The Mechanisms of Nutritional Homeostasis

  • S. J. Simpson
  • D. Raubenheimer
  • P. G. Chambers

Abstract

Insects have evolved means of using an extraordinary variety of food sources, many of which are, to say the least, nutritionally unpromising. In addition to possessing an impressive array of mechanisms to deal with the physical, chemical, and other challenges posed by such foods, it has become evident in recent years that insects can also cope with two additional problems: the heterogeneity of available diets and their own changing nutritional needs. Compensatory responses are exhibited which help to alleviate the deleterious effects of such nutritional discrepancies. Such responses can be both behavioral (through food selection and regulation of amounts eaten) and postingestive. The properties of foods which play a role include not only nutrients, both singly and interactively (Simpson and Raubenheimer, 1993a,b; Simpson and Simpson, 1990;Slansky, 1993; Slansky and Wheeler, 1991; Waldbauer and Friedman, 1991; Wheeler and Slansky, 1991), but also water (Bernays, 1990; Raubenheimer and Gade, 1993, 1994) and the combination of nutrients and allelochemicals (Raubenheimer, 1992; Raubenheimer and Simpson, 1990; Slansky, 1992; Slansky and Wheeler, 1992).

Keywords

Sugar Cellulose Obesity Corn Carbohydrate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abisgold, J. D., and Simpson, S. J. (1987). The physiology of compensation by locusts for changes in dietary protein. J. Exp. Biol. 129, 329–346.Google Scholar
  2. Abisgold, J. D., and Simpson, S. J. (1988). The effect of dietary protein levels and haemolymph composition on the sensitivity of the maxillary palp chemoreceptors of locusts. J. Exp. Biol. 135, 215–229.Google Scholar
  3. Abisgold, J. D., Simpson, S. J., and Douglas, A. E. (1994). Responses of the pea aphid (Acyrthosiphon pisum) to simultaneous variation in dietary amino acid and sugar levels. Physiol. Entomol. 19, 95–102.CrossRefGoogle Scholar
  4. Barton Browne, L. (1975). Regulatory mechanisms in insect feeding. Adv. Insect Physiol. 11, 1–116.CrossRefGoogle Scholar
  5. Bernays, E. A. (1990). Water regulation. In: Chapman, R. F., and Joern, (eds.), Biology of Grasshoppers. John Wiley and Sons, New York, pp. 129–141.Google Scholar
  6. Bernays, E. A. (1993). Aversion learning in feeding. In: Papaj, D. R., and Lewis, A. C. (eds.), Insect Learning. Chapman and Hall, New York, pp. 1–17.CrossRefGoogle Scholar
  7. Bernays, E. A., and Bright, K. L. (1993). Mechanisms of dietary mixing in grasshoppers, a review. Comp. Biochem. Physiol. A104, 125–131.CrossRefGoogle Scholar
  8. Bernays, E. A., and Chapman, R. F. (1974). The effects of haemolymph osmotic pressure on the meal size of nymphs of Locusta migratoria L. J. Exp. Biol. 61, 473—480.Google Scholar
  9. Bernays, E. A., and Raubenheimer, D. (1991). Dietary mixing in grasshoppers: changes in acceptability of different plant secondary compounds associated with low levels of dietary protein (Orthoptera: Acrididae). J. Insect Behav. 4, 545–556.CrossRefGoogle Scholar
  10. Bernays, E. A., and Simpson, S. J. (1982). Control of food intake. Adv. Insect Physiol. 16, 59–118.CrossRefGoogle Scholar
  11. Blaney, W. M., Schoonhoven, W. M., and Simmonds, M. S. J. (1986). Sensitivity variations in insect chemoreceptors; a review. Experientia 42, 13–19.CrossRefGoogle Scholar
  12. Booth, D. A. (1991). Integration of internal and external signals in intake control. Proc. Nutr. Soc.51, 21–28.CrossRefGoogle Scholar
  13. Broadway, R. M., and Duffey, S. S. (1986). The effect of dietary protein on the growth and digestive physiology of larval Heliothis zea and Spodoptera exigua. J. Insect Physiol. 32, 673–680.CrossRefGoogle Scholar
  14. Cazal, M. (1969). Actions d’extraits de corpora cardiaca sur le peristaltisme intestinal de Locusta migratoria. Arch. Zool. Exp. Gen. 110, 83–89.Google Scholar
  15. Chambers, P. G., Simpson, S. J., and Raubenheimer, D. (1995). Behavioural mechanisms of nutrient balancing in Locusta migratoria nymphs. Anim. Behav.Google Scholar
  16. Champagne, D.E., and Bernays, E. A. (1991). Phytosterol suitability as a factor mediating food aversion learning in the grasshopper Schistocerca americana. Physiol. Entomol. 16, 391–400.CrossRefGoogle Scholar
  17. Cohen, R. W., Waldbauer, G. P., Friedman, S., and Schiff, N. M. (1987). Nutrient self-selection by Heliothis zea larvae: a time-lapse film study. Entomol. Exp. Appl. 44, 65–73.CrossRefGoogle Scholar
  18. Cohen, R. W., Friedman, S., and Waldbauer, G. P. (1988). Physiological control of nutrient self-selection in Heliothis zea larvae: the role of serotonin. J. Insect Physiol. 34, 935–940.CrossRefGoogle Scholar
  19. Dadd, R. H. (1985). Nutrition: organisms. In: Kerkut, G. A., and Gilbert, L. I. (eds.), Comprehensive Insect Physiology, Biochemistry and Pharmacology, vol. 4. Pergamon Press, Oxford, pp. 313–390.Google Scholar
  20. Deutsch, J. A. (1990). Gastric factors. In: Strieker, E. M. (ed.), Handbook of Behavioral Neurobiology, vol. 9. Plenum, New York, pp. 151–180.Google Scholar
  21. Dow, J. A. T. (1986). Insect midgut function. Adv. Insect Physiol. 19, 187–328.CrossRefGoogle Scholar
  22. Farrar, R. R., Barbour, J. D., and Kennedy, G. G. (1989). Quantifying food consumption and growth in insects. Ann. Entomol. Soc. Am. 82, 592–598.Google Scholar
  23. Friedman, S., Waldbauer, G. P., Eertmoed, J. E., Naeem, M., and Ghent, A. W. (1991). Blood trehalose levels have a role in the control of dietary self-selection by Heliothis zea larvae. J. Insect Physiol. 37, 919–928.CrossRefGoogle Scholar
  24. Geissler, T. G., and Rollo, C. D. (1988). The influence of nutritional history on the response to novel food by the cockroach, Periplaneta americana (L.). Anim. Behav. 35, 1905.CrossRefGoogle Scholar
  25. Gelperin, A. (1966). Control of crop emptying in the blowfly. J. Insect Physiol. 12, 331–345.CrossRefGoogle Scholar
  26. Gietzen, D. W. (1993). Neural mechanisms in the response to amino acid deficiency—critical review. J. Nutr. 123, 610–625.PubMedGoogle Scholar
  27. Hinks, C. F., Hupka, D., and Olfert, O. (1993). Nutrition and the protein economy in grasshoppers and locusts. Comp. Biochem. Physiol. A104, 133–142.CrossRefGoogle Scholar
  28. Horie, Y., and Watanabe, K. (1983). Effects of various kinds of dietary protein and supplementation with limiting amino acids on growth, haemolymph components and uric acid excretion in the silkworm Bombyx mori. J. Insect Physiol. 29, 187–189.CrossRefGoogle Scholar
  29. Karadi, Z., Oomura, Y., Nishino, H., Scott, T. R., Lenard, L., and Aou, S. (1992). Responses of lateral hypothalamic glucose-sensitive and glucose-insensitive neurons to chemical stimuli in behaving rhesus monkeys. J. Neurophysiol. 67, 389–400.PubMedGoogle Scholar
  30. Karowe, D. N., and Martin, M. M. (1989). The effects of quality and quantity of diet nitrogen on the growth, efficiency of food utilization, nitrogen budget, and metabolic rate of fifth-instar Spodoptera eridania larvae (Lepidoptera: Noctuidae). J. Insect Physiol. 35, 699–708.CrossRefGoogle Scholar
  31. Karowe, D. N., and Martin, M. M. (1993). Determinants of diet quality: the effects of diet pH, buffer concentration and buffering capacity on growth utilization by larvae of Manduca sexta (Lepidoptera: Sphingidae). J. Insect Physiol. 39, 47–52.CrossRefGoogle Scholar
  32. Karasov, W. H., and Diamond, J. M. (1988). Interplay between physiology and ecology in digestion. Bioscience 38, 602–611.CrossRefGoogle Scholar
  33. Lemos, F. J. A., Zucoloto, F. S., and Terra, W. R. (1992). Enzymological and excretory adaptations of Ceratitis capitata (Diptera: Tephritidae) larvae to high protein and high salt diets. Comp. Biochem. Physiol. A102, 775–779.CrossRefGoogle Scholar
  34. Martin, M. M., and Van’t Hof, H. M. (1988). The cause of reduced growth of Manduca sexta larvae on a low-water diet: increased metabolic processing costs or nutrient limitation? J. Insect Physiol. 34, 515–525.CrossRefGoogle Scholar
  35. Naeem, M., Waldbauer, G. P., and Friedman, S. (1992). Heliothis zea larvae respond to diluted diets by increased searching behaviour as well as by increased feeding. Entomol. Exp. Appl. 65, 95–98.CrossRefGoogle Scholar
  36. Okajima, A., Kumagai, K., and Watanabe, N. (1989). The involvement of interoceptive chemosensory activity in the nervous regulation of the prothoracic gland in a moth, Mamestra brassicae. Zool. Sci. 6, 859–866.Google Scholar
  37. Oomura, Y. (1988). Chemical and neuronal control of feeding motivation. Physiol. Behav. 44, 555–560.PubMedCrossRefGoogle Scholar
  38. Raubenheimer, D. (1992). Tannic acid, protein, and digestible carbohydrate: dietary imbalance and nutritional compensation in locusts. Ecology 73, 1012–1027.CrossRefGoogle Scholar
  39. Raubenheimer, D., and Blackshaw, J. (1994). Locusts learn to associate visual stimuli with drinking. J. Insect Behav. 7, 569–575.CrossRefGoogle Scholar
  40. Raubenheimer, D., and Gade G. (1993). Compensatory water intake in locusts (Locusta migratoria), implications for the mechanisms regulating drink size. J. Insect Physiol. 39, 275–281.CrossRefGoogle Scholar
  41. Raubenheimer, D., and Gade, G. (1994). Hunger-thirst interactions in the locust, Locusta migratoria. J. Insect Physiol. 40, 631–639.CrossRefGoogle Scholar
  42. Raubenheimer, D., and Simpson, S. J. (1990). The effects of simultaneous variation in protein, digestible carbohydrate and tannic acid on the feeding behaviour of larval Locusta migratoria (L.) and Schistocerca gregaria (Forskal). I. Short-term studies. Physiol. Entomol. 15, 219–223.CrossRefGoogle Scholar
  43. Raubenheimer, D., and Simpson, S. J. (1993). The geometry of compensatory feeding in the locust. Anim. Behav. 45, 953–964.CrossRefGoogle Scholar
  44. Raubenheimer, D., and Simpson, S. J. (1994). The analysis of nutritional budgets. Funct. Ecol. 8, 783–791.CrossRefGoogle Scholar
  45. Raubenheimer, D., and Simpson, S. J. (1995). The construction of nutrient budgets. Entomol. Exp. Appl.Google Scholar
  46. Robacker, D. C. (1992). Specific hunger in Anastrepha ludens (Diptera, Tephritidae)—effects on attractiveness of proteinaceous and fruit-derived lures. Environ. Entomol. 20, 1680–1686.Google Scholar
  47. Rothwell, N. J., and Stock, M. J. (1979). A role for brown adipose tissue in diet-induced thermogenesis. Nature 281, 31–35.PubMedCrossRefGoogle Scholar
  48. Rozin, P. (1976). The selection of foods by rats, humans and other animals. Adv. Study Behav. 6, 21–76.CrossRefGoogle Scholar
  49. Schmidt, D. J., and Reese, J. C. (1986). Sources of error in nutritional index studies of insects on artificial diets. J. Insect Physiol. 32, 193–198.CrossRefGoogle Scholar
  50. Simmonds, M. S. J., Simpson, S. J., and Blaney, W. M. (1992). Dietary selection behaviour in Spodoptera littoralis: the effects of conditioning diet and conditioning period on neural responsiveness and selection behaviour. J. Exp. Biol. 162, 73–90.Google Scholar
  51. Simpson, C. L., Simpson, S. J., and Abisgold, J. D. (1990a). An amino acid feedback and the control of locust feeding. Symp. Biol. Hung. 39, 39–46.Google Scholar
  52. Simpson, C. L., Chyb, S., and Simpson, S. J. (1990b). Changes in chemoreceptor sensitivity in relation to dietary selection by adult Locusta migratoria L. Entomol. Exp. Appl. 56, 259–268.CrossRefGoogle Scholar
  53. Simpson, S. J., and Abisgold, J. D. (1985). Compensation by locusts for changes in dietary nutrients: behavioural mechanisms. Physiol. Entomol. 10, 443–452.CrossRefGoogle Scholar
  54. Simpson, S. J., and Ludlow, A. R. (1986). Why locusts start to feed, a comparison of causal factors. Anim. Behav. 34, 480–496.CrossRefGoogle Scholar
  55. Simpson, S. J., and Raubenheimer, D. (1993a). The central role of the haemolymph in the regulation of nutrient intake in insects. Physiol. Entomol. 18, 395–403.CrossRefGoogle Scholar
  56. Simpson, S. J., and Raubenheimer, D. (1993b). A multi-level analysis of feeding behaviour: the geometry of nutritional decisions. Philos. Trans. R. Soc. London Ser B 342, 381–402.CrossRefGoogle Scholar
  57. Simpson, S. J., and Simpson, C. L. (1990). The mechanisms of nutritional compensation by phytophagous insects. In: Bernays, E. A. (ed.), Insect-Plant Interactions, vol. 2. CRC Press, Boca Raton, FL, pp. 111–160.Google Scholar
  58. Simpson, S. J., and Simpson, C. L. (1992). Mechanisms controlling modulation by amino acids of gustatory responsiveness in the locust. J. Exp. Biol. 168, 269–287.Google Scholar
  59. Simpson, S. J., and White, P. R. (1990). Associative learning and locust feeding: evidence for a “learned hunger” for protein. Anim. Behav. 40, 506–513.CrossRefGoogle Scholar
  60. Simpson, S. J., Simmonds, M. S. J., and Blaney, W. M. (1988). A comparison of dietary selection behaviour in larval Locusta migratoria and Spodoptera littoralis. Physiol. Entomol. 13, 225–238.CrossRefGoogle Scholar
  61. Simpson, S. J., Simmonds, M. S. J., Blaney, W. M., and Jones, J. P. (1990). Compensatory dietary selection occurs in larval Locusta migratoria but not Spodoptera littoralis after a single deficient meal during ad libitum feeding. Physiol. Entomol. 15, 235–242.CrossRefGoogle Scholar
  62. Simpson, S. J., Simmonds, M. S. J., and Blaney, W. M. (1991). Variation in chemosensitivity and the control of dietary selection behaviour in the locust. Appetite 17, 141–154.PubMedCrossRefGoogle Scholar
  63. Slansky, F., Jr. (1992). Allelochemical-nutrient interactions in herbivore nutritional ecology. In: Rosenthal, G. A., and Berenbaum, M. R. (eds.), Herbivores: Their Interactions with Secondary Plant Metabolites, vol. 2. Academic Press, New York, pp. 135–174.Google Scholar
  64. Slansky, F., Jr. (1993). Nutritional ecology: the fundamental quest for nutrients. In: Stamp, N. E., and Casey, T. M. (eds.), Caterpillars. Ecological and Evolutionary Constraints on Foraging. Chapman and Hall, New York, pp. 29–91.Google Scholar
  65. Slansky, F., Jr., and Wheeler, G. S. (1991). Food consumption and utilization responses to dietary dilution with cellulose and water by velvetbean caterpillars, Anticarsia gemmatalis. Physiol. Entomol. 16, 99–116.CrossRefGoogle Scholar
  66. Slansky, F., Jr., and Wheeler, G. S. (1992). Caterpillars’ compensatory feeding response to diluted nutrients leads to toxic allelochemical dose. Entomol. Exp. Appl. 65, 171–186.CrossRefGoogle Scholar
  67. Taylor, M. F. J. (1989). Compensation for variable dietary nitrogen by larvae of the salvinia moth. Funct. Ecol. 3, 407–416.CrossRefGoogle Scholar
  68. Timmins, W. A., and Reynolds, S. E. (1992). Physiological mechanisms underlying the control of meal size in Manduca sexta larvae. Physiol. Entomol. 17, 81–89.CrossRefGoogle Scholar
  69. Timmins, W. A., Bellward, K., Stamp, A. J., and Reynolds, S. E. (1988). Food intake, conversion efficiency, and feeding behaviour of tobacco horn worm caterpillars given artificial diet of varying nutrient and water content. Physiol. Entomol. 13, 303–314.CrossRefGoogle Scholar
  70. Trumper, S., and Simpson, S. J. (1993). Regulation and salt intake by nymphs of Locusta migratoria. J. Insect Physiol. 39, 857–864.CrossRefGoogle Scholar
  71. Trumper, S., and Simpson, S. J. (1994). Mechanisms regulating salt intake in nymphs of Locusta migratoria. Physiol. Entomol. 19, 203–215.CrossRefGoogle Scholar
  72. Turunen, S. (1985). Absorption. In: Kerkut, G. A., and Gilbert, L. I. (eds.), Comprehensive Insect Physiology, Biochemistry and Pharmacology, vol. 4. Pergamon Press, Oxford, pp. 241–277.Google Scholar
  73. van Loon, J. J. A. (1988). Sensory and Nutritional Effects of Amino Acids and Phenolic Plant Compounds on the Caterpillars of Two Pieris Species. Doctoral thesis, Agricultural University, Wageningen.Google Scholar
  74. van Loon, J. J. A. (1991). Measuring food utilization in plant feeding insects—towards a metabolic and dynamic approach. In: Bernays, E. A. Insect-Plant Interactions, vol. 3. CRC Press, Boca Raton, FL, pp. 79–124.Google Scholar
  75. van Loon, J. J. A. (1993). Gravimetric vs respirometric determination of metabolic efficiency in caterpillars of Pieris brassicae. Entomol. Exp. Appl. 67, 135–142.CrossRefGoogle Scholar
  76. Waldbauer, G. P. (1968). The consumption and utilization of foods by insects. Adv. Insect Physiol. 5, 229–288.CrossRefGoogle Scholar
  77. Waldbauer, G. P., and Battacharya, A. K. (1973). Self-selection of an optimum diet from a mixture of wheat fractions by the larvae of Tribolium confusum. J. Insect Physiol. 19, 407–418.CrossRefGoogle Scholar
  78. Waldbauer, G. P., and Friedman, S. (1988). Dietary self-selection by insects. In: Sehnal, F., Zabza, A., and Denlinger, D. L. (eds.), Endocrinological Frontiers in Physiological Insect Ecology. Wroclaw Technical University Press, Wroclaw, pp. 403–442.Google Scholar
  79. Waldbauer, G. P., and Friedman, S. (1991). Self-selection of optimal diets by insects. Annu. Rev. Entomol. 36, 43–63.CrossRefGoogle Scholar
  80. Waldbauer, G. P., Cohen, R. W., and Friedman, S. (1984). Self-selection of an optimal nutrient mix from defined diets by larvae of the corn earworm, Heliothis zea (Boddie).Physiol. Zool. 57, 590–597.Google Scholar
  81. Wheeler, G. S., and Slansky, F., Jr. (1991). Compensatory responses of the fall armyworm (Spodoptera frugipterda) when fed water- and cellulose-diluted diets. Physiol. Entomol. 16, 361–374.CrossRefGoogle Scholar
  82. Yang, Y., and Joern, A. (1994a). Influence of diet quality, developmental stage and temperature on food residence time in Melanoplus differentialis. Physiol. Zool. 67, 598–616.Google Scholar
  83. Yang, Y., and Joern, A. (1994b). Gut size changes in relation to variable food quality and body size in grasshoppers. Funct. Ecol. 8, 36–45.CrossRefGoogle Scholar
  84. Zanotto, F. P., Simpson, S. J., and Raubenheimer, D. (1993). The regulation of growth by locusts through post-ingestive compensation for variation in the levels of dietary protein and carbohydrate. Physiol. Entomol. 18, 425–434.CrossRefGoogle Scholar
  85. Zanotto, F. P., Raubenheimer, D., and Simpson, S. J. (1994). Selective egestion of lysine by locusts fed nutritionally unbalanced diets. J. Insect Physiol. 40, 259–265.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • S. J. Simpson
  • D. Raubenheimer
  • P. G. Chambers

There are no affiliations available

Personalised recommendations