transfer: A rate enhancement ⩾1012. J. Inorg. Biochem. 40:19–22.

    Article  PubMed  CAS  Google Scholar 

  • Guéant, J. L., and R. Gräsbeck. 1990. Assimilation of cobalamins. In: Cobalamin and Related Binding Proteins in Clinical Nutrition, J. L. Guéant and J. P. Nicolas (eds.), pp. 33–53. Elsevier, Paris.

    Google Scholar 

  • Halpern, J. 1985. Mechanisms of coenzyme B12-dependent rearrangements. Science 227:869–875.

    Article  PubMed  CAS  Google Scholar 

  • Hogenkamp, H. C. P., G. Bratt, and A. T. Kotchevar. 1987. Reaction of alkylcobalamins with thiols. Biochemistry 26:4723–4727.

    Article  PubMed  CAS  Google Scholar 

  • Kräutler, B., W. Keller, and C. Kratky. 1989. Coenzyme B12 chemistry: The crystal and molecular structure of cob(II)alamin. J. Am. Chem. Soc. 111:8936–8938.

    Article  Google Scholar 

  • Krone, U. E., R. K. Thauer, and H. P. C. Hogenkamp. 1989. Reductive dehalogenation of chlorinated C1-hydrocarbons mediated by corrinoids. Biochemistry 28:4908–4914.

    Article  CAS  Google Scholar 

  • Krone, U. E., and R. K. Thauer. 1992. Dehalogenation of trichlorofluoromethane (CFC-11) by Methanosarcina barkeri. FEMS Microbiol. Lett. 9:201–204.

    Article  Google Scholar 

  • Lexa, D., and J. M. Saveant. 1976. Electrochemistry of vitamin B12.1. Role of the baseon/base-off reaction in the oxidoreduction mechanism of the B12r-B12s system. J. Am. Chem. Soc. 98:2652–2658.

    Article  PubMed  CAS  Google Scholar 

  • Lexa, D., J. M. Saveant, and J. Zickler. 1977. Electrochemistry of vitamin B12 II. Redox and acid-base equilibria in the B12a/B12r system. J. Am. Chem. Soc. 99:2786–2790.

    Article  PubMed  CAS  Google Scholar 

  • Levis, R. J., J. Zhicheng and N. Winograd. 1989. Thermal decomposition of CH3OH adsorbed on Pd11: A new reaction pathway involving CH3 formation. J. Am. Chem. Soc. 111:4605–4612.

    Article  CAS  Google Scholar 

  • Marks, T. S., J. D. Allpress, and A. Maule. 1989. Dehalogenation of lindane by a variety of porphyrins and corrins. Appl. Environ. Microbiol. 55:1258–1261.

    PubMed  CAS  Google Scholar 

  • Möller, B., R. Ossmer, B. H. Howard, G. Gottschalk, and H. Hippe. 1984. Sporomusa, a new genus of Gram-negative anaerobic bacteria including Sporomusa sphaeroides spec. nov. and Sporomusa ovata spec. nov. Arch. Microbiol. 139:388–396.

    Article  Google Scholar 

  • Obrados, N., J. Dadia, L. Baldomá, and J. Aguilar. 1988. Anaerobic metabolism of the L-rhamnose fermentation product, 1,2-propanediol in Salmonella typhimurium. J. Bacterial. 170:2159–2162.

    Google Scholar 

  • Ragsdale, S. W., Lindahl, P. A. and Münck, E. (1987) Mössbauer, EPR and optical studies of the corrinoid/iron-sulfur protein involved in the synthesis of acetyl enzyme A by Clostridium thermoaceticum. J. Biol. Chem. 262, 14289–14297.

    PubMed  CAS  Google Scholar 

  • Scheffold, R., S. Abrecht, R. Orlinski, H. R. Ruf, P. Stamouli, O. Tinembart, L. Wälder, and C. Weymuth. 1987. Vitamin B12-mediated electrochemical reactions in the synthesis of natural products. Pure Appl. Chem. 59:363–372.

    Article  CAS  Google Scholar 

  • Stadtman, T. C. 1971. Vitamin B12. Science 171:859–861.

    Article  PubMed  CAS  Google Scholar 

  • Stubbe, J. A. 1989. Protein radical involvement in biological catalysis? Annu. Rev. Biochem. 58:257–285.

    Article  PubMed  CAS  Google Scholar 

  • Stupperich, E., H. J. Eisinger, and B. Kräutler. 1988. Diversity of corrinoids in acetogenic bacteria. Eur. J. Biochem. 172:459–464.

    Article  PubMed  CAS  Google Scholar 

  • Stupperich, E., and H. J. Eisinger. 1989. Biosynthesis of para-cresolyl cobamide in Sporomusa ovata. Arch. Microbiol. 151:372–377.

    Article  CAS  Google Scholar 

  • Stupperich, E., H. J. Eisinger, and S. P. J. Albracht. 1990. Evidence for a super-reduced cobamide as the major corrinoid fraction in vivo and a histidine residue as a cobalt ligand of the p-cresolyl cobamide in the actetogenic bacterium Sporomusa ovata. Eur. J. Biochem. 193:105–109.

    Article  PubMed  CAS  Google Scholar 

  • Stupperich, E., and E. Nexø. 1991. Effect of the cobalt-N coordination on the cobamide recognition by the human vitamin B12 binding proteins intrinsic factor, transcobalamin and haptocorrin. Eur. J. Biochem. 199:299–303.

    Article  PubMed  CAS  Google Scholar 

  • Stupperich, E., P. Aulkemeyer, and C. Eckerskorn. 1992. Purification and characterization of a methanol-induced cobamide-containing protein from Sporomusa ovata. Arch. Microbiol. 158:370–373.

    Article  PubMed  CAS  Google Scholar 

  • Stupperich, E., Konle, R. 1993. Corrinoid-dependent methyl transfer reactions are involved in methanol and 3,4-dimethoxybenzoate metabolism by Sporomusa ovata. Appl. Environm. Microbiol. 59:3110–3116.

    CAS  Google Scholar 

  • Toraya, T., and S. Fukui. 1982. Diol dehydratase. In: B 12, D. Dolphin (ed.), Vol. 2, pp. 233–262. Wiley, New York.

    Google Scholar 

  • van der Meijden, P, C. van der Drift, and G. D. Vogels. 1984a. Methanol conversion in Eubacterium limosum. Arch. Microboil. 138:360–364.

    Article  Google Scholar 

  • van der Meijden, P., B. W. te Brommelstroet, C. M. Poirot, C. van der Drift, and Vogels. 1984b. Purification and properties of methanol: 5-hydroxybenzimidazolylcobamide methyltransferase from Methanosarcina barkeri. J. Bacteriol. 160:629–635.

    PubMed  Google Scholar 

  • Veldkamp, H. 1970. Enrichment cultures of prokaryotic organisms. In: Methods in Microbiology, J. R. Noms and D. W. Ribbons (eds.), Vol. 3A, pp. 305–361. Academic Press, London.

    Google Scholar 

  • Wirt, M. D., Kumar, M., Ragsdale, S. W. and Chance, M. R. 1993. X-ray absorption spectroscopy of the corrinoid/iron-sulfur protein involved in acetyl coenzyme A synthesis by Clostridium thermoautotrophicum. J. Am. Chem. Soc. 115, 2146–2150.

    Article  CAS  Google Scholar 

  • Wood, J. M. 1982. Mechanisms for B12-dependent methyl transfer. In: B 12, D. Dolphin (ed.), Vol. 2, pp. 151–164. Wiley, New York.

    Google Scholar 

  • Zhao, Y., P. Such, and J. Retey. 1992. Radical intermediates in the coenzyme B12 dependent methylmalonyl-CoA mutase reaction shown by ESR spectroscopy. Angew Chem. Int. Educ. 31:215–216.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Chapman & Hall

About this chapter

Cite this chapter

Stupperich, E. (1994). Corrinoid-Dependent Mechanism of Acetogenesis from Methanol. In: Drake, H.L. (eds) Acetogenesis. Chapman & Hall Microbiology Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1777-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1777-1_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5716-2

  • Online ISBN: 978-1-4615-1777-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics