Acetogenesis pp 303-330 | Cite as

Acetogenesis from Carbon Dioxide in Termite Guts

  • John A. Breznak
Part of the Chapman & Hall Microbiology Series book series (CHMBS)


Since the isolation of Clostridium aceticum (Wieringa, 1940), the first bacterium ever shown to derive energy for growth by acetate synthesis from H2 + CO2, the phenomenon of acetogenesis from C1 compounds has been of intrinsic interest to microbiologists and biochemists. As seen from other chapters in this volume, work in various laboratories over the years has now led to the isolation of over two dozen different species of such acetogens and to the recognition that these bacteria, united by their unique metabolism, are actually quite diverse phenotypically and phylogenetically. Likewise, detailed studies on the biochemistry of acetogenesis from CO2, conducted mainly with Clostridium thermoaceticum by H. G. Wood and his students, have identified each step in the pathway and resulted in the purification and characterization of the relevant enzymes, and in some cases the genes encoding them. Nevertheless, the ecological significance of acetogenesis from CO2 has remained obscure. Certainly, the ability of most acetogens to use H2 as a reductant suggests that they might function as terminal or subterminal “electron sink” organisms in anaerobic microbial food webs, and they are often included in that position in diagrams depicting such webs (e.g., Zinder, 1984). Yet, rarely have habitats been identified in which acetogens outprocess, or are strongly competitive with, other potential H2 consumers such as methanogens and sulfate-reducing bacteria. Hence, their significance in the flow of carbon and reducing equivalents during anoxic decomposition processes has been debatable. In recent years, however, it has been found that the gastrointestinal tract of vertebrates and invertebrates is one type of habitat in which acetogens often appear to be major H2 consumers (Breznak and Kane, 1990; also see Wolin and Miller Chapter 13). During microbial fermentation in the gut of certain termites, in particular, acetogens not only appear to constitute the primary H2 sink, but their production of acetate from H2 + CO2 makes a major contribution to termite nutrition.


Volatile Fatty Acid Ecological Potential Acetogenic Bacterium High Termite Lower Termite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bentley, B. L. 1984. Nitrogen fixation in termites: fate of newly fixed nitrogen. J. Insect Physiol. 30:653–655.CrossRefGoogle Scholar
  2. Bignell, D. E. 1984. Direct potentiometric determination of redox potentials of the gut contents in the termites Zootermopsis nevadensis and Cubitermes severus and in three other arthropods. J. Insect Physiol 30:169–174.CrossRefGoogle Scholar
  3. Bignell, D. E., and J. M. Anderson. 1980. Determination of pH and oxygen status in the guts of lower and higher termites. J. Insect Physiol. 26:183–188.CrossRefGoogle Scholar
  4. Bignell, D. E., H. Oskarsson, and J. M. Anderson. 1980. Specialization of the hindgut wall for the attachment of symbiotic micro-organisms in a termite Procubitermes aburiensis (Isoptera, Termitidae, Termitinae). Zoomorphology 96:103–112.CrossRefGoogle Scholar
  5. Bignell, D. E., H. Oskarsson, J. M. Anderson, and P. Ineson. 1983. Structure, microbial associations and function of the so-called “mixed segment” of the gut in two soil-feeding termites, Procubitermes aburiensis and Cubitermes severus (Termitidae, Termitinae). J. Zool. Lond. 201:445–480.CrossRefGoogle Scholar
  6. Blomquist, G. J., R. W. Howard, and C. A. McDaniel. 1979. Biosynthesis of cuticular hydrocarbons of the termite Zootermopsis angusticollis (Hagen). Incorporation of propionate into dimethylalkanes. Insect Biochem. 9:371–374.CrossRefGoogle Scholar
  7. Blomquist, G. J., L. A. Dwyer, A. J. Chu, R. O. Ryan, and M. de Renobales. 1982. Biosynthesis of linoleic acid in a termite, cockroach and cricket. Insect Biochem. 12:349–353.CrossRefGoogle Scholar
  8. Brauman, A., M. D. Kane, M. Labat, and J. A. Breznak. 1990. Hydrogen metabolism by termite gut microbes. In: Microbiology and Biochemistry of Strict Anaerobes Involved in Interspecies Hydrogen Transfer, J.-P. Belaich, M. Bruschi, and J.-L. Garcia. eds., pp. 369–371. Plenum Press, New York.CrossRefGoogle Scholar
  9. Brauman, A., M. D. Kane, M. Labat, and J. A. Breznak. 1992. Genesis of acetate and methane by gut bacteria of nutritionally diverse termites. Science 257:1384–1387.PubMedCrossRefGoogle Scholar
  10. Braun, K., and G. Gottschalk. 1981. Effect of molecular hydrogen and carbon dioxide on chemo-organotrophic growth of Acetobacterium woodii and Clostridium aceticum. Arch. Microbiol. 128:294–298.PubMedCrossRefGoogle Scholar
  11. Breznak, J. A. 1982. Intestinal microbiota of termites and other xylophagous insects. Annu. Rev. Microbiol 36:323–343.PubMedCrossRefGoogle Scholar
  12. Breznak, J. A. 1984a. Biochemical aspects of symbiosis between termites and their intestinal microbiota. In: Invertebrate-Microbial Interactions, J. M. Anderson, A. D. M. Rayner, and D. W. H. Walton (eds.), pp. 173–203. Cambridge University Press, Cambridge.Google Scholar
  13. Breznak, J. A. 1984b. Hindgut spirochetes of termites and Cryptocercus punctulatus. In: Bergey’s Manual of Systematic Bacteriology, N. R. Krieg and J. G. Holt (eds.), Vol. 1, pp. 67–70. Williams & Wilkins, Baltimore, MD.Google Scholar
  14. Breznak, J. A. 1990. Metabolic activities of the microbial flora of termites. In: Microbiology in Poecilotherms, R. Lesel (ed.), pp. 63–68. Elsevier, Amsterdam.Google Scholar
  15. Breznak, J. A. 1992. The genus Sporomusa. In: The Prokaryotes, Vol. II, 2nd ed., A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer (eds.), pp. 2014–2021. Springer-Verlag, New York.Google Scholar
  16. Breznak, J. A., and H. S. Pankratz. 1977. In situ morphology of the gut microbiota of wood-eating termites [Reticulitermes flavipes (Kollar) and Coptotermes formosanus Shiraki]. Appl. Environ. Microbiol. 33:406–426.PubMedGoogle Scholar
  17. Breznak, J. A., and J. M. Switzer. 1986. Acetate synthesis from H2 plus CO2 by termite gut microbes. Appl. Environ. Microbiol. 52:623–630.PubMedGoogle Scholar
  18. Breznak, J. A., J. M. Switzer, H.-J. Seitz. 1988. Sporomusa termitida sp. nov., an H2/ CO2-utilizing acetogen isolated from termites. Arch. Microbiol. 150:282–288.CrossRefGoogle Scholar
  19. Breznak, J. A., and M. D. Kane. 1990. Microbial H2/CO2 acetogenesis in animal guts: nature and nutritional significance. FEMS Microbiol Rev. 87:309–314.CrossRefGoogle Scholar
  20. Breznak, J. A., and J. S. Blum. 1991. Mixotrophy in the termite gut acetogen, Sporomusa termitida. Arch. Microbiol. 156:105–110.CrossRefGoogle Scholar
  21. Breznak, J. A., and A. Brune. 1994. Role of microorganisms in the digestion of lignocellulose by termites. Annu. Rev. Entomol. 39:453–487.CrossRefGoogle Scholar
  22. Brock, T. D. 1987. The study of microorganisms in situ: progress and problems. In: Ecology of Microbial Communities, M. Fletcher, T. R. G. Gray, and J. G. Jones, (eds.), pp. 1–20. Cambridge University Press, New York.Google Scholar
  23. Canale-Parola, E. 1984. Order I. Spirochaetales Buchanan 1917, 163AL. In: Bergey’s Manual of Systematic Bacteriology, N. R. Krieg, and J. G. Holt (eds.), Vol. 1, pp. 38–39. Williams & Wilkins, Baltimore, MD.Google Scholar
  24. Cato, E. P., W. L. George, and S.M. Finegold. 1986. Genus Clostridium Prazmowski 1880, 23AL. In: Bergey’s Manual of Systematic Bacteriology, P. H. A. Sneath, N. S. Mair, M. E. Sharpe, and J. G. Holt (eds.), Vol. 2. pp. 1141–1200. Williams & Wilkins, Baltimore, MD.Google Scholar
  25. Cleveland, L. R. 1924. The physiological and symbiotic relationships between the intestinal protozoa of termites and their host, with special reference to Reticulitermes flavipes Kollar. Biol. Bull. 46:178–227.CrossRefGoogle Scholar
  26. Cleveland, L. R. 1925. The effects of oxygenation and starvation on the symbiosis between the termite Termopsis, and its intestinal flagellates. Biol. Bull. 48:309–326.CrossRefGoogle Scholar
  27. Collins, N.M., and T. G. Wood. 1984. Termites and atmospheric gas production. Science 224:84–86.PubMedCrossRefGoogle Scholar
  28. Cord-Ruwisch, R., H.-J. Seitz, and R. Conrad. 1988. The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor. Arch. Microbiol. 149:350–357.CrossRefGoogle Scholar
  29. Czolij, R., M. Slaytor, and R. W. O’Brien. 1985. Bacterial flora of the mixed segment and the hindgut of the higher termite Nasutitermes exitosus Hill (Termitidae, Nasutitermitinae). Appl. Environ. Microbiol. 49:1226–1236.Google Scholar
  30. Dolfing, J. 1988. Acetogenesis. In: Biology of Anaerobic Microorganisms, A. J. B. Zehnder (ed.), pp. 417–468. Wiley, New York.Google Scholar
  31. Greening, R. C., and J. A. Z. Leedle. 1989. Enrichment and isolation of Acetitomaculum ruminis, gen. nov., sp. nov.: acetogenic bacteria from the bovine rumen. Arch. Microbiol. 151:399–406.PubMedCrossRefGoogle Scholar
  32. Guo, L., D. R. Quilici, J. Chase, and G. J. Blomquist. 1991. Gut tract microorganisms supply the precursors for methyl-branched hydrocarbon biosynthesis in the termite, Zootermopsis nevadensis. Insect Biochem. 21:327–333.CrossRefGoogle Scholar
  33. Hogan, M. E., M. Slaytor, and R. W. O’Brien. 1985. Transport of volatile fatty acids across the hindgut of the cockroach Panesthia cribrata Saussure and the termite Mastotermes darwiniensis Froggatt. J. Insect Physiol. 31:587–591.CrossRefGoogle Scholar
  34. Honigberg, B. M. 1970. Protozoa associated with termites and their role in digestion. In: Biology of Termites, K. Krishna and F. M. Weesner. (eds.), Vol. II, pp. 1–36. Academic Press, New York.Google Scholar
  35. Hungate, R. E. 1939. Experiments on the nutrition of Zootermopsis. III. The anaerobic carbohydrate dissimilation by the intestinal protozoa. Ecology 20:230–245.CrossRefGoogle Scholar
  36. Hungate, R. E. 1943. Quantitative analyses on the cellulose fermentation by termite protozoa. Ann. Entomol. Soc. Am. 36:730–739.Google Scholar
  37. Hungate, R. E. 1946. The symbiotic utilization of cellulose. J. Elisha Mitchell Sci Soc. 62:9–24.Google Scholar
  38. Jones, J. G., and B. M. Simon. 1985. Interaction of acetogens and methanogens in anaerobic freshwater sediments. Appl. Environ. Microbiol. 49:944–948.PubMedGoogle Scholar
  39. Kane, M. D., and J. A. Breznak. 1991a. Effect of host diet on production of organic acids and methane by cockroach gut bacteria. Appl. Environ. Microbiol. 57:2628–2634.PubMedGoogle Scholar
  40. Kane, M. D., and J. A. Breznak. 1991b. Acetonema longum gen. nov. sp. nov., an H2/ CO2 acetogenic bacterium from the termite, Pterotermes occidentis. Arch. Microbiol. 156:91–98.PubMedCrossRefGoogle Scholar
  41. Kane, M. D., A. Brauman, and J. A. Breznak. 1991. Clostridium mayombei sp. nov., an H2/CO2 acetogenic bacterium from the gut of the African soil-feeding termite, Cubitermes speciosus. Arch. Microbiol. 156:99–104.CrossRefGoogle Scholar
  42. Katzin, L. I., and H. Kirby. 1939. The relative weights of termites and their protozoa. J. Parasitol. 25:444–445.CrossRefGoogle Scholar
  43. Khalil, M. A. K., R. A. Rasmussen, J. R. J. French, and J. A. Holt. 1990. The influence of termites on atmospheric trace gases: CH4, CO2, CHC13, N2O, CO, H2, and light hydrocarbons, J. Geophys. Res. 95:3619–3634.CrossRefGoogle Scholar
  44. Kovoor, J. 1967. Presence d’acides gras volatils dans la panse d’un termite superieur (Microcerotermes edentatus Was., Amitermitidae). CR Acad. Sci. (Paris) 264:486–488.Google Scholar
  45. Krishna, K. 1969. Introduction. In: Biology of Termites, K. Krishna and F. M. Weesner (eds.), Vol. I, pp. 1–17. Academic Press, New York.Google Scholar
  46. Krishna, K. 1970. Taxonomy, phylogeny and distribution of termites. In: Biology of Termites, K. Krishna and F. M. Weesner (eds.), Vol. II, pp. 127–152. Academic Press, New York.Google Scholar
  47. La Fage, J. P., and W. L. Nutting. 1978. Nutrient dynamics of termites. In: Production Ecology of Ants and Termites, M. V. Brian (ed.), pp. 165–232. Cambridge University Press, New York.Google Scholar
  48. Lajoie, S. F., S. Bank, T. L. Miller, and M. J. Wolin. 1988. Acetate production from hydrogen and [13C]carbon dioxide by the microflora of human feces. Appl. Environ. Microbiol. 54:2723–2727.PubMedGoogle Scholar
  49. Lee, K. E., and T. G. Wood. 1971. Termites and Soils. Academic Press, New York.Google Scholar
  50. Ljungdahl, L. G., and K.-E. Eriksson. 1985. Ecology of microbial cellulose degradation. Adv. Microb. Ecol. 8:237–299.CrossRefGoogle Scholar
  51. Lovell, C. R., and Y. Hui. 1991. Design and testing of a functional group-specific DNA probe for the study of natural populations of acetogenic bacteria. Appl. Environ. Microbiol. 57:2602–2609.PubMedGoogle Scholar
  52. Lovley, D. R. 1985. Minimum threshold for hydrogen metabolism in methanogenic bacteria Appl. Environ. Microbiol. 49:1530–1531.PubMedGoogle Scholar
  53. Lovley, D. R., R. C. Greening, and J. G. Ferry. 1984. Rapidly growing rumen methanogenic organism that synthesizes coenzyme M and has a high affinity for formate. Appl. Environ. Microbiol. 48:81–87.PubMedGoogle Scholar
  54. Margulis, L., and G. Hinkle. 1992. Large symbiotic spirochetes: Clevelandina, Cristispira, Diplocalyx, Hollandina, and Pillotina. In: The Prokary otes, 2nd ed., Vol. IV, A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer (eds.), pp. 3965–3978. Springer-Verlag, New York.Google Scholar
  55. Martin, M. M. 1987. Invertebrate-Microbial Interactions: Ingested Fungal Enzymes in Arthropod Biology. Comstock Publishing Assoc, Ithaca, N.Y.Google Scholar
  56. Mauldin, J. K. 1982. Lipid synthesis from [14C]-acetate by two subterranean termites, Reticulitermes flavipes and Coptotermes formosanus. Insect Biochem. 12:193–199.CrossRefGoogle Scholar
  57. Mclnerney, M. J. 1988. Anaerobic hydrolysis and fermentation of fats and proteins. In: Biology of Anaerobic Microorganisms, A. J. B. Zehnder (ed.), pp. 373–415. Wiley, New York.Google Scholar
  58. Messer, A. C., and M. J. Lee. 1989. Effect of chemical treatments on methane emission by the hindgut microbiota in the termite Zootermopsis angusticollis. Microb. Ecol. 18:275–284.CrossRefGoogle Scholar
  59. Möller, B., R. Oßmer, B. H. Howard, G. Gottschalk, and H. Hippe. 1984. Sporomusa, a new genus of Gram-negative anaerobic bacteria including Sporomusa sphaeroides spec. nov. and Sporomusa ovata spec. nov. Arch. Microbiol. 139:388–396.CrossRefGoogle Scholar
  60. Neidhardt, F. C., J. L. Ingraham, and M. Schaechter. 1990. Physiology of the Bacterial Cell. Sinauer Associates, Inc., Sunderland, MA.Google Scholar
  61. Noirot, C., and C. Noirot-Timothée. 1969. The digestive system. In: Biology of Termites, K. Krishna and F. M. Weesner (eds.), Vol. I, pp. 49–88. Academic Press, New York.Google Scholar
  62. O’Brien, R. W., and M. Slaytor. 1982. Role of microorganisms in the metabolism of termites. Aust. J. Biol. Sci. 35:239–262.Google Scholar
  63. O’Brien, R. W., and J. A. Breznak. 1984. Enzymes of acetate and glucose metabolism in termites. Insect. Biochem. 14:639–643.CrossRefGoogle Scholar
  64. Odelson, D. A., and J. A. Breznak. 1983. Volatile fatty acid production by the hindgut microbiota of xylophagous termites. Appl. Environ. Microbiol. 45:1602–1613.PubMedGoogle Scholar
  65. Odelson, D. A., and J. A. Breznak. 1985. Nutrition and growth characteristics of Trichomitopsis termopsidis, a cellulolytic protozoan from termites. Appl. Environ. Microbiol. 49:614–621.PubMedGoogle Scholar
  66. Parkes, R. J., and E. Senior. 1987. Multi-stage chemostats and other models for studying anoxic ecosystems. In: Handbook of Laboratory Model Systems for Microbial Ecosystem Research, J. W. T. Wimpenny (ed.), CRC Press, Boca Raton, FL.Google Scholar
  67. Phelps, T. J., and J. G. Zeikus. 1984. Influence of pH on terminal carbon metabolism in anoxic sediments from a mildly acidic lake. Appl. Environ. Microbiol. 48:1088–1095.PubMedGoogle Scholar
  68. Potrikus, C. J., and J. A. Breznak. 1981. Gut bacteria recycle uric acid nitrogen in termites: a strategy for nutrient conservation. Proc. Natl. Acad. Sci. USA 78:4601–4605.PubMedCrossRefGoogle Scholar
  69. Prestwich, G. D., R. W. Jones, and M. S. Collins. 1981. Terpene biosynthesis by nasute termite soldiers (Isoptera: Nasutitermitinae). Insect Biochem. 11:331–336.CrossRefGoogle Scholar
  70. Prins, R. A., and A. Lankhorst. 1977. Synthesis of acetate from CO2 in the cecum of some rodents. FEMS Microbiol. Lett. 1:255–258.CrossRefGoogle Scholar
  71. Schultz, J. E., and J. A. Breznak. 1978. Heterotrophic bacteria present in hindguts of wood-eating termites [Reticulitermes flavipes (Kollar)]. Appl. Environ. Microbiol. 35:930–936.PubMedGoogle Scholar
  72. Slaytor, M. 1993. Cellulose digestion in termites and cockroaches: what role do symbionts play? Comp. Biochem. Physiol. 103B:775–784.Google Scholar
  73. Smolenski, W. J., and J. A. Robinson. 1988. In situ rumen hydrogen concentrations in steers fed eight times daily measured using a mercury reduction detector. FEMS Microbiol. Ecol. 53:95–100.CrossRefGoogle Scholar
  74. Stupperich, E., H. J. Elsinger, and B. Kräutler. 1989. Identification of phenolyl cobamide from the homoacetogenic bacterium Sporomusa ovata. Euro. J. Biochem. 186:657–661.CrossRefGoogle Scholar
  75. Stupperich, E., H. J. Elsinger, and S. P. J. Albracht. 1990. Evidence for a super-reduced cobamide as the major corrinoid fraction in vivo and a histidine residue as a cobalt ligand of the p-cresolyl cobamide in the acetogenic bacterium Sporomusa ovata. Euro. J. Biochem. 193:105–109.CrossRefGoogle Scholar
  76. Stupperich, E. 1993. Recent advances in elucidation of biological corrinoid functions. FEMS Microbiol Rev. 12:349–366.PubMedCrossRefGoogle Scholar
  77. Stupperich, E., and R. Konle. 1993. Corrinoid-dependent methyl transfer reactions are involved in methanol and 3,4-dimethoxybenzoate metabolism by Sporomusa ovata. Appl. Environ. Microbiol 59:3110–3116.PubMedGoogle Scholar
  78. To, L., L. Margulis, and A. T. W. Cheung. 1978. Pillotinas and höllandinas: distribution and behaviour of large spirochaetes symbiotic in termites. Microbios 22:103–133.PubMedGoogle Scholar
  79. Veivers, P. C., R. W. O’Brien, and M. Slaytor. 1980. The redox state of the gut of termites. J. Insect Physiol. 26:75–77.CrossRefGoogle Scholar
  80. Veivers, P. C., R. W. O’Brien, and M. Slaytor. 1982. Role of bacteria in maintaining the redox potential in the hindgut of termites and preventing entry of foreign bacteria. J. Insect Physiol. 28:947–951.CrossRefGoogle Scholar
  81. Veivers, P. C., R. Mühlemann, M. Slaytor, R. H. Leuthold, and D. E. Bignell. 1991. Digestion, diet and polyethism in two fungus-growing termites: Macrotermes subhyalinus Rambur and M. michaelseni Sjostedt. J. Insect Physiol. 37:675–682.CrossRefGoogle Scholar
  82. Wakayama, E. J., J. W. Dillwith, R. W. Howard, and G. J. Blomquist. 1984. Vitamin B12 levels in selected insects. Insect Biochem. 14:175–179.CrossRefGoogle Scholar
  83. Wang, C. H., D. L. Willis, and W. D. Loveland. 1975. Radiotracer Methodology in the Biological, Environmental, and Physical Sciences. Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
  84. Whitman, W. B., T. L. Bowen, and D. R. Boone. 1992. The methanogenic bacteria. In: The Prokaryotes, 2nd ed., Vol. I, A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer, (eds.), pp. 719–767. Springer-Verlag, New York.Google Scholar
  85. Wieringa, K. T. 1940. The formation of acetic acid from carbon dioxide and hydrogen by anaerobic spore-forming bacteria. Antonie van Leeuwenhoek J. Microbiol. Serol. 6:251–262.CrossRefGoogle Scholar
  86. Wolin, M. J. 1981. Fermentation in the rumen and human large intestine. Science 213:1463–1468.PubMedCrossRefGoogle Scholar
  87. Wood, T. G., and W. A. Sands. 1978. The role of termites in ecosystems. In: Production Ecology of Ants and Termites, M. V. Brian (ed.), pp. 245–292. Cambridge University Press, New York.Google Scholar
  88. Wood, T. G., and R. A. Johnson. 1986. The biology, physiology and ecology of termites. In: Economic Impact and Control of Social Insects, S. B. Vinson (ed.), pp. 1–68. Praeger, New York.Google Scholar
  89. Yamin, M. A. 1978. Axenic cultivation of the cellulolytic flagellate Trichomitopsis termopsidis (Cleveland) from the termite Zootermopsis. J. Protozool. 25:535–538.Google Scholar
  90. Yamin, M. A. 1980. Cellulose metabolism by the termite flagellate Trichomitopsis termopsidis. Appl. Environ. Microbiol. 39:859–863.PubMedGoogle Scholar
  91. Yamin, M. A. 1981. Cellulose metabolism by the flagellate Trichonympha from a termite is independent of endosymbiotic bacteria. Science 211:58–59.PubMedCrossRefGoogle Scholar
  92. Yamin, M. A., and W. Trager. 1979. Cellulolytic activity of an axenically-cultivated termite flagellate, Trichomitopsis termopsidis. J. Gen. Microbiol. 113:417–420.Google Scholar
  93. Zehnder, A. J. B., B. Huser, and T. D. Brock. 1979. Measuring radioactive methane with the liquid scintillation counter. Appl. Environ. Microbiol. 37:897–899.PubMedGoogle Scholar
  94. Zeikus, J. G. 1983. Metabolic communication between biodegradative populations in nature. In: Microbes in Their Natural Environments, J. H. Slater, R. Whittenbury, and J. W. T. Wimpenny (eds.), pp. 423–462. Cambridge University Press, Cambridge.Google Scholar
  95. Zinder, S. H. 1984. Microbiology of anaerobic conversion of organic wastes to methane: recent developments. Am. Soc. Microbiol. News 50:294–298.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • John A. Breznak

There are no affiliations available

Personalised recommendations