Acetogenesis pp 521-538 | Cite as

Autotrophic Acetyl Coenzyme A Biosynthesis in Methanogens

  • William B. Whitman
Part of the Chapman & Hall Microbiology Series book series (CHMBS)

Abstract

Demonstration of the Ljungdahl-Wood pathway of autotrophic acetyl-CoA biosynthesis in methanogens was a difficult task complicated by the unusual coenzymes of methanogenesis and the lack of detailed knowledge for the acetyl-CoA synthase at the time the work was initiated. Because methanogens provided the first evidence for the widespread distribution of the pathway outside the homoacetogenic clostridia, this work was of special importance. Its eventual success was dependent on the description of the C-1 carriers in the pathway of CO2 reduction to methane and the clostridial acetyl-CoA synthase.

Keywords

Lactate Carbon Monoxide Assimilation Pyruvate Folate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bott, M. H., B. Eikmanns, and R. K. Thauer. 1985. Defective formation and/or utilization of carbon monoxide in H2/CO2 fermenting methanogens dependent on acetate as carbon source. Arch. Microbiol. 143:266–269.CrossRefGoogle Scholar
  2. Conrad, R., and R. K. Thauer. 1983. Carbon monoxide production by Methanobacterium thermoautotrophicum. FEMS Microbiol. Lett. 20:229–232.CrossRefGoogle Scholar
  3. Daniels, L., G. Fuchs, R. K. Thauer, and J. G. Zeikus. 1977. Carbon monoxide oxidation by methanogenic bacteria. J. Bacteriol. 132:118–126.PubMedGoogle Scholar
  4. Daniels, L., and J. G. Zeikus. 1978. One-carbon metabolism in methanogenic bacteria: analysis of short-term fixation products of 14CO2 and 14CH3OH incorporated into whole cells. J. Bacteriol. 136:75–84.PubMedGoogle Scholar
  5. DeMoll, E., D. A. Grahame, J. M. Harnly, L. Tsai, and T. C. Stadtman. 1987. Purification and properties of carbon monoxide dehydrogenase from Methanococcus vannielii. J. Bacteriol. 169:3916–3920.PubMedGoogle Scholar
  6. Diekert, G. B., and R. K. Thauer. 1978. Carbon monoxide oxidation by Clostridium thermoaceticum and Clostridium formicoaceticum. J. Bacteriol. 136:597–606.PubMedGoogle Scholar
  7. DiMarco, A. A., T. A. Bobik, and R. S. Wolfe. 1990. Unusual coenzymesof methanogenesis. Annu. Rev. Biochem. 59:355–394.PubMedCrossRefGoogle Scholar
  8. Drake, H. L., S. Hu, and H. G. Wood. 1981. Purification of five components from Clostridium thermoaceticum which catalyze synthesis of acetate from pyruvate and methyltetrahydrofolate. J. Biol. Chem. 256:11137–11144.PubMedGoogle Scholar
  9. Eikmanns, B., G. Fuchs, and R. K. Thauer. 1985. Formation of carbon monoxide from CO2 and H2 by Methanobacterium thermoautotrophicum. Eur. J. Biochem. 146:149–154.PubMedCrossRefGoogle Scholar
  10. Escalante-Semerena, J. C., K. L. Rinehart, and R. S. Wolfe. 1984. Tetrahydromethanopterin, a carbon carrier in methanogenesis. J. Biol. Chem. 259:9447–9455.PubMedGoogle Scholar
  11. Evans, J. N. S., C. J. Tolman, and M. F. Roberts. 1986. Indirect observation by 13C NMR spectroscopy of a novel CO2 fixation pathway in methanogens. Science 231:488–491.PubMedCrossRefGoogle Scholar
  12. Ferry, J. G., D. W. Sherod, H. D. Peck, Jr., and L. G. Ljungdahl. 1976. Levels of formyltetrahydrofolate synthetase and methylenetetrahydrofolate dehydrogenase in methanogenic bacteria. In: Proceedings of the Symposium “Microbial Production and Utilization of Gases (H2, CH4, CO),” H. G. Schlegel, G. Gottschalk, and N. Pfennig (eds.), pp. 151–155. Goltze, Göttingen.Google Scholar
  13. Fuchs, G. 1986. CO2 fixation in acetogenic bacteria: variations on a theme. FEMS Microbiol. Rev. 39:181–213.CrossRefGoogle Scholar
  14. Fuchs, G., and E. Stupperich. 1978. Evidence for an incomplete reductive carboxylic acid cycle in Methanobacterium thermoautotrophicum. Arch. Microbiol. 118:121–125.PubMedCrossRefGoogle Scholar
  15. Fuchs, G., E. Stupperich, and R. K. Thauer. 1978a. Acetate assimilation and the synthesis of alanine, aspartate, and glutamate in Methanobacterium thermoautotrophicum. Arch. Microbiol. 117:61–66.PubMedCrossRefGoogle Scholar
  16. Fuchs, G., E. Stupperich, and R. K. Thauer. 1978b. Function of fumarate reductase in methanogenic bacteria (Methanobacterium). Arch. Microbiol. 119:215–218.PubMedCrossRefGoogle Scholar
  17. Fuchs, G., and E. Stupperich. 1980. Acetyl CoA, a central intermediate of autotrophic CO2 fixation in Methanobacterium thermoautotrophicum. Arch. Microbiol. 127:267–272.CrossRefGoogle Scholar
  18. Fuchs, G., and E. Stupperich. 1986. Carbon assimilation pathways in archaebacteria. Syst. Appl. Microbiol. 7:364–369.CrossRefGoogle Scholar
  19. Gunsalus, R. P., and R. S. Wolfe. 1977. Stimulation of CO2 reduction to methane by methylcoenzyme in extracts of Methanobacterium. Biochem. Biophys. Res. Commun. 76:790–795.PubMedCrossRefGoogle Scholar
  20. Holder, U., D. E. Schmidt, E. Stupperich, and G. Fuchs. 1985. Autotrophic synthesis of activated acetic acid from two CO2 in Methanobacterium thermoautotrophicum. III. Evidence for common one-carbon precursor pool and the role of corrinoid. Arch. Microbiol. 141:229–238.CrossRefGoogle Scholar
  21. Hoyt, J. C., A. Oren, J. C. Escalante-Semerena, and R. S. Wolfe. 1986. Tetrahydromethanopterin-dependent serine transhydroxymethylase from Methanobacterium thermoautotrophicum. Arch. Microbiol. 145:153–158.CrossRefGoogle Scholar
  22. Kenealy, W., and J. G. Zeikus. 1981. Influence of corrinoid antagonists on methanogen metabolism. J. Bacteriol. 146:133–140.PubMedGoogle Scholar
  23. Kenealy, W. R., and J. G. Zeikus. 1982. One-carbon metabolism in methanogens: evidence for synthesis of a two-carbon cellular intermediate and unification of catabolism and anabolism in Methanosarcina barkeri. J. Bacteriol. 151:932–941.PubMedGoogle Scholar
  24. Kluyver, A. J., and C. G. Schnellen. 1947. On the fermentation of carbon monoxide by pure cultures of methane bacteria. Arch. Biochem. 14:57–70.PubMedGoogle Scholar
  25. Ladapo, J., and W. B. Whitman. 1990. Method for isolation of auxotrophs in the methanogenic archaebacteria: role of the acetyl-CoA pathway of autotrophic CO2 fixation in Methanococcus maripaludis. Proc. Natl. Acad. Sci. USA 87:5598–5602.PubMedCrossRefGoogle Scholar
  26. Länge, S., and G. Fuchs. 1985. Tetrahydromethanopterin, a coenzyme involved in autotrophic acetyl coenzyme A synthesis from 2 CO2 in Methanobacterium. FEBS Lett. 181:303–307.CrossRefGoogle Scholar
  27. Länge, S., and G. Fuchs. 1987. Autotrophic synthesis of activated acetic acid from CO2 in Methanobacterium thermoautotrophicum. Synthesis from tetrahydromethanopterinbound C1 units and carbon monoxide. Eur. J. Biochem. 163:147–154.PubMedCrossRefGoogle Scholar
  28. Ljungdahl, L. G. 1986. The autotrophic pathway of acetate synthesis in acetogenic bacteria. Annu. Rev. Microbiol. 40:415–450.PubMedCrossRefGoogle Scholar
  29. Lu, W., S. R. Harder, and S. W. Ragsdale. 1990. Controlled potential enzymology of methyl transfer reactions involved in acetyl-CoA synthesis by CO dehydrogenase and the corrinoid/iron-sulfur protein from Clostridium thermoaceticum. J. Biol. Chem. 265:3124–3133.PubMedGoogle Scholar
  30. Ragsdale, S. W., J. E. Clark, L. G. Ljungdahl, L. L. Lundie, and H. L. Drake. 1983. Properties of purified carbon monoxide dehydrogenase from Clostridium thermoaceticum, a nickel, iron-sulfur protein. J. Biol. Chem. 258:2364–2369.PubMedGoogle Scholar
  31. Ragsdale, S. W., and H. G. Wood. 1985. Acetate biosynthesis by acetogenic bacteria. Evidence that carbon monoxide dehydrogenase is the condensing enzyme that catalyzes the final steps in the synthesis. J. Biol. Chem. 260:3970–3977.PubMedGoogle Scholar
  32. Rouviere, P. E., and R. S. Wolfe. 1988. Novel biochemistry of methanogenesis. J. Biol. Chem. 263:7913–7916.PubMedGoogle Scholar
  33. Rühlemann, M., K. Ziegler, E. Stupperich, and G. Fuchs. 1985. Detection of acetyl coenzyme A as an early CO2 assimilation intermediate in Methanobacterium. Arch. Microbiol. 141:399–406.CrossRefGoogle Scholar
  34. Shanmugasundaram, T., S. W. Ragsdale, and H. G. Wood. 1988. Role of carbon monoxide dehydrogenase in acetate synthesis by the acetogenic bacterium, Acetobacterium woodii. BioFactors 1:147–152.PubMedGoogle Scholar
  35. Shieh, J., and W. B. Whitman. 1987. Pathway of acetate assimilation in autotrophic and heterotrophic methanococci. J. Bacteriol. 169:5327–5329.PubMedGoogle Scholar
  36. Shieh, J., and W. B. Whitman. 1988. Autotrophic acetyl coenzyme A biosynthesis in Methanococcus maripuladis. J. Bacteriol. 170:3072–3079.PubMedGoogle Scholar
  37. Smith, M. R., J. L. Lequerica, and M. R. Hart. 1985. Inhibition of methanogenesis and carbon metabolism in Methanosarcina sp. by cyanide. J. Bacteriol. 162:67–71.PubMedGoogle Scholar
  38. Stupperich, E., and G. Fuchs. 1981. Products of CO2 fixation and 14C labelling pattern of alanine in Methanobacterium thermoautotrophicum pulse-labelled with 14CO2. Arch. Microbiol. 130:294–300.CrossRefGoogle Scholar
  39. Stupperich, E., and G. Fuchs. 1983. Autotrophic acetyl coenzyme A synthesis in vitro from two CO2 in Methanobacterium. FEBS Lett. 156:345–348.CrossRefGoogle Scholar
  40. Stupperich, E., K. E. Hammel, G. Fuchs, and R. K. Thauer. 1983. Carbon monoxide fixation into the carboxyl group of acetyl coenzyme A during autotrophic growth of Methanobacterium. FEBS Lett. 152:21–23.PubMedCrossRefGoogle Scholar
  41. Stupperich, E., and G. Fuchs. 1984a. Autotrophic synthesis of activated acetic acid from two CO2 in Methanobacterium thermoautotrophicum. I. Properties of in vitro system. Arch. Microbiol. 139:8–13.CrossRefGoogle Scholar
  42. Stupperich, E., and G. Fuchs. 1984b. Autotrophic synthesis of activated acetic acid from two CO2 in Methanobacterium thermoautotrophicum. II. Evidence for different origins of acetate carbon atoms. Arch. Microbiol. 139:14–20.CrossRefGoogle Scholar
  43. Taylor, G. T., D. P. Kelly, and S. J. Pirt. 1976. Intermediary metabolism in methanogenic bacteria Methanobacterium). In: Proceedings of the Symposium “Microbial Production and Utilization of Gases (H2, CH4, CO)” H. G. Schlegel, G. Gottschalk, and N. Pfenning, (eds.), pp. 173–180. Goltze, Göttingen.Google Scholar
  44. Weimer, P. J., and J. G. Zeikus. 1978. One carbon metabolism in methanogenic bacteria. Arch. Microbiol. 119:49–57.PubMedCrossRefGoogle Scholar
  45. Wolfe, R. S. 1985. Unusual coenzymes of methanogenesis. Trends Biochem. Sci. 10:396–399.CrossRefGoogle Scholar
  46. Zeikus, J. G., G. Fuchs, W. Kenealy, and R. K. Thauer. 1977. Oxidoreductases involved in cell carbon synthesis of Methanobacterium thermoautotrophicum. J. Bacteriol. 132:604–613.PubMedGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • William B. Whitman

There are no affiliations available

Personalised recommendations