Skip to main content

Acetogenesis and the Rumen: Syntrophic Relationships

  • Chapter
Acetogenesis

Part of the book series: Chapman & Hall Microbiology Series ((CHMBS))

Abstract

Acetate can be formed, as a major or minor product, from the fermentation of various organic substrates. It is also formed by a synthesis from CO2 and/or other one-carbon precursors. Acetogenic bacteria can be defined as obligate anaerobes that utilize CO2 as a terminal electron acceptor in energy metabolism, producing acetate and other fatty acids (Fuchs, 1986). This review also describes research concerning proton-reducing acetogens in which protons are used as electron acceptors for the oxidation of certain substrates (alcohols, lactate, lowly substituted monobenzenes, and fatty acids) to acetate with concomitant formation of H2. The synthesis of acetate by these organisms is thermodynamically favorable only when the partial pressure of H2 is very low and is normally achieved in the presence of a hydrogen-utilizing methanogen or sulfate reducer. Evidence exists that Clostridium thermoaceticum may also reduce protons and, hence, produce H2 under certain conditions. Thus proton-reducing acetogens may also utilize the acetyl CoA pathway for CO2 reduction (see Chapter 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amos, D. A., and M. J. Mclnerney. 1989. Poly-β-hydroxyalkanoate in Syntrophomonas wolfei. Arch. Microbiol 152:172–177.

    Article  CAS  Google Scholar 

  • Annison, E. F., and D. G. Armstrong. 1970. Volatile fatty acid metabolism and energy supply. In: Physiology of Digestion and Metabolism in the Ruminant, A. T. Phillipson (ed.), pp. 422–437. Oriel Press, Newcastle.

    Google Scholar 

  • Bache, R., and N. Pfennig. 1981. Selective isolation of Acetobacterium woodii on methoxylated aromatic acids and determination of growth yields. Arch. Microbiol. 130:255–261.

    Article  CAS  Google Scholar 

  • Balch, W. E., and R. S. Wolfe. 1979. Specificity and biological distribution of coenzyme M (2-mercaptoethanesulfonic acid). J. Bacteriol. 137:256–263.

    PubMed  CAS  Google Scholar 

  • Beaty, P. S., and M. J. Mclnerney. 1987. Growth of Syntrophococcus wolfei in pure culture on crotonate. Arch. Microbiol. 147:389–393.

    Article  CAS  Google Scholar 

  • Boccazil, P., J. A. Patterson, B. J. Wilsey, and D. M. Schaefer. 1991. Hydrogen threshold values for one methanogenic and four acetogenic isolates from the rumen, p. 37. Abstr. Rumen Function Conf., Chicago, IL. 1991.

    Google Scholar 

  • Boone, D. R., and M. P. Bryant. 1980. Propionate-degrading bacterium, Syntrophobacter wolinii sp. nov. gen. nov., from methanogenic ecosystems. Appl. Environ. Microbiol. 40:626–632.

    PubMed  CAS  Google Scholar 

  • Bouwer, E. J., and P. L. McCarty. 1983. Effects of 2-bromoethanesulfonic acid and 2-chloroethanesulfonic acid on acetate utilization in a continuous-flow methanogenic fixed-film column. Appl. Environ. Microbiol. 45:1408–1410.

    PubMed  CAS  Google Scholar 

  • Brauman, A., M. D. Kane, M. Labat, and J. A. Breznak. 1992. Genesis of acetate and methane by gut bacteria of nutritionally diverse termites. Science 257:1384–1387.

    Article  PubMed  CAS  Google Scholar 

  • Braun, M., S. Schoberth, and G. Gottschalk. 1979. Enumeration of bacteria forming acetate from H2 and CO2 in anaerobic habitats. Arch. Microbiol. 120:201–204.

    Article  PubMed  CAS  Google Scholar 

  • Braun, M., F. Mayer, and G. Gottschalk. 1981. Clostridium aceticum (Weiringa), a microorganism producing acetic acid from molecular hydrogen and carbon dioxide. Arch. Microbiol. 128:288–293.

    Article  PubMed  CAS  Google Scholar 

  • Breznak, J. A. 1994. Acetogenesis from carbon dioxide in termite and other insect gastrointestinal systems. In: Acetogenesis, H. L. Drake (ed.), pp. 303–330. Chapman and Hall, New York (this volume).

    Google Scholar 

  • Breznak, J. A., and M. D. Kane. 1990. Microbial H2/CO2 acetogenesis in animal guts: nature and nutritional significance. FEMS Microbiol. Ref. 87:309–314.

    Article  CAS  Google Scholar 

  • Breznak, J. A., and J. M. Switzer. 1986. Acetate synthesis from H2 plus CO2 by termite gut microbes. Appl. Environ. Microbiol. 52:623–630.

    PubMed  CAS  Google Scholar 

  • Breznak, J. A., J. M. Switzer, and H.-J. Seitz. 1988. Sporomusa termitida sp. nov., an H2/CO2-utilizing acetogen isolated from termites. Arch. Microbiol. 150:282–288.

    Article  CAS  Google Scholar 

  • Breznak, J. A., and J. M. Blum. 1991. Mixotrophy in the termite gut acetogen, Sporomusa termitida. Arch. Microbiol. 156:105–110.

    Article  CAS  Google Scholar 

  • Brune, A., and B. Schink. 1990. Pyrogallol-to-phloroglucinol conversion and other hydroxyl-transfer reactions catalyzed by cell extracts of Pelobacter acidigallici. J. Bacteriol. 172:1070–1076.

    PubMed  CAS  Google Scholar 

  • Bryant, M. P. 1979. Microbial methane production—theoretical aspects. J. Anim. Sci. 48:193–201.

    CAS  Google Scholar 

  • Bryant, M. P., N. Small, C. Bouma, and I. M. Robinson. 1958. Studies on the composition of the ruminai flora and fauna of young calves. J. Dairy Sci. 41:1747–1767.

    Article  Google Scholar 

  • Bryant, M. P., E. A. Wolin, M. J. Wolin, and R. S. Wolfe. 1967. Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Arch. Microbiol. 59:20–31.

    CAS  Google Scholar 

  • Bryant, M. P., L. L. Campbell, C. A. Reddy, and M. R. Crabill. 1977. Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. Appl. Environ. Microbiol. 33:1162–1169.

    PubMed  CAS  Google Scholar 

  • Cheng, K. J., G. A. Jones, F. J. Simpson, and M. P. Bryant. 1969. Isolation and identification of rumen bacteria capable of anaerobic rutin degradation. Can. J. Microbiol. 15:1365–1374.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, K. J., H. G. Krishnamurty, G. A. Jones, and F. J. Simpson. 1971. Identification of products produced by the anaerobic degradation of naringin by Butyrivibrio sp. C3. Can. J. Microbiol. 17:129–131.

    Article  PubMed  CAS  Google Scholar 

  • Chesson, A., C. S. Stewart, and R. J. Wallace. 1982. Influence of plant phenolics on growth and cellulolytic activity of rumen bacteria. Appl. Environ. Microbiol. 44:597–603.

    PubMed  CAS  Google Scholar 

  • Clarke, R. T. J. 1977. Methods for studying gut microbes. In: Microbial Ecology of the Gut, R. T. J. Clarke and T. Bauchop (eds.), pp. 1–33. Academic Press, New York.

    Google Scholar 

  • Clark, F. M., and L. R. Fina. 1952. The anaerobic decomposition of benzoic acid during methane fermentation. Arch. Biochem. Biophys 36:26–32.

    Article  PubMed  CAS  Google Scholar 

  • Cord-Ruwisch, R., H.-J. Seitz, and R. Conrad. 1988. The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the electron acceptor. Arch. Microbiol. 149:350–357.

    Article  CAS  Google Scholar 

  • DeGraeve, K. G., J. P. Grivet, M. Durand, P. Beaumatin, D. Demeyer. 1990. NMR study of 13CO2 incorporation into short-chain fatty acids by pig large-intestinal flora. Can. J. Microbiol 36:579–582.

    Article  CAS  Google Scholar 

  • Doddema, H. J., and G. D. Vogels. 1978. Improved identification of methanogenic bacteria by fluorescence microscopy. Appl. Environ. Microbiol. 36:752–754.

    PubMed  CAS  Google Scholar 

  • Dolfing, J. 1988. Acetogenesis. In: Biology of Anaerobic Microorganisms, A. J. B. Zehnder (ed.), Chap. 9, pp. 417–468. Wiley, New York.

    Google Scholar 

  • Doré, J. M. 1989a. A study of the phylogenetics, nutrition and one-carbon metabolism of Syntrophococcus sucromutans, Ph.D. thesis, University of Illinois, Urbana-Champaign.

    Google Scholar 

  • Doré, J. M., and M. P. Bryant. 1989b. Lipid growth requirement and the influence of lipid supplement on the fatty acid and aldehyde composition of Syntrophococcus sucromutans. Appl. Environ. Microbiol. 55:927–933.

    PubMed  Google Scholar 

  • Doré, J. M., and M. P. Bryant. 1990. Metabolism of one-carbon compounds by the ruminai acetogen Syntrophococcus sucromutans. Appl. Environ. Microbiol. 56:984–989.

    PubMed  Google Scholar 

  • EPA. 1990. Methane emissions and opportunities for control. United States Environmental Protection Agency Report No. EPA/400/9-90/007.

    Google Scholar 

  • Fina, L. R., and A. M. Fiskin. 1960. The anaerobic decomposition of benzoic acid during methane fermentation. II. Fate of carbons one and seven. Arch. Biochem. Biophys. 91:163–165.

    Article  PubMed  CAS  Google Scholar 

  • Fontaine, F. E., W. H. Peterson, E. McCoy, M. J. Johnson, and G. J. Ritter. 1942. A new type of glucose fermentation by Clostridium thermoaceticum n. sp. J. Bacteriol. 43:701–715.

    PubMed  CAS  Google Scholar 

  • Frazer, A. C., and L. Y. Young. 1986. Anaerobic C., metabolism of the O-methyl-14C-labelled substituent of vanillate. Appl. Environ. Microbiol. 51:84–87.

    PubMed  CAS  Google Scholar 

  • Fuchs, G. 1986. CO2 fixation in acetogenic bacteria: variations on a theme. FEMS Microbiol. Rev. 39:181–213.

    Article  CAS  Google Scholar 

  • Genthner, B. R. S., C. L. Davis, and M. P. Bryant. 1981. Features of rumen and sludge strains of Eubacterium limosum, a methanol and H2-CO2-utilizing species. Appl. Environ. Microbiol. 42:12–19.

    PubMed  CAS  Google Scholar 

  • Genthner, B. R. S., and M. P. Bryant. 1982. Growth of Eubacterium limosum with carbon monoxide as the energy source. Appl. Environ. Microbiol. 43:70–74.

    PubMed  CAS  Google Scholar 

  • Genthner, B. R. S., and M. P. Bryant. 1987. Additional characteristics of one-carbon compound utilization by Eubacterium limosum and Acetobacterium woodii. Appl. Environ. Microbiol. 53:471–476.

    Google Scholar 

  • Greening, R. C., and J. A. Z. Leedle. 1989. Enrichment and isolation of Acetitomaculum ruminis gen. nov., sp. nov.: acetogenic bacteria from the bovine rumen. Arch. Microbiol. 151:399–406.

    Article  PubMed  CAS  Google Scholar 

  • Gunsalus, R. P., J. A. Romesser, and R. S. Wolfe. 1978. Preparation of coenzyme M analogs and their activity in the methyl-coenzyme M reductase in Methanobacterium thermoautotrophicum. Biochemistry 17:2374–2377.

    Article  PubMed  CAS  Google Scholar 

  • Hungate, R. E. 1966. The Rumen and Its Microbes. Academic Press, New York.

    Google Scholar 

  • Hungate, R. E. 1967. Hydrogen as an intermediate in the rumen fermentation. Arch. Microbiol. 59:158–164.

    CAS  Google Scholar 

  • Hungate, R. E. 1975. The Rumen Microbial Ecosystem. Annu. Rev. Ecol. Syst. 6:39–60.

    Article  CAS  Google Scholar 

  • Hungate, R. E. 1976. The Rumen Fermentation. In: Microbial Production and Utilization of Gases, H. G. Schlegel, G. Gottschalk, and N. Pfennig (eds.), pp. 119–124. Goltze, Göttingen.

    Google Scholar 

  • Hungate, R. E. 1985. Anaerobic biotransformations of organic matter. In: Bacteria in Nature, Vol. 1, E. R. Leadbetter and J. S. Poindexter (eds.), pp. 39–95. Plenum, New York.

    Google Scholar 

  • Hungate, R. E., W. Smith, T. Bauchop, T. Yu, and J. C. Robinowitz. 1970. Formate as an intermediate in the bovine rumen fermentation. J. Bacteriol. 102:389–397.

    PubMed  CAS  Google Scholar 

  • Kane, M. D., and J. A. Breznak. 1991. Acetonema longum gen. nov. sp. nov., an H2/ CO2 acetogenic bacterium from the termite, Pterotermes occidentis. Arch. Microbiol. 156:91–98.

    Article  PubMed  CAS  Google Scholar 

  • Kane, M. D., A. Brauman, and J. A. Breznak. 1991. Clostridium mayombei sp. nov., an H2/CO2 acetogenic bacterium from the gut of the African soil-feeding termite, Cubitermes speciosus. Arch. Microbiol. 156:99–104.

    Article  CAS  Google Scholar 

  • Koch, M., J. Dolfing, K. Wuhrmann, and A. J. B. Zehnder. 1983. Pathways of propionate degradation by enriched methanogenic cultures. Appl. Environ. Microbiol. 45:1411–1414.

    PubMed  CAS  Google Scholar 

  • Krishnamurty, H. G., K. J. Cheng, G. A. Jones, F. J. Simpson, and J. E. Watkin. 1970. Identification of products produced by the anaerobic degradation of rutin and related flavenoids by Butyrivibrio sp. C3. Can. J. Microbiol. 16:759–767.

    Article  PubMed  CAS  Google Scholar 

  • Krumholz, L. R., C. W. Forsberg, and D. M. Veira. 1983. Association of methanogenic bacteria with rumen protozoa. Can. J. Microbiol. 29:676–680.

    Article  PubMed  CAS  Google Scholar 

  • Krumholz, L. R., M. P. Bryant. 1985. Clostridium pfennigii sp. nov. uses methoxyl groups of monobenzenoids and produces butyrate. Int. J. Syst. Bacteriol. 35:454–456.

    Article  CAS  Google Scholar 

  • Krumholz, L. R., and M. P. Bryant. 1986a. Eubacterium oxidoreducens sp. nov. requiring H2 or formate to degrade gallate, pyrogallol, phloroglucinol, and quercetin. Arch. Microbiol. 144:8–14.

    Article  CAS  Google Scholar 

  • Krumholz, L. R., and M. P. Bryant. 1986b. Syntrophococcus sucromutans sp. nov. gen. nov. uses carbohydrates as electron donors and formate, methoxybenzenoids or Methanobrevibacter as electron acceptor systems. Arch. Microbiol. 143:313–318.

    Article  CAS  Google Scholar 

  • Krumholz, L. R., R. L. Crawford, M. E. Hemling, and M. P. Bryant. 1987. Metabolism of gallate and phloroglucinol in Eubacterium oxidoreducens via 3-hydroxy-5-oxohexanoate. J. Bacteriol. 169:1886–1890.

    PubMed  CAS  Google Scholar 

  • Krumholz, L. R., and M. P. Bryant. 1988. Characterization of the pyrogallol-phloroglucinol isomerase of Eubacterium oxidoreducens. J. Bacteriol. 170:2472–2479.

    PubMed  CAS  Google Scholar 

  • Leedle, J. A. Z., and R. C. Greening. 1988. Methanogenic and acidogenic bacteria in the bovine rumen: postprandial changes after feeding high-or low-forage diets once daily. Appl. Environ. Microbiol. 54:502–506.

    PubMed  CAS  Google Scholar 

  • Ljungdahl, L. G. 1986. The autotrophic pathway of acetate synthesis in acetogenic bacteria. Annu. Rev. Microbiol. 40:415–450.

    Article  PubMed  CAS  Google Scholar 

  • Lorowitz, W. H., and M. P. Bryant. 1984. Peptostreptococcusproducts strain that grows rapidly with CO as the energy source. Appl. Environ. Microbiol. 47:961–964.

    PubMed  CAS  Google Scholar 

  • Lovley, D. R., and M. J. Klug. 1983. Methanogenesis from methanol and methylamines and acetogenesis from hydrogen and carbon dioxide in the sediments of a eutrophic lake. Appl Environ. Microbiol. 45:1310–1315.

    PubMed  CAS  Google Scholar 

  • Lovley, D. R. 1985. Minimum threshold for hydrogen metabolism in methanogenic bacteria. Appl. Environ. Microbiol. 49:1530–1531.

    PubMed  CAS  Google Scholar 

  • Lovley, D.R., R. C. Greening, and J. G. Ferry. 1984. Rapidly growing rumen methanogenic organism that synthesizes coenzyme M and has high affinity for formate. Appl. Environ. Microbiol. 48:81–87.

    PubMed  CAS  Google Scholar 

  • Mackie, R. I., and M. P. Bryant. 1981. Metabolic activity of fatty acid-oxidizing bacteria and the contribution of acetate, propionate, butyrate, and CO2 to methanogenesis in cattle waste at 40 and 60°C. Appl. Environ. Microbiol. 41:1363–1373.

    PubMed  CAS  Google Scholar 

  • Mackie, R. I., and B. A. White. 1991. Recent advances in rumen microbial ecology and metabolism: potential impact on nutrient output. J. Dairy Sci. 73:2971–2995.

    Article  Google Scholar 

  • Mackie, R. I., B. A. White, and M. P. Bryant. 1991. Lipid metabolism in anaerobic ecosystems. Crit. Rev. Microbiol. 17:449–479.

    Article  PubMed  CAS  Google Scholar 

  • Martin, A. K. 1982. The origin of urinary aromatic compounds excreted by ruminants. 3. The metabolism of phenolic compounds to simple phenols. Br. J. Nutr. 48:497–507.

    Article  PubMed  CAS  Google Scholar 

  • Mclnerney, M. J., M. P. Bryant, and N. Pfennig. 1979. Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens. Arch. Microbiol. 122:129–135.

    Article  Google Scholar 

  • McInerney, M. J., and M. P. Bryant. 1981. Basic principles of bioconversions in anaerobic digestion and methanogenesis. In: Biomass Conversion Processes for Energy and Fuels, S. S. Sofer, and O. R. Zaborsky (eds.), pp. 277–296. Plenum, New York.

    Google Scholar 

  • Mclnerney, M. J., M. P. Bryant, R. B. Hespell, and J. W. Costerton. 1981a. Syntrophomonas wolfei gen. nov., sp. nov., an anaerobic, syntrophic, fatty acid-oxidizing bacterium. Appl. Environ. Microbiol. 41:1029–1039.

    Google Scholar 

  • Mclnerney, M. J., R. I. Mackie, and M. P. Bryant. 1981b. Syntrophic association of a butyrate-degrading bacterium and Methanosarcina enriched from bovine rumen fluid. Appl. Environ. Microbiol. 41:826–828.

    Google Scholar 

  • Nottingham, P. M., and R. E. Hungate. 1969. Methanogenic fermentation of benzoate. J. Bacteriol. 98:1170–1172.

    PubMed  CAS  Google Scholar 

  • Ohwaki, D., and R. E. Hungate. 1977. Hydrogen utilization by clostridia in sewage sludge. Appl. Environ. Microbiol. 33:1270–1274.

    PubMed  CAS  Google Scholar 

  • Opperman, R. A., W. O. Nelson, and R. E. Brown. 1961. In vitro studies of methanogenesis in the bovine rumen: dissimilation of acetate. J. Gen. Microbiol. 25:103–111.

    Google Scholar 

  • Orskov, E. R. 1975. Manipulation of rumen fermentation for maximum food utilization. Wld Rev. Nutr. Diet 22:153–182.

    Google Scholar 

  • Prins, R. A., and A. Lankhorst. 1977. Synthesis of acetate from CO2 in the cecum of some rodents. FEMS Microbiol. Lett. 1:255–258.

    Article  CAS  Google Scholar 

  • Ragsdale, S. W. 1991. Enzymology of the acetyl-CoA pathway of CO2 fixation. Crit. Rev. Biochem. Mol. Biol. 26:261–300.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, J. A., R. F. Strayer, and J. M. Tiedje. 1981. Method for measuring dissolved hydrogen in anaerobic ecosystems: application of the rumen. Appl. Environ. Microbiol. 41:545–548.

    PubMed  CAS  Google Scholar 

  • Robinson, J. A., and J. M. Tiedje. 1982. Kinetics of hydrogen consumption by rumen fluid, anaerobic digestor sludge and sediment. Appl. Environ. Microbiol. 44:1374–1384.

    PubMed  CAS  Google Scholar 

  • Rowe, J. B., M. L. Loughman, J. V. Nolan, and R. A. Leng. 1979. Secondary fermentation in the rumen of sheep fed a diet based on molasses. Br. J. Nutr. 41:393–397.

    Article  PubMed  CAS  Google Scholar 

  • Russell, J. B., and H. J. Strobel. 1989. Effect of ionophores on ruminai fermentation. Appl. Environ. Microbiol. 55:1–6.

    PubMed  CAS  Google Scholar 

  • Scheline, R. R. 1966. Decarboxylation and demethylation of some phenolic benzoic acid derivatives by rat cecal contents. J. Pharmacol. 18:664–669.

    Article  CAS  Google Scholar 

  • Scheline, R. R. 1978. Mammalian Metabolism of Plant Xenobiotics. Academic Press, London.

    Google Scholar 

  • Schink, B., and N. Pfennig. 1982. Fermentation of trihydroxybenzenes by Pelobacter acidigallici gen. nov. sp. nov., a new strictly anaerobic, non-sporeforming bacterium. Arch. Microbiol. 133:195–201.

    Article  CAS  Google Scholar 

  • Simpson, F. J., G. A. Jones, and E. A. Wolin. 1969. Anaerobic degradation of some bioflavonoids by microflora of the rumen. Can. J. Microbiol. 15:972–974.

    Article  PubMed  CAS  Google Scholar 

  • Smith, M. R., and R. A. Mah. 1981. 2-Bromoethanesulfonate: a selective agent for isolating resistant Methanosarcina mutants. Curr. Microbiol. 6:321–326.

    Article  CAS  Google Scholar 

  • Smolenski, W. J., and J. A. Robinson. 1988. In situ rumen hydrogen concentrations in steers fed eight times daily, measured using a mercury reduction detector. FEMS Microbiol. Ecol. 53:95–100.

    Article  CAS  Google Scholar 

  • Stevani, J., M. Durand, K. DeGraeve, D. Demeyer, and J. P. Grivet. 1991. Degradative abilities and metabolisms of rumen and hindgut microbial ecosystems. In: Hindgut’ 91, T. Sakata and R. L. Snipes (eds.), pp. 123–135. Senshu University Press, Tokyo.

    Google Scholar 

  • Stewart, C. S., and M. P. Bryant. 1988. The rumen bacteria. In: The Rumen Microbial Ecosystem, P. N. Hobson (ed.), pp. 21–75. Else vier Applied Science, New York.

    Google Scholar 

  • Stumm, C. K., H. J. Gijzen, and G. D. Vogels. 1982. Association of methanogenic bacteria with ovine rumen ciliates. Br. J. Nutr. 47:95–99.

    Article  PubMed  CAS  Google Scholar 

  • Tanner, R. S., R. S. Wolfe, and L. G. Ljungdahl. 1978. Tetrahydrofolate enzyme levels in Acetobacterium woodii and their implication in the synthesis of acetate from CO2. J. Bacteriol. 134:668–670.

    PubMed  CAS  Google Scholar 

  • Tanner, R. S., E. Stackebrandt, G. E. Fox, R. Gupta, L. J. Magrum, and C. R. Woese. 1982. A phylogenetic analysis of anaerobic eubacteria capable of synthesizing acetate from carbon dioxide. Curr. Microbiol. 7:127–132.

    Article  CAS  Google Scholar 

  • Tarvin, D., and A. M. Buswell. 1934. The methane fermentation of organic acids and carbohydrates. J. Am. Chem. Soc. 56:1751–1755.

    Article  CAS  Google Scholar 

  • Tsai, C. G., and G. A. Jones. 1975. Isolation and identification of rumen bacteria capable of anaerobic phloroglucinol degradation. Can. J. Microbiol. 21:749–801.

    Article  Google Scholar 

  • Tsai, C. G., D. M. Gates, W. M. Ingledew, and G. A. Jones. 1976. Products of anaerobic phloroglucinol degradation by Coprococcus sp. Pe15. Can. J. Microbiol. 22:159–164.

    Article  PubMed  CAS  Google Scholar 

  • Van Nevel, C. J., and D. I. Demeyer. 1988. Manipulation of rumen fermentation. In: The Rumen Microbiol Ecosystem, P. N. Hobson (ed.), pp. 387–443. Elsevier Applied Science, New York.

    Google Scholar 

  • Varel, V. H., M. P. Bryant, L. V. Holdeman, and W. E. C. Moore. 1974. Isolation of ureolytic Peptostreptococcus productus from feces using defined medium: failure of common urease tests. Appl. Microbiol. 28:594–599.

    PubMed  CAS  Google Scholar 

  • Vogels, G. D., W. F. Hoppe, and C. K. Stumm. 1980. Association of methanogenic bacteria with rumen ciliates. Appl. Environ. Microbiol. 40:608–612.

    PubMed  CAS  Google Scholar 

  • Vogels, G. D., J. T. Keltjens, and C. Van der Drift. 1988. Biochemistry of methane production. In: Biology of Anaerobic Microorganisms, A. J. B. Zehnder (ed.), pp. 707–770. Wiley, New Yo

    Google Scholar 

  • Widdell, F. 1988. Microbiology and ecology of sulfate-and sulfur-reducing bacteria. In: Biology of Anaerobic Microorganisms, A. J. B. Zehnder (ed.), pp. 469–585. Wiley, New York.

    Google Scholar 

  • Wilfond, T. L., D. M. Schaefer. 1990. Validation of methods for the enrichment and isolation of H2-utilizing, CO2-reducing rumen acetogenic bacteria. Abstr. Annu. Meet. Am. Soc. Microbiol., p. 201.

    Google Scholar 

  • Wilfond, T. L., J. Ralph, and D. M. Schaefer. 1991. Autotrophic acetogenesis by Acetitomaculum ruminis 190A4 reduced methane production during in vitro incubation of rumen contents. Abstr. Annu. Meet. Am. Soc. Microbiol., p. 211.

    Google Scholar 

  • Wilfond, T. L., J. Ralph, and D. M. Schaefer. 1994. Determination of H2/CO2 utilizing acetogenic activity in ruminai contents using 13C-isotope ratio mass spectrometry and NMR. (in preparation).

    Google Scholar 

  • Wofford, N. Q., P. S. Beaty, and M. J. Mclnerney. 1986. Preparation of cell-free extracts and the enzymes involved in fatty acid metabolism in Syntrophomonas wolfei. J. Bacteriol. 167:179–185.

    PubMed  CAS  Google Scholar 

  • Wolin, M. J., and T. L. Miller. 1988. Microbe-microbe interactions. In: The Rumen Microbial Ecosystem, P. N. Hobson (ed.), pp. 343–359. Elsevier Applied Science, New York.

    Google Scholar 

  • Wolin, M. J., and T. L. Miller. 1994. Acetogenesis from carbon dioxide in human gastrointestinal systems. In: Acetogenesis, H. L. Drake (ed.) pp. 365–385, Chapman and Hall, New York (this volume).

    Google Scholar 

  • Wood, H. G., S. W. Ragsdale, and E. Pezacka. 1986. The acetyl-CoA pathway of autotrophic growth. FEMS Microbiol. Rev. 39:345–362.

    Article  CAS  Google Scholar 

  • Wood, H. G., and L. G. Ljungdahl. 1991. Autotrophic character of the acetogenic bacteria. In: Variations in Autotrophic Life, Barton, L. L. and J. Shively (eds.), pp. 201–250. Academic Press, San Diego.

    Google Scholar 

  • Yamamoto, I., T. Saiki, S. M. Liu and L. G. Ljungdahl. 1983. Purification and properties of NADP-dependent formate hydrogenase from Clostridium thermoaceticum, a tungsten-selenium-iron protein. J. Bacteriol. 258:1826–1832.

    CAS  Google Scholar 

  • Young, L. Y., and A. C. Frazer. 1987. The fate of lignin and lignin-derived compounds in anaerobic environments. Geomicrobiol J. 5:261–293.

    Article  CAS  Google Scholar 

  • Zehnder, A. J. B., B. A. Huser, T. D. Brock, and K. Wuhrmann. 1980. Characterization of an acetate-decarboxylating non-hydrogen oxidizing methane bacterium. Arch. Microbiol. 124:1–11.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, H., D. Yang, C. R. Woese, and M. P. Bryant. 1993. Assignment of fatty acid-β-oxidizing syntrophic bacteria to Syntyrophomonadeceae fam. nov. on the basis of 16S rRNA sequence analysis. Int. J. Syst. Bacteriol. 43:278–286.

    Article  PubMed  CAS  Google Scholar 

  • Zinder, S. H., T. Anguish, and S. C. Cardell. 1984. Selective inhibition by 2-bromoethanesulfonate of methanogenesis from acetate in a thermophilic anaerobic digestor. Appl. Environ. Microbiol. 47:1343–1345.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Chapman & Hall

About this chapter

Cite this chapter

Mackie, R.I., Bryant, M.P. (1994). Acetogenesis and the Rumen: Syntrophic Relationships. In: Drake, H.L. (eds) Acetogenesis. Chapman & Hall Microbiology Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1777-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1777-1_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5716-2

  • Online ISBN: 978-1-4615-1777-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics