Ontogenic Changes in Feeding Behavior

  • L. Barton Browne


The feeding behavior of insects changes, often radically, according to their stage of development, with individuals in different developmental stages differing as regards amounts and, often, the kinds of food they eat. It is well known, for example, that the larvae and adults of most holometabolous insects have very different feeding behaviors and diets. Perhaps less widely recognized are the less striking, but nonetheless still substantial, changes which can occur during larval development, both within and between instars, and during adult life in relation to stages of somatic and reproductive development and to the level of an insect’s reproductive activity.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abisgold, J. D., and Simpson, S. J. (1988). The effect of dietary protein levels and haemolymph composition on the sensitivity of the maxillary palp chemoreceptors of locusts. J. Exp. Biol. 135, 215–229.Google Scholar
  2. Adams, T. S., and Nelson, D. R. (1990). The influence of diet on ovarian maturation, mating, and pheromone production in the housefly, Musca domestica. Invert. Reprod. Dev. 17, 193–201.Google Scholar
  3. Adler, P. H., and Adler, C. R. L. (1988). Behavioral time budgeted for larvae of Heliothis zea (Lepidoptera: Noctuidae) on artificial diet. Ann. Entomol. Soc. Am. 81, 682–688.Google Scholar
  4. Anderson, J. F. (1971). Autogeny and mating and their relationship to biting in the saltmarsh deer fly, Chrysops atlanticus (Diptera: Tabanidae). Ann. Entomol. Soc. Am. 64, 1421–1424.Google Scholar
  5. Baehr, J.-C., Porcheron, P., Papillon, M., and Dray, F. (1979). Haemolymph levels of juvenile hormone, ecdysteroids and protein during the last two larval instars of Locusta migratoria. J. Insect Physiol. 25, 415–421.Google Scholar
  6. Barton Browne, L. (1975). Regulatory mechanisms in insect feeding. Adv. Insect. Physiol. 11, 1–116.Google Scholar
  7. Barton Browne, L., and Kerr, R. W. (1986). Influence of sex and prior protein feedingon preferences by the housefly, Musca domestica, between sucrose solutions and solutions of l-leucine of sodium phosphate buffer. Entomol. Exp. Appl. 41, 135–138.Google Scholar
  8. Barton Browne, L., and van Gerwen, A. C. M. (1992). Volume of protein meals taken by females of the blowfly, Lucilia cuprina: ovarian development related and direct effects of protein ingestion. Physiol. Entomol. 17, 9–18.Google Scholar
  9. Barton Browne, L., Bartell, R. J., van Gerwen, A. C. M., and Lawrence, L. J. (1976). Relationship between protein ingestion and sexual receptivity in females of the Australian sheep blowfly Lucilia cuprina. Physiol. Entomol. 1, 235–240.Google Scholar
  10. Barton Browne, L., van Gerwen, A. C. M., and Roberts, J. A. (1986). Ovarian development in females of the Australian sheep blowfly, Lucilia cuprina, given limited opportunity to feed on protein-rich material at different ages. Intern. J. Invert. Reprod. Dev. 10, 179–186.Google Scholar
  11. Beck, S. D., Edwards, C. A., and Medler, J. T. (1958). Feeding and nutrition of the milkweed bug, Oncopeltus fasciatus (Dallas). Ann. Entomol. Soc. Am. 51, 283–288.Google Scholar
  12. Bell, W. J. (1969). Continuous and rhythmic reproductive cycle observed in Periplaneta americana. Biol. Bull. Mar. Biol. Lab. Woods Hole 137, 239–249.Google Scholar
  13. Belzer, W. R. (1978a). Patterns of selective protein ingestion by the blowfly Phormia regina. Physiol. Entomol. 3, 169–175.Google Scholar
  14. Belzer, W. R. (1978b). Factors conducive to increased protein feeding by the blowfly Phormia regina. Physiol. Entomol. 3, 251–257.Google Scholar
  15. Beizer, W. R. (1979). Abdominal stretch in the regulation of protein ingestion by the black blowfly, Phormia regina. Physiol. Entomol. 4, 7–13.Google Scholar
  16. Blaney, W. M., Chapman, R. F., and Wilson, A. (1973). The pattern of feeding of Locusta migratoria (L.) (Orthoptera, Acrididae). Acrida 2, 119–137.Google Scholar
  17. Blois, C., and Cloarec, A. (1983). Density-dependent prey selection in the water stick insect, Ranatra linearis (Heteroptera). J. Anim. Ecol. 52, 849–866.Google Scholar
  18. Bollenbacher, W. E., and Gilbert, L. I. (1982). Neuroendocrine control of postembryonic development in insects: the prothoracicotropic hormone. In: Farner, D. S., and Lederis, K. (eds.), Neurosecretion: Molecules, Cells, Systems. Plenum Press, New York, pp. 361–370.Google Scholar
  19. Bowen, M. F. (1991). The sensory physiology of host-seeking behavior in mosquitoes. Annu. Rev. Entomol. 36, 139–158.PubMedGoogle Scholar
  20. Bowen, M. F. (1992). Patterns of sugar feeding in diapausing and nondiapausing Culex pipiens (Diptera: Culicidae) females. J. Med. Entomol. 29, 43–49.Google Scholar
  21. Bowen, M. F., and Davis, E. E. (1989). The effect of allatectomy and juvenile hormone replacement on the development of host-seeking behaviour and lactic acid receptor sensitivity in the mosquito Aedes aegypti Med. Vet. Entomol. 3, 53–60.Google Scholar
  22. Bowen, M. F., Davis, E. E., and Haggart, D. A. (1988). A behavioural and sensory analysis of host-seeking behaviour in the diapausing mosquito Culex pipiens. J. Insect Physiol. 34, 805–813.Google Scholar
  23. Busse, F. K., Jr., and Barth, R. H., Jr. (1985). Physiology of feeding-preference patternsGoogle Scholar
  24. Eldridge, B. F., and Bailey, C. L. (1979). Experimental hibernation studies in Culex pipiens (Diptera: Culicidae): reactivation of ovarian development and blood-feeding in prehibernating females. J. Med. Entomol. 15, 462–467.PubMedGoogle Scholar
  25. Engelmann, F., and Rau, I. (1965). A correlation between feeding and the sexual cycle in Leucophaea maderae (Blattaria). J. Insect Physiol. 11, 53–64.Google Scholar
  26. Friedman, S., Waldbauer, G. P., Ertmoed, J. E., Naeem, M., and Ghent, A. W. (1991). Blood trehalose levels have a role in the control of dietary self-selection by Heliothis zea larvae. J. Insect Physiol. 37, 919–928.Google Scholar
  27. Gaston, K. J., Reavey, D., and Valladares, G. R. (1991). Changes in feeding habit as caterpillars grow. Ecol. Entomol. 16, 339–344.Google Scholar
  28. Greenberg, B. (1959). House fly nutrition. I. Quantitative studies of the protein and sugar requirements of males and females. J. Cell. Comp. Physiol. 53, 169–177.PubMedGoogle Scholar
  29. Gwynne, D. T. (1990). Testing parental investment and the control of sexual selection in katydids: the operational sex ratio. Am. Nat. 136, 474–484.Google Scholar
  30. Hamilton, R. L., and Schal, C. (1988). Effects of diet protein levels on reproduction and food consumption in the German cockroach (Dictyoptera: Blattellidae). Ann. Entomol. Soc. Am. 81, 969–976.Google Scholar
  31. Hamilton, R. L., and Schal, C. (1991). Effects of dextrin and cellulose on feeding and reproduction in female brown-banded cockroaches, Supella longipalpa. Physiol. Entomol. 16, 57–64.Google Scholar
  32. Hamilton, R, L., Cooper, R. A., and Schal, C. (1990). The influence of nymphal and adult dietary protein on food intake and reproduction in female brown-banded cockroaches. Entomol. Exp. Appl. 55, 23–31.Google Scholar
  33. Hill, L., and Goldsworthy, G. J. (1968). Growth, feeding activity, and the utilization of reserves in larvae of Locusta. J. Insect Physiol. 14, 1085–1098.Google Scholar
  34. Hill, L., and Izatt, M. E. G. (1974). The relationship between corpora allata and fat body and haemolymph lipids in the adult female desert locust. J. Insect Physiol. 20, 2143–2156.PubMedGoogle Scholar
  35. Hill, L., Luntz, A. J., and Steele, P. A. (1968). The relationships between somatic growth, ovarian growth, and feeding activity in the adult desert locust. J. Insect Physiol. 14, 1–20.Google Scholar
  36. Hintze-Podufal, C., and Fricke, F. (1971). The effect of farnesol derivatives on the mature larva of Cerura vinula L. (Lepidoptera). J. Insect Physiol. 17, 1925–1932.PubMedGoogle Scholar
  37. Hoekstra, A., and Beenakkers, A. M. Th. (1976). Consumption, digestion, and utilization of various grasses of fifth-instar larvae of the migratory locust. Entomol. Exp. Appl. 19, 130–138.Google Scholar
  38. Horie, Y., and Watanabe, K. (1983). Daily utilization and consumption of dry matter in food by the silkworm, Bombyx mori (Lepidoptera: Bombycidae). Appl. Entomol. Zool. 18, 70–80.Google Scholar
  39. Huffman, F. R., and Smith, J. W., Jr. (1979). Bollworm: peanut foliage consumption and larval development. Environ. Entomol. 8, 465–467.Google Scholar
  40. Johnson, S. J. (1984). Larval development, consumption, and feeding behavior of the cotton leaf worm, Alabama argillacea (Hubner). Southwestern Entomol. 9, 1–6.Google Scholar
  41. Jones, R. E., and Walker, J. M. (1974). Some factors affecting protein feeding and egg development in the Australian bushfly Musca vetustissima. Entomol. Exp. Appl. 17, 177–25.Google Scholar
  42. Kitching, R. L., and Roberts, J. A. (1975). Laboratory observations on the teneral period in sheep blowflies, Lucilia cuprina (Diptera: Calliphoridae). Entomol. Exp. Appl. 18, 220–225.Google Scholar
  43. Klowden, M. J. (1981). Initiation and termination of host-seeking inhibition in Aedes aegypti during oocyte maturation. J. Insect Physiol. 27, 799–803.Google Scholar
  44. Klowden, M. J. (1990). The endogenous regulation of mosquito reproductive behavior. Experientia 46, 660–670.PubMedGoogle Scholar
  45. Klowden, M. J., Davis, E. E., and Bowen, M. F. (1987). Role of the fat body in the regulation of host-seeking behaviour in the mosquito, Aedes aegypti. J. Insect Physiol. 33, 643–646.Google Scholar
  46. Langley, P. A., and Pimley, R. W. (1974). Utilization of U-14C amino acids or U-14C protein by adult Glossina morsitans during in utero development of larva. J. Insect Physiol. 20, 2157–2170.PubMedGoogle Scholar
  47. Leegwater-van der Linden, M. E. (1981). Effect of a four-day-a-week feeding regimen versus daily feeding on the reproduction of Glossina pallidipes. Entomol. Exp. Appl. 29, 169–176.Google Scholar
  48. Lembke, H. F., and Cochran, D. G. (1990). Diet selection by adult female Parcoblatta fiilvescens cockroaches during the oothecal cycle. Comp. Biochem. Physiol. 95A, 195–199.Google Scholar
  49. Leprince, D. J. (1989). Gonotrophic status, sperm presence and sugar feeding patterns in southwestern Quebec tabanid (Diptera) populations. J. Am. Mosq. Contr. Assoc. 5, 383–386.Google Scholar
  50. Magnarelli, L. A. (1981). Parity, follicular development, and sugar feeding in Culicoides melleus and C. hollensis. Environ. Entomol. 10, 807–811.Google Scholar
  51. McAvoy, T. J., and Kok, L. T. (1992). Development, oviposition, and feeding of the cabbage webworm (Lepidoptera: Pyralidae). Environ. Entomol. 21, 527–533.Google Scholar
  52. McAvoy, T. J., and Smith, J. C. (1979). Feeding and developmental rates of the Mexican bean beetle on soybeans. J. Econ. Entomol. 72, 835–836.Google Scholar
  53. Meola, R. W., and Lea, A. O. (1972). Humoral inhibition of egg development in mosquitoes. J. Med. Entomol. 9, 99–103.PubMedGoogle Scholar
  54. Meola, R. W., and Petralia, R. S. (1980). Juvenile hormone induction of biting behavior in Culex mosquitoes. Science 209, 1548–1550.PubMedGoogle Scholar
  55. Meola, R., and Readio, J. (1987). Juvenile hormone regulation of the second biting cycle in Culex pipiens. J. Insect Physiol. 33, 751–754.Google Scholar
  56. Mitchell, C. J. (1981). Diapause termination, gonactivity, and differentiation of host-seeking and blood-feeding behavior in hibernating Culex tarsalis. J. Med. Entomol. 18, 386–394.Google Scholar
  57. Mitchell, C. J., and Briegel, H. (1989). Inability of diapausing Culex pipiens to use blood for producing lipid reserves for overwintering survival. J. Med. Entomol. 26, 318–326.PubMedGoogle Scholar
  58. Mordue (Luntz), A. J., and Hill, L. (1970). The utilisation of feed by the adult female desert locust, Schistocerca gregaria. Entomologia Exp. Appl. 13, 352–358.Google Scholar
  59. Nayar, J. K., and Sauerman, D. M., Jr. (1974). Long-term regulation of sucrose intake by the female mosquito, Aedes taeniorhynchus. J. Insect. Physiol. 20, 1203–1208.PubMedGoogle Scholar
  60. Nayar, J. K., and Sauerman, D. M., Jr. (1975). Flight and feeding behavior of autogenous and anautogenous strains of the mosquito Aedes taeniorhynchus. Ann. Entomol. Soc. Am. 68, 791–796.Google Scholar
  61. Neosn, R. L., and Milby, M. M. (1982). Autogeny and blood-feeding by Culex tarsalis (Diptera: Culicidae) and the interval between oviposition and feeding. Can. Entomol. 114, 515–521.Google Scholar
  62. Norris, M. J. (1960). Group effects on feeding in adult males of the desert locust, Schistocerca gregaria (Forsk.), in relation to sexual maturation. Bull. Entomol. Res. 51, 731–753.Google Scholar
  63. Orr, C. W. M. (1964). The influence of nutritional and hormonal factors on egg development in the blowfly Phormia regina (Meig.). J. Insect Physiol. 10, 53–64.Google Scholar
  64. Parrott, W. L., Jenkins, J. N., and McCarty, J. C., Jr. (1983). Feeding behavior of first-stage tobacco budworm (Lepidoptera: Noctuidae) on three cotton cultivars. Ann. Entomol. Soc. Am. 76, 167–170.Google Scholar
  65. Pener, M. P., and Lazarovici, P. (1979). Effect of exogenous juvenile hormone on mating behaviour and yellow colour in allatectomized adult male desert locusts. Physiol. Entomol. 4, 251–261.Google Scholar
  66. Porter, C. H., DeFoliart, G. R., Miller, B. R., and Nemenyi, P. B. (1986). Intervals to blood feeding following emergence and oviposition in Aedes triseriatus (Diptera: Culucidae). J. Med. Entomol. 23, 222–224.PubMedGoogle Scholar
  67. Rachman, N.J. (1980). Physiology of feeding preference patterns of female black blowflies (Phormia regina Meigen). I. The role of carbohydrate reserves. J. Comp. Physiol. 139, 59–66.Google Scholar
  68. Rachman, N. J., Busse, F. K., Jr., Barth, R. H., Jr. (1982). Physiology of feeding-preference patterns of female black blowflies (Phormia regina Meigen): alterations in responsiveness to salts. J. Insect Physiol. 28, 625–630.Google Scholar
  69. Raubenheimer, D. (1992). Tannic acid, protein, and digestible carbohydrate: dietary imbalance and nutritional compensation in locusts. Ecology 73, 1012–1027.Google Scholar
  70. Raubenheimer, D., and Simpson, S. J. (1993). The geometry of compensatory feeding in the locust. Anim. Behav. 45, 954–964.Google Scholar
  71. Retnakaran, A. (1983). Spectrophotometric determination of larval ingestion rates in the spruce budworm (Lepidoptera; Tortricidae). Can. Entomol. 115, 31–40.Google Scholar
  72. Reynolds, S. E., Yeomans, M. R., and Timmins, W. A. (1986). The feeding behaviour of caterpillars (Manduca sexta) on tobacco and artificial diet. Physiol. Entomol. 11, 39–51.Google Scholar
  73. Riemann, J. G., and Thorson, B. J. (1969). Effect of male accessory material on oviposition and mating by female house flies. Ann. Entomol. Soc. Am. 62, 828–834.PubMedGoogle Scholar
  74. Roberts, J. A., and Kitching, R. L. (1974). Ingestion of sugar, protein and water by adult Lucilia cuprina (Wied.) (Diptera, Calliphoridae). Bull. Entomol. Res. 64, 81–88.Google Scholar
  75. Rogers, C. E. (1978). Sunflower moth: feeding behavior of the larva. Environ. Entomol. 7, 763–765.Google Scholar
  76. Roth, L. M., and Dateo, G. P., Jr. (1964). Uric acid in the reproductive system of the cockroach, Blattella germanica. Science 146, 782–784.Google Scholar
  77. Scheurer, R., and Leuthold, R. (1969). Haemolymph proteins and water uptake in female Leucophaea maderae during the sexual cycle. J. Insect Physiol. 15, 1067–1077.Google Scholar
  78. Schoonhoven, L. J., Simmonds, M. S. J., and Blaney, W. M. (1991). Changes in the responsiveness of the maxillary styloconic sensilla of Spodoptera littoralis to inositol and sinigrin correlate with feeding behaviour during the final larval stadium. J. Insect Physiol. 37, 261–268.Google Scholar
  79. Sieber, R., and Benz, G. (1977). Juvenile hormone in larval diapause of the codling moth, Laspeyresia pomonella L. (Lepidoptera: Tortricidae). Experientia 33, 1598–1599.Google Scholar
  80. Sieber, R., and Benz, G. (1978). The influence of juvenile hormone on the feeding behaviour of last instar larvae of the codling moth, Laspeyresia pomonella (Lep., Tortricidae), reared under different photoperiods. Experientia 34, 1647–1650.Google Scholar
  81. Silverman, J. (1986). Adult German cockroach (Orthoptera: Blattellidae) feeding and drinking behavior as a function of density and harborage-to-resource distance. Environ. Entomol. 15, 198–204.Google Scholar
  82. Simmonds, M. S. J., Schoonhoven, L. M., and Blaney, W. M. (1991). Daily changes in the responsiveness of taste receptors correlate with feeding behaviour in larvae of Spodoptera littoralis. Entomol. Exp. Appl. 61, 73–88.Google Scholar
  83. Simmons, A. M., and Yeargan, K. V. (1988). Feeding frequency and feeding duration of the green stink bug (Hemiptera: Pentatomidae) on soybean. J. Econ. Entomol. 81, 812–815.Google Scholar
  84. Simpson, C. L., Chyb, S., and Simpson, S. J. (1990). Changes in chemoreceptor sensitivity in relation to dietary selection by adult Locusta migratoria. Entomol. Exp. Appl. 56, 259–268.Google Scholar
  85. Simpson, S. J. (1982a). Changes in the efficiency of utilisation of food throughout the fifth-instar nymphs of Locusta migratoria. Entomol. Exp. Appl. 31, 265–275.Google Scholar
  86. Simpson, S.J. (1982b). Patterns in feeding: a behavioural analysis using Locusta migratoria nymphs. Physiol. Entomol. 7, 325–336.Google Scholar
  87. Simpson, S. J. (1990). The pattern of feeding. In: Chapman, R. F., and Joern, A. (eds.), Biology of Grasshoppers. John Wiley and Sons, New York, pp. 73–103.Google Scholar
  88. Simpson, S. J., and Raubenheimer, D. (1993a). A multi-level analysis of feeding behaviour: the geometry of nutritional decisions. Philos. Trans. R. Soc. London Ser B 342, 381–402.Google Scholar
  89. Simpson, S. J., and Raubenheimer, D. (1993b). The central role of haemolymph in the regulation of nutrient intake in insects. Physiol. Entomol. 18, 395–403.Google Scholar
  90. Simpson, S. J., and Simpson, C. L. (1990). The mechanisms of nutritional compensation by phytophagous insects. In Bernays E. A. (ed.), Insect—Plant Interaction, vol. 2. CRC Press, Boca Raton, FL, pp. 111–160.Google Scholar
  91. Simpson, S. J., Simmonds, M. S. J., and Blaney, W. M. (1988). A comparison of dietary selection behaviour in larval Locusta migratoria and Spodoptera littoralis. Physiol. Entomol. 13, 225–238.Google Scholar
  92. Slansky, F., Jr. (1980). Quantitative food utilization and reproductive allocation by adult milkweed buds, Oncopeltus fasciatus. Physiol. Entomol. 5, 73–86.Google Scholar
  93. Spradbery, J. P., and Sands, D. P. A. (1981). Larval fat body and its relationship to protein storage and ovarian development in adults of the screw-worm fly Chrysoma bezziana. Entomol. Exp. Appl. 30, 116–122.Google Scholar
  94. Spradbery, J. P., and Schweizer, G. (1979). Ingestion of feed by the adult screw-worm fly, Chrysomya bezziana (Diptera, Calliphoridae). Entomol. Exp. Appl. 25, 75–85.Google Scholar
  95. Spradbery, J. P., and Schweizer, G. (1981). Oosorption during ovarian development in the screw-worm fly, Chrysomya bezziana. Entomol. Exp. Appl. 30, 209–214.Google Scholar
  96. Stoffolano, J. G., Jr. (1974). Influence of diapause and diet on the development of the gonads and accessory reproductive glands of the black blowfly, Phormia regina (Meigen). Can. J. Zool. 52, 981–988.PubMedGoogle Scholar
  97. Stoffolano, J. G., Jr., and Bernays, E. A. (1980). The post-ecdysial fast of fifth-instar nymphs of Locusta migratoria. Entomol. Exp. Appl. 28, 213–221.Google Scholar
  98. Strangways-Dixon, J. (1961). The relationship between nutrition, hormones and reproduction in the blowfly Calliphora erythrocephala (Meig.). I. Selective feeding in relation to the reproductive cycle, the corpus allatum volume and fertilization. J. Exp. Biol. 38, 225–235.Google Scholar
  99. Strong, L. (1967). Feeding activity, sexual maturation, hormones, and water balance in the female African migratory locust. J. Insect. Physiol. 13, 495–507.Google Scholar
  100. Thompson, D. J. (1978). Prey size selection by larvae of the damselfly, Ischnura elegans (Odonata). J. Anim. Ecol. 47, 769–785.Google Scholar
  101. Tobe, S. S., and Davey, K. G. (1972). Volume relationships during the pregnancy cycle of the tsetse fly Glossina austeni. Can. J. Zool. 50, 999–1010.PubMedGoogle Scholar
  102. van Geem, T. A., and Broce, A. B. (1986). Fluctuations in the protein and carbohydrate content of the crop correlated to periodicities in ovarian development of the female face fly (Diptera: Muscidae). Ann. Entomol. Soc. Am. 79, 1–6.Google Scholar
  103. Verrett, J. M., and Mills, R. R. (1973). Water balance during vitellogenesis by the American cockroach: translocation of water during the cycle. J. Insect Physiol. 19, 1889–1901.PubMedGoogle Scholar
  104. Waldbauer, G. P. (1968). The consumption and utilization of food by insects. Adv. Insect Physiol. 5, 229–288.Google Scholar
  105. Waldbauer, G. P., and Friedman, S. (1991). Self-selection of optimal diets by insects. A. Rev. Entomol. 36, 43–63.Google Scholar
  106. Walker, P. R., and Bailey, E. (1971). Effect of allatectomy on the growth of the male desert locust during adult development. J. Insect Physiol. 17, 1125–1137.Google Scholar
  107. Walker, P. R., Hill, L., and Bailey, E. (1970). Feeding activity, respiration, and lipid and carbohydrate content of the male desert locust during adult development. J. Insect Physiol. 16, 1001–1015.PubMedGoogle Scholar
  108. Webster, R. P., Stoffolano, J. G., Jr., and Prokopy, R. J. (1979). Long-term intake of protein and sucrose in relation to reproductive behavior of wild and laboratory cultured Rhagoletis pomonella. Ann. Entomol. Soc. Am. 72, 41–46.Google Scholar
  109. Williams, K. L. (1972). Protein synthesis during the metamorphosis of Lucilia cuprina. Ph.D. thesis, Australian National University, Canberra, Australia.Google Scholar
  110. Williams, K. L., Barton Browne, L., and van Gerwen, A. C. M. (1977). Ovarian development in autogenous and anautogenous Lucilia cuprina in relation to protein storage in the larval fat body. J. Insect Physiol. 23, 659–664.PubMedGoogle Scholar
  111. Williams, K. L., Barton Browne, L., and van Gerwen, A. C. M. (1979). Quantitative relationships between the ingestion of protein-rich material and ovarian development in the Australian sheep blowfly, Lucilia cuprina (Wied.). Int. J. Invert. Reprod. 1, 75–88.Google Scholar
  112. Wilson, D. P., and Smith, G. C. (1985). Ovarian diapause in three geographic strains of Culex pipiens (Diptera: Culicidae). J. Med. Entomol. 22, 524–528.Google Scholar
  113. Woodring, J. P., Roe, R. M., and Clifford, C. W. (1977). Relation of feeding, growth and metabolism to age in the larval, female house cricket. J. Insect. Physiol. 23, 207–211.PubMedGoogle Scholar
  114. Yin, C.-M., Zou, B.-X., Yi, S.-X., and Stoffolano, J. G., Jr. (1990). Ecdysteroid activity during oogenesis in the black blowfly, Phormia regina (Meigen). J. Insect. Physiol. 36, 375–382.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • L. Barton Browne

There are no affiliations available

Personalised recommendations