Acetogenesis pp 273-302 | Cite as

Acetogenesis: Reality in the Laboratory, Uncertainty Elsewhere

  • Harold L. Drake
  • Steven L. Daniel
  • Carola Matthies
  • Kirsten Küsel
Part of the Chapman & Hall Microbiology Series book series (CHMBS)


This chapter focuses on recent work in our research group that further extends our awareness of the diverse metabolic potentials of acetogens and, consequently, broadens our uncertainty in making accurate predictions of the role acetogens actually play at the ecosystem level (i.e., “elsewhere” per the title of this chapter). Without debating what ecosystems are, acetogens are difficult to study in their natural habitat. This difficulty stems largely from the fact that the main product we think they make (i.e., acetate) is not easily assessed (a gaseous product minimizes this complication) and likely turns over rapidly in vivo. Likewise, many of the substrates they may consume are also problematic to assess. In addition, approaches such as the [3H]thymidine incorporation method to assess the productivity of acetogens may greatly underestimate their magnitude (Winding, 1992; Wellsbury et al., 1993). Thus, although enrichment and physiological studies have been somewhat elegant in recent years relative to defining acetogenic potentials in the laboratory, comparatively little is known about what they really do “elsewhere” (as emphasized in Chapter 7). Clearly, native ecosystems such as forests have little in common with test-tube cultures. In the present chapter and those that follow in Part IV these realities and uncertainties are addressed.


Ecological Potential Acetogenic Bacterium Acetate Synthesis Fumarate Reduction Acetobacterium Woodii 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allison, M. J., E. T. Littledike, and L. F. James. 1977. Changes in ruminai oxalate degradation rates associated with adaptation to oxalate ingestion. J. Anim. Sci. 45:1173–1179.PubMedGoogle Scholar
  2. Allison, M. J., and H. M. Cook. 1981. Oxalate degradation by microbes of the large bowel of herbivores: the effect of dietary oxalate. Science 212:675–676.PubMedCrossRefGoogle Scholar
  3. Allison, M. J., K. A. Dawson, W. R. Mayberry, and J. G. Foss. 1985. Oxalobacter formigenes gen. nov., sp. nov.: oxalate-degrading anaerobes that inhabit the gastrointestinal tract. Arch. Microbiol. 141:1–7.PubMedCrossRefGoogle Scholar
  4. Allison, M. J., H. M. Cook, D. B. Milne, S. Gallagher, and R. V. dayman. 1986. Oxalate degradation by gastrointestinal bacteria from humans. J. Nutr. 116:455–460.PubMedGoogle Scholar
  5. Anantharam, V., M. J. Allison, and P. C. Maloney. 1989. Oxalate: formate exchange: the basis for energy coupling in Oxalobacter. J. Biol. Chem. 264:7244–7250.PubMedGoogle Scholar
  6. Andreesen, J. R., G. Gottschalk, and H. G. Schlegel. 1970. Clostridiumformicoaceticum nov. spec, isolation, description and distinction from C. aceticum and C. thermoaceticum. Arch. Microbiol. 72:154–174.CrossRefGoogle Scholar
  7. Bache, R., and N. Pfennig. 1981. Selective isolation of Acetobacterium woodii on methoxylated aromatic acids and determination of growth yields. Arch. Microbiol. 130:255–261.CrossRefGoogle Scholar
  8. Baetz, A. L. and M. J. Allison. 1989. Purification and characterization of oxalyl-coenzyme A decarboxylase from Oxalobacter formigenes. J. Bacteriol. 171:2605–2608.PubMedGoogle Scholar
  9. Baetz, A. L., and M. J. Allison. 1990. Purification and characterization of formylcoenzyme A transferase from Oxalobacter formigenes. J. Bacteriol. 172:3537–3540.PubMedGoogle Scholar
  10. Baetz, A. L., and M. J. Allison. 1992. Localization of oxalyl-coenzyme A decarboxylase, and formyl-coenzyme A transferase in Oxalobacter formigenes cells. Sys. Appl. Microbiol. 15:167–171.CrossRefGoogle Scholar
  11. Balen, W. E., S. Schoberth, R. S. Tanner, and R. S. Wolfe. 1977. Acetobacterium, a new genus of hydrogen-oxidizing, carbon dioxide-reducing, anaerobic bacteria. Int. J. Syst. Bacteriol. 27:355–361.CrossRefGoogle Scholar
  12. Boone, D. R. 1992. Ecology of methanogenesis. In: Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides, and Halomethanes, J. E. Rogers and W. B. Whitman (eds.), pp. 57–70. American Society for Microbiology, Washington, D.C.Google Scholar
  13. Braun, M., F. Mayer, and G. Gottschalk. 1981. Clostridium aceticum (Wieringa), a microorganism producing acetic acid from molecular hydrogen and carbon dioxide. Arch. Microbiol. 128:288–293.PubMedCrossRefGoogle Scholar
  14. Braun, M., and G. Gottschalk. 1982. Acetobacterium wieringae sp. nov., a new species producing acetic acid from molecular hydrogen and carbon dioxide. Zbl. Bakt., 1. Abt. Orig. C3:368-376.Google Scholar
  15. Breznak, J. A., J. M. Switzer, and H.-J. Seitz. 1988. Sporomusa termitida sp. nov., an H2/CO2-utilizing acetogen isolated from termites. Arch. Microbiol. 150:282–288.CrossRefGoogle Scholar
  16. Buschhorn, H., P. Dürre, and G. Gottschalk. 1989. Production and utilization of ethanol by the homoacetogen Acetobacterium woodii. Appl. Environ. Microbiol. 55:1835–1840.PubMedGoogle Scholar
  17. Buschhorn, H., P. Dürre, and G. Gottschalk. 1992. Purification and properties of the coenzyme A-linked acetaldehyde dehydrogenase of Acetobacterium woodii. Arch. Microbiol. 158:132–138.CrossRefGoogle Scholar
  18. Chandra, T. S., and Y. I. Shethna. 1975. Isolation and characterization of some new oxalate-decomposing bacteria. Antonie van Leeuwenhoek 41:101–111.PubMedCrossRefGoogle Scholar
  19. Conrad, R., F. Bak, H. J. Seitz, B. Thebrath, H. P. Mayer, and H. Schütz. 1989. Hydrogen turnover by psychrotrophic homoacetogenic and mesophilic methanogenic bacteria in anoxic paddy soil and lake sediment. FEMS Microbiol. Ecol. 62:285–294.CrossRefGoogle Scholar
  20. Daniel, S. L., P. A. Hartman, and M. J. Allison. 1987. Microbial degradation of oxalate in the gastrointestinal tracts of rats. Appl. Environ. Microbiol. 53:1793–1797.PubMedGoogle Scholar
  21. Daniel, S. L., T. Hsu, S. I. Dean, and H. L. Drake. 1990. Characterization of the H2-and CO-dependent chemolithotrophic potentials of the acetogens Clostridium thermoaceticum and Acetogenium kivui. J. Bacteriol. 172:4464–4471.PubMedGoogle Scholar
  22. Daniel, S. L., E. S. Keith, H. Yang, Y. Lin, and H. L. Drake. 1991. Utilization of methoxylated aromatic compounds by the acetogen Clostridium thermoaceticum: expression and specificity of the CO-dependent O-demethylating activity. Biochem. Biophys. Res. Commun. 180:416–422.PubMedCrossRefGoogle Scholar
  23. Daniel, S. L., M. Misoph, A. Gößner, and H. L. Drake. 1992. Growth of acetogenic bacteria in the absence of autotrophic CO2 fixation to acetate. Abstr. C133. 7th Int. Symp. Microbial Growth on C 1 Compounds, Warwick.Google Scholar
  24. Daniel, S. L., and H. L. Drake. 1993. Oxalate-and glyoxylate-dependent growth and acetogenesis by Clostridium thermoaceticum. Appl. Environ. Microbiol. 59:3062–3069.PubMedGoogle Scholar
  25. Davydova-Charakhch’yan, I. A., A. N. Mileeva, L. L. Mityushina, and S. S. Belyaev. 1993. Acetogenic bacteria from oil fields of Tataria and western Siberia. Translated from Mikrobiologiya, 61, 306–315, 1992.Google Scholar
  26. Dawson, K. A., M. J. Allison, and P.A. Hartman. 1980. Isolation and some characteristics of anaerobic oxalate-degrading bacteria from the rumen. Appl. Environ. Microbiol. 40:833–839.PubMedGoogle Scholar
  27. Dehning, I., and B. Schink. 1989a. Malonomonas rubra gen. nov. sp. nov., a microaerotolerant anaerobic bacterium growing by decarboxylation of malonate. Arch. Microbiol. 151:427–433.CrossRefGoogle Scholar
  28. Dehning, I., and B. Schink. 1989b. Two new species of anaerobic oxalate-fermenting bacteria, Oxalobacter vibrioformis sp. nov. and Clostridium oxalicum sp. nov., from sediment samples. Arch. Microbiol. 153:79–84.CrossRefGoogle Scholar
  29. Dehning, I., M. Stieb, and B. Schink. 1989. Sporomusa malonica sp. nov., a homoacetogenic bacterium growing by decarboxylation of malonate or succinate. Arch. Microbiol. 151:421–426.CrossRefGoogle Scholar
  30. Dimroth, P. 1987. Sodium ion transport decarboxylases and other aspects of sodium ion cycling in bacteria. Microbiol. Rev. 51:320–340.PubMedGoogle Scholar
  31. Dorn, M., J. R. Andreesen, and G. Gottschalk. 1978a. Fermentation of fumarate and L-malate by Clostridium formicoaceticum. J. Bacteriol. 133:26–32.PubMedGoogle Scholar
  32. Dorn, M., J. R. Andreesen, and G. Gottschalk. 1978b. Fumarate reductase of Clostridium formicoaceticum. Arch. Microbiol. 119:7–11.PubMedCrossRefGoogle Scholar
  33. Dörner, C., and B. Schink. 1991. Fermentation of mandelate to benzoate and acetate by a homoacetogenic bacterium. Arch. Microbiol. 156:302–306.CrossRefGoogle Scholar
  34. Drake, H. L., S.-I. Hu, and H. G. Wood. 1981. Purification of five components from Clostridium thermoaceticum which catalyze synthesis of acetate from pyruvate and methyltetrahydrofolate. J. Biol. Chem. 256:11137–11144.PubMedGoogle Scholar
  35. Drake, H. L. 1992. Acetogenesis and acetogenic bacteria. In: Encyclopedia of Microbiology, Vol. 1, J. Lederberg (ed.), pp. 1–15. Academic Press, San Diego, CA.Google Scholar
  36. Drake, H. L. 1993. CO2, reductant, and the autotrophic acetyl-CoA pathway: alternative origins and destinations. In: Microbial Growth on C 1 Compounds, J. C. Murrell and D. P. Kelly (eds.), Intercept Ltd., Andover, U.K.Google Scholar
  37. Eichler, B., and B. Schink. 1984. Oxidation of primary aliphatic alcohols by Acetobacterium carbinolicum sp. nov., a homoacetogenic anaerobe. Arch. Microbiol. 140:147–152.CrossRefGoogle Scholar
  38. Evans, C. W., and G. Fuchs. 1988. Anaerobic degradation of aromatic compounds. Annu. Rev. Microbiol. 42:289–317.PubMedCrossRefGoogle Scholar
  39. Eriide, R., and B. Schink. 1987. Fermentation of triacetin and glycerol by Acetobacterium sp. No energy is conserved by acetate excretion. Arch. Microbiol. 149:142–148.CrossRefGoogle Scholar
  40. Fontaine, F. E., W. H. Peterson, E. McCoy, M. J. Johnson, and G. J. Ritter. 1942. A new type of glucose fermentation by C. thermoaceticum n. sp. J. Bacteriol. 43:701–715.PubMedGoogle Scholar
  41. Fox, T. R., and N. B. Comerford. 1990. Low-molecular-weight organic acids in selected forest soils of the southeastern USA. Soil Sci. Soc. Am. J. 54:1139–1144.CrossRefGoogle Scholar
  42. Frazer, A. C., and L. Y. Young. 1985. A gram-negative anaerobic bacterium that utilizes O-methyl substituents of aromatic acids. Appl. Environ. Microbiol. 49:1345–1347.PubMedGoogle Scholar
  43. Friedrich, M., and B. Schink. 1991. Fermentative degradation of glyoxylate by a new strictly anaerobic bacterium. Arch. Microbiol. 156:392–397.CrossRefGoogle Scholar
  44. Fuchs, G. 1990. Alternatives to the Calvin cycle and the Krebs cycle in anaerobic bacteria: pathways with carbonylation chemistry. In: The Molecular Basis of Bacterial Metabolism, G. Hauska, and R. Thauer (eds.), pp. 13–20. Springer-Verlag, Berlin.Google Scholar
  45. Geerligs, G., H. C. Aldrich, W. Harder, and G. Diekert. 1987. Isolation and characterization of a carbon monoxide utilizing strain of the acetogen Peptostreptococcus productus. Arch. Microbiol. 148:305–313.CrossRefGoogle Scholar
  46. Gößner, A., S. L. Daniel, and H. L. Drake. 1994. Acetogenesis coupled to the oxidation of aromatic aldehyde groups. Arch. Microbiol 161:126–131.CrossRefGoogle Scholar
  47. Gottwald, M., J. R. Andreesen, J. LeGall, and L. G. Ljungdahl. 1975. Presence of cytochrome and menaquinone in Clostridium formicoaceticum and Clostridium thermoaceticum. J. Bacteriol. 122:325–328.PubMedGoogle Scholar
  48. Graustein, W. C., K. Cromack, Jr., and P. Sollins. 1977. Calcium oxalate: occurrence in soils and effects on nutrient and geochemical cycles. Science 198:1252–1254.PubMedCrossRefGoogle Scholar
  49. Hansen, B., M. Bokranz, P. Schönheit, and A. Kroger. 1988. ATP formation coupled to caffeate reduction by H2 in Acetobacterium woodii NZva16. Arch. Microbiol. 150:447–451.CrossRefGoogle Scholar
  50. Hermann, M., M.-R. Popoff, and M. Sebald. 1987. Sporomusa paucivorans sp. nov., a methylotrophic bacterium that forms acetic acid from hydrogen and carbon dioxide. Int. J. Syst. Bacteriol. 37:93–101.CrossRefGoogle Scholar
  51. Hodgkinson, A. 1977. Oxalic Acid in Biology and Medicine. Academic Press, New York.Google Scholar
  52. Hsu, T., S. L. Daniel, M. F. Lux, and H. L. Drake. 1990a. Biotransformations of carboxylated aromatic compounds by the acetogen Clostridium thermoaceticum: generation of growth-supportive CO2 equivalents under CO2-limited conditions. J. Bacteriol. 172:212–217.PubMedGoogle Scholar
  53. Hsu, T., M. F. Lux, and H. L. Drake. 1990b. Expression of an aromatic-dependent decarboxylase which provides growth-essential CO2 equivalents for the acetogenic (Wood) pathway of Clostridium thermoaceticum. J. Bacteriol. 172:5901–5907.PubMedGoogle Scholar
  54. Huang, P. M., and A. Violante. 1986. Influence of organic acids on crystallization and surface properties of precipitation products of aluminum. In: Interactions of Soil Minerals with Natural Organics and Microbes, P. M. Huang and M. Schnitzer (eds.), pp. 159–221. Soil Science Society of America, Inc., Madison, WI.Google Scholar
  55. Johnston, C. G., and J. R. Vestal. 1993. Biogeochemistry of oxalate in the antarctic cryptoendolithic lichen-dominated community. Microb. Ecol. 25:305–319.CrossRefGoogle Scholar
  56. Jones, J. G., and B. M. Simon. 1985. Interactions of acetogens and methanogens in anaerobic freshwater sediments. Appl. Environ. Microbiol. 49:944–948.PubMedGoogle Scholar
  57. Kane, M. D., and J. A. Breznak. 1991. Acetonema longum gen. nov., an H2/CO2 acetogenic bacterium from the termite, Pterotermes occidentis. Arch. Microbiol. 156:91–98.PubMedCrossRefGoogle Scholar
  58. Kirk, T. K., and R. L. Farrell. 1987. Enzymatic “combustion”: the microbial degradation of lignin. Annu. Rev. Microbiol. 41:465–505.PubMedCrossRefGoogle Scholar
  59. Krumholz, L. R., and M. P. Bryant. 1985. Clostridium pfennigii sp. nov. uses methoxyl groups of monobenzoids and produces butyrate. Int. J. Syst. Bacteriol. 35:454–456.CrossRefGoogle Scholar
  60. Krumholz, L. R., and M. P. Bryant. 1986. Syntrophococcus sucromutans sp. nov. gen. nov. uses carbohydrates as electron donors and formate, methoxymonobenzenoids or Methanobrevibacter as electron acceptor systems. Arch. Microbiol. 143:313–318.CrossRefGoogle Scholar
  61. Kroger, A. 1974. Electron-transport phosphorylation coupled to fumarate reduction in anaerobically grown Proteus rettgeri. Biochem. Biophys. Acta 347:273–289.PubMedCrossRefGoogle Scholar
  62. Küsel, K., and H. L. Drake. 1994. Acetate synthesis by soil from a Bavarian beech forest. Appl. Environ. Microbiol. 60:1370–1373.PubMedGoogle Scholar
  63. Lee, M. J., and S. H. Zinder. 1988a. Carbon monoxide pathway enzyme activities in a thermophilic anaerobic bacterium grown acetogenically and in a syntrophic acetateoxidizing coculture. Arch. Microbiol. 150:513–518.CrossRefGoogle Scholar
  64. Lee, M. J., and S. H. Zinder. 1988b. Isolation and characterization of a thermophilic bacterium which oxidizes acetate in syntrophic association with a methanogen and which grows acetogenically on H2/CO2. Appl. Environ. Microbiol. 54:124–129.PubMedGoogle Scholar
  65. Loach, P. A. 1976. Oxidation-reduction potentials, absorbance bands and molar absorbance of compounds used in biochemical studies. In: Handbook of Biochemistry and Molecular Biology, Physical and Chemical Data, 3rd ed. Fasman, G. D. (ed.), Vol. 1, pp. 122–130. CRC Press, Cleveland, OH.Google Scholar
  66. Lorowitz, W. H., and M. P. Bryant. 1984. Peptostreptococcus productus strain that grows rapidly with CO as the energy source. Appl. Environ. Microbiol. 47:961–964.PubMedGoogle Scholar
  67. Lovley, D. R., and M. J. Klug. 1983. Methanogenesis from methanol and methylamines and acetogenesis from hydrogen and carbon dioxide in the sediments of a eutrophic lake. Appl. Environ. Microbiol. 45:1310–1315.PubMedGoogle Scholar
  68. Lundie, L. L., Jr., and H. L. Drake. 1984. Development of a minimal defined medium for the acetogen Clostridium thermoaceticum. J. Bacteriol. 159:700–703.PubMedGoogle Scholar
  69. Lux, M. F., E. Keith, T. Hsu, and H. L. Drake. 1990. Biotransformation of aromatic aldehydes by acetogenic bacteria. FEMS Microbiol. Lett. 67:73–78.CrossRefGoogle Scholar
  70. Lux, M. F., and H. L. Drake. 1992. Re-examination of the metabolic potentials of the acetogens Clostridium aceticum and Clostridium formicoaceticum: chemolithoautotrophic and aromatic-dependent growth. FEMS Microbiol. Lett. 95:49–56.CrossRefGoogle Scholar
  71. Ma, K., S. Siemon, and G. Diekert. 1987. Carbon monoxide metabolism in cell suspensions of Peptostreptococcus productus strain Marburg. FEMS Microbiol. Lett. 43:367–371.CrossRefGoogle Scholar
  72. Martin, D. R., A. Misra, and H. L. Drake. 1985. Dissimilation of carbon monoxide to acetic acid by glucose-limited cultures of Clostridium thermoaceticum. Appl. Environ. Microbiol. 49:1412–14PubMedGoogle Scholar
  73. Matthies, C., A. Freiberger, and H. L. Drake. 1993. Fumarate dissimilation and differential reductant flow by Clostridium formicoaceticum and Clostridium aceticum. Arch. Microbiol. 160:273–278.CrossRefGoogle Scholar
  74. Möller, B., R. Oßmer, B. H. Howard, G. Gottschalk, and H. Hippe. 1984. Sporomusa, a new genus of gram-negative anaerobic bacteria including Sporomusa sphaeroides spec. nov. and Sporomusa ovata spec. nov. Arch. Microbiol. 139:388–396.CrossRefGoogle Scholar
  75. O’Brien, W., and L. G. Ljungdahl. 1972. Fermentation of fructose and synthesis of acetate from carbon dioxide by Clostridium formicoaceticum. J. Bacteriol. 109:626–632.PubMedGoogle Scholar
  76. Parekh, M., E. S. Keith, S. L. Daniel, and H. L. Drake. 1992. Comparative evaluation of the metabolic potentials of different strains of Peptostreptococcus productus: utilization and transformation of aromatic compounds. FEMS Microbiol. Lett. 94:69–74.CrossRefGoogle Scholar
  77. Postgate, J. R. 1963. A strain of Desulfovibrio able to use oxamate. Arch. Mikrobiol. 46:287–295.PubMedCrossRefGoogle Scholar
  78. Ruan, Z.-S., V. Anantharam, I. T. Crawford, S. V. Ambudkar, S. Y. Rhee, M. J. Allison, and P. C. Maloney. 1992. Identification, purification, and reconstitution of OxIT, the oxalate: formate antiport protein of Oxalobacter formigenes. J. Biol. Chem. 267:10537–10543.PubMedGoogle Scholar
  79. Savage, M. D., and H. L. Drake. 1986. Adaptation of the acetogen Clostridium thermoautotrophicum to minimal medium. J. Bacteriol. 165:315–318.PubMedGoogle Scholar
  80. Savage, M. D., Z. Wu, S. L. Daniel, L. L. Lundie, Jr., and H. L. Drake. 1987. Carbon monoxide-dependent chemolithotrophic growth of Clostridium thermoaceticum. Appl. Environ. Microbiol. 53:1902–1906.PubMedGoogle Scholar
  81. Schink, B., and M. Bomar. 1992. The genera Acetobacterium, Acetogenium, Acetoanaerobium, and Acetitomaculum, In: The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, Vol. II. A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer (eds.), pp. 1925–1936. Springer-Verlag, New York.Google Scholar
  82. Schink, B., A. Brune, and S. Schnell. 1992. Anaerobic degradation of aromatic compounds. In: Microbial Degradation of Natural Products, G. Winkelmann (ed.), pp. 221–242. VCH, Weinheim.Google Scholar
  83. Schramm, E., and B. Schink. 1991. Ether-cleaving enzyme and diol dehydratase involved in anaerobic polyethylene glycol degradation by a new Acetobacterium sp. Biodegradation 2:71–79.PubMedCrossRefGoogle Scholar
  84. Schulman, M., R. K. Ghambeer, L. G. Ljungdahl, and H. G. Wood. 1973. Total synthesis of acetate from CO2. VII. Evidence with Clostridium thermoaceticum that the carboxyl of acetate is derived from the carboxyl of pyruvate by transcarboxylation and not by fixation of CO2. J. Biol. Chem. 248:6255–6261.PubMedGoogle Scholar
  85. Seifritz, C., S. L. Daniel, A. Gößner, and H. L. Drake. 1993. Nitrate as a preferred electron sink for the acetogen Clostridium thermoaceticum. J. Bacteriol. 175:8008–8013.PubMedGoogle Scholar
  86. Sembiring, T., and J. Winter. 1990. Demethylation of aromatic compounds by strain B10 and complete degradation of 3-methoxybenzoate in co-culture with Desulfosarcina strains. Appl. Microbiol. Biotechnol. 33:233–238.CrossRefGoogle Scholar
  87. Smith, R. L., and R. S. Oremland. 1983. Anaerobic oxalate degradation: widespread natural occurrence in aquatic sediments. Appl. Environ. Microbiol. 46:106–113.PubMedGoogle Scholar
  88. Smith, R. L., F. E. Strohmaier, and R. S. Oremland. 1985. Isolation of anaerobic oxalatedegrading bacteria from freshwater lake sediments. Arch. Microbiol. 141:8–13.CrossRefGoogle Scholar
  89. Stevenson, F. J. 1967. Organic acids in soil. In: Soil Biochemistry, A. D. McLaren and G. H. Peterson (eds.), Vol. 1, pp. 119–146. Marcel Dekker, New York.Google Scholar
  90. Tanaka, K., and N. Pfennig. 1988. Fermentation of 2-methoxyethanol by Acetobacterium malicum sp. nov. and Pelobacter venetianus. Arch. Microbiol. 149:181–187.CrossRefGoogle Scholar
  91. Tanner, R. S., L. M. Miller, and D. Yang. 1993. Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology group I. Int. J. Syst. Bacteriol. 43:232–236.PubMedCrossRefGoogle Scholar
  92. Thauer, R. K., K. Jungermann, and K. Decker. 1977. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41:100–180.PubMedGoogle Scholar
  93. Tschech, A., and N. Pfennig. 1984. Growth yield increase linked to caffeate reduction in Acetobacterium woodii. Arch. Microbiol. 137:163–167.CrossRefGoogle Scholar
  94. Tyler, S. C. 1992. The global methane budget. In: Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides, and Halomethanes, J. E. Rogers and W. B. Whitman (eds.), pp. 57–70. American Society for Microbiology, Washington, D.C.Google Scholar
  95. Wagener, S., and B. Schink. 1988. Fermentative degradation of nonionic surfactants and polyethylene glycol by enrichment cultures and by pure cultures of homoacetogenic and propionate-forming bacteria. Appl. Environ. Microbiol. 54:561–565.PubMedGoogle Scholar
  96. Wellsbury, P., R. A. Herbert, and R. J. Parkes. 1993. Incorporation of [methyl-3H]thymidine by obligate and facultative anaerobic bacteria when grown under defined culture conditions. FEMS Microbiol. Ecol. 12:87–95.CrossRefGoogle Scholar
  97. Wiegel, J., M. Braun, and G. Gottschalk. 1981. Clostridium thermoautotrophicum species novum, a thermophile producing acetate from molecular hydrogen and carbon monoxide. Curr. Microbiol. 5:255–260.CrossRefGoogle Scholar
  98. Winding, A. 1992. [3H]Thymidine incorporation to estimate growth rates of anaerobic bacterial strains. Appl. Environ. Microbiol. 58:2660–2662.PubMedGoogle Scholar
  99. Wood, H. G. 1952. Fermentation of 3,4-C14-and 1-C14-labeled glucose by Clostridium thermoaceticum. J. Biol. Chem. 199:579–583.PubMedGoogle Scholar
  100. Zellner, G., H. Kneifel, and J. Winter. 1990. Oxidation of benzaldehydes to benzoic acid derivatives by three Desulfovibrio strains. Appl. Environ. Microbiol. 56:2228–2233.PubMedGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Harold L. Drake
  • Steven L. Daniel
  • Carola Matthies
  • Kirsten Küsel

There are no affiliations available

Personalised recommendations