Advertisement

Mechanics of Food Handling by Chewing Insects

  • R. F. Chapman

Abstract

Food handling in chewing insects consists of two separate functions: cutting the food into fragments that can be ingested, and passing these fragments back into the foregut. The processes of prey capture in predaceous insects or manipulation of the food prior to feeding in phytophagous insects are not considered here.

Keywords

Head Capsule Carabid Beetle Food Handling Labial Palp Mandibular Movement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altmann, J. S., and Kien, J. (1987). Functional organization of the subesophageal ganglion in arthropods. In: Gupta, A. P. (ed.), Arthropod Brain. Wiley, New York, pp. 265–301.Google Scholar
  2. Altner, H., and Bauer, T. (1982). Ultrastructure of a specialized, thrust-sensitive, insect mechanoreceptor: stimulus-transmitting structures and sensory apparatus in the rostral horns of Notiophilus biguttatus. Cell Tissue Res. 226, 337–354.PubMedCrossRefGoogle Scholar
  3. Arens, W. (1990). Wear and tear of mouthparts: a critical problem in stream animals feeding on epilithic algae. Can. J. Zool. 68, 1896–1914.CrossRefGoogle Scholar
  4. Baines, R. A., Tyrer, N. M., and Downer, R. G. H. (1990a). Serotinergic innervation of the locust mandibular closer muscle modulates contractions through the elevation of cyclic adenosine monophosphate. J. Comp. Neurol. 294, 623–632.CrossRefGoogle Scholar
  5. Baines, R. A., Lange, A. B., and Downer, R. G. H. (1990b). Proctolin in the innervation of the locust mandibular closer muscle modulates contractions through the elevation of inositol trisphosphate. J Comp. Neurol. 297, 479–486.CrossRefGoogle Scholar
  6. Baker, G. T. (1982). Sensory receptors on the mandibles and labrum of Grylloblatta campodeiformis Walker. Zool. Anz. Jena 5, 341–344.Google Scholar
  7. Bell, R. A. (1984). Role of the frontal ganglion in lepidopterous insects. In: Bořkovec, A. B., and Kelly, T. J. (eds.) Insect Neurochemistry and Neurophysiology. Plenum Press, New York, pp. 321–324.CrossRefGoogle Scholar
  8. Bernays, E. A. (1986). Diet-induced head allometry among foliage-chewing insects and its importance for graminivores. Science 231, 495–497.PubMedCrossRefGoogle Scholar
  9. Bernays, E. A., and Chapman, R. F. (1973). The regulation of feeding in Locusta migratoria: internal inhibitory mechanisms. Entomol Exp. Appl. 16, 329–342.CrossRefGoogle Scholar
  10. Bernays, E. A., and Hamai, J. (1987). Head size and shape in relation to grass feeding in Acridoidea (Orthoptera). Int. J. Insect Morphol. Embryol. 16, 323–330.CrossRefGoogle Scholar
  11. Bernays, E. A., and Janzen, D. H. (1988). Saturniid and sphingid caterpillars: two ways to eat leaves. Ecology 69, 1153–1160.CrossRefGoogle Scholar
  12. Blaney, W. M., and Chapman, R. F. (1970). The functions of the maxillary palps of Acrididae (Orthoptera). Entomol. Exp. Appl. 13, 363–376.CrossRefGoogle Scholar
  13. Blaney, W. M., and Simmonds, M. S. J. (1987). Control of mouthparts by the subesophageal ganglion. In: Gupta, A. P. (ed.), Arthropod Brain. Wiley, New York, pp. 303–322.Google Scholar
  14. Bowdan, E. (1988a). The effect of deprivation on the microstructure of feeding by the tobacco hornworm. J. Insect Behav. 1, 31–50.CrossRefGoogle Scholar
  15. Bowdan, E. (1988b). Microstructure of feeding by tobacco hornworm caterpillars, Man-duca sexta. Entomol. Exp. Appl. 47, 127–136.CrossRefGoogle Scholar
  16. Brown, E. S., and Dewhurst, C. (1975). The genus Spodoptera (Lepidoptera, Noctuidae) in Africa and the Near East. Bull. Entomol. Res. 65, 221–262.CrossRefGoogle Scholar
  17. Butterfield, J. E. L. (1986). Changes in life-cycle strategies of Carabus problematicus over a range of altitudes in northern England. Ecol. Entomol. 11, 17–26.CrossRefGoogle Scholar
  18. Chapman, R. F. (1964). The structure and wear of the mandibles in some African grasshoppers. Proc. Zool. Soc. London 143, 305–320.Google Scholar
  19. Chapman, R. F. (1966). The mouthparts of Xenocheila zarudnyi (Orthoptera, Acrididae). J. Zool. London 148, 277–288.CrossRefGoogle Scholar
  20. Chapman, R. F., Bernays, E. A., and Wyatt, T. (1988). Chemical aspects of host-plant specificity in three Larrea-feeding grasshoppers. J. Chem. Ecol. 14, 557–575.CrossRefGoogle Scholar
  21. Cheeseman, M. T., and Pritchard, G. (1984). Proventricular trituration in adult carabid beetles (Coleoptera: Carabidae). J. Insect Physiol. 30, 203–209.CrossRefGoogle Scholar
  22. Clarke, K. U., and Langley, P. A. (1963). Studies on the initiation of growth and moulting in Locusta migratoria migratorioides R. & F. II. The role of the stomatogastric nervous system. J. Insect Physiol. 9, 363–373.CrossRefGoogle Scholar
  23. Cook, A. G. (1977). The anatomy of the clypeo-labrum of Locusta migratoria (L.) (Orthoptera: Acrididae). Acrida 6, 287–306.Google Scholar
  24. Corbière-Tichané, G. (1971a). Ultrastructure du système sensoriel de la maxille chez la larva du Coléoptère cavernicole Speophyes lucidulus Delar. (Bathysciinae). J. Ul-trastruct. Res. 36, 318–341.CrossRefGoogle Scholar
  25. Corbière-Tichané, G. (1971b). Ultrastructure de l’équipement sensoriel de la mandibule chez la larve du Speophyes lucidulus Delar. (Coléoptère cavernicole de la sous-famille des Bathysciinae). Z. Zellforsch. 112, 129–138.CrossRefGoogle Scholar
  26. Dadd, R. H. (1960a). Observations on the palatability and utilisation of food by locusts, with particular reference to interpretation of performances in growth trials on synthetic diets. Entomol. Exp. Appl. 3, 283–304.CrossRefGoogle Scholar
  27. Dadd, R. H. (1960b). The nutritional requirements of locusts. I. Development of synthetic diets and lipid requirements. J. Insect Physiol. 4, 319–347.CrossRefGoogle Scholar
  28. Davis, N.T. (1987). Neurosecretory neurons and their projections to the serotonin neurohemal system of the cockroach Periplaneta americana (L.), and identification of mandibular and maxillary motor neurons associated with this system. J. Comp. Neurol. 259, 604–621.PubMedCrossRefGoogle Scholar
  29. Devitt, B. D., and Smith, J. J. B. (1985). Action of mouthparts during feeding in the dark-sided cutworm, Euxoa messoria (Lepidoptera: Noctuidae). Can. Entomol. 117, 343–349.CrossRefGoogle Scholar
  30. Djamin, A., and Pathak, M. D. (1967). Role of silica in resistance to Asiatic rice borer, Chilo suppressalis (Walker), in rice varieties. J. Econ. Entomol. 60, 347–351.Google Scholar
  31. Dogra, G. S., and Ewen, A. B. (1971). Effects of severance of stomatogastric nerves on egg-laying, feeding, and the neuroendocrine system in Melanoplus sanquinipes. J. Insect Physiol. 17, 483–489.CrossRefGoogle Scholar
  32. Eaton, C. B. (1942). The anatomy and histology of the proventriculus of Ips radiatae Hopkins (Coleoptera: Scolytidae). Ann. Entomol. Soc. Am. 35, 41–49.Google Scholar
  33. Eidmann, H. (1924). Untersuchungen über die Morphologie und Physiologie des Kaumagens von Periplaneta orientalis L. Z. Wiss. Zool. A122, 281–307.Google Scholar
  34. Evans, M. E. G. (1964). A comparative account of the feeding methods of the beetles Nebria brevicollis (F.) (Carabidae) and Philonthus decorus (Grav.) (Staphylinidae). Trans. R. Soc. Edinb. 66, 91–109.Google Scholar
  35. Evans, M. E. G., and Forsythe, T. G. (1985). Feeding mechanisms, and their variation in form, of some adult ground-beetles (Coleoptera: Carabidae). J. Zool. London 206, 113–143.CrossRefGoogle Scholar
  36. Fontaine, A. R., Olsen, N. Ring, R. A., and Singla, C. L. (1991). Cuticular metal hardening of mouthparts and claws of some forest insects of British Columbia. J. Entomol. Soc. Brit. Columbia 88, 45–55.Google Scholar
  37. Forsythe, T. G. (1982). Feeding mechanisms of certain ground beetles (Coleoptera: Carabidae). Coleopt. Bull. 36, 26–73.Google Scholar
  38. Gangwere, S. K. (1965). Food selection in the oedipodine grasshopper Arphia sulphurea (Fabricius). Am. Midi. Nat. 74, 67–75.CrossRefGoogle Scholar
  39. Gangwere, S. K., Evans, F. F., and Nelson, M. L. (1976). The food-habits and biology of Acrididae in an old-field community in southeastern Michigan. Great Lakes Entomol. 9, 83–123.Google Scholar
  40. Gardiner, B. G., and Khan, M. F. (1979). A new form of insect cuticle. Zool. J. Linn. Soc. 66, 91–94.CrossRefGoogle Scholar
  41. Godfrey, G. L., Miller, J. S., and Carter, D. J. (1989). Two mouthpart modifications in larval Notodontidae (Lepidoptera): their taxonomic distributions and putative functions. J. New York Entomol. Soc. 97, 455–470.Google Scholar
  42. Griss, C. (1990). Mandibular motor neurons of the caterpillar of the hawk moth Manduca sexta. J. Comp. Neurol. 296, 393–402.CrossRefGoogle Scholar
  43. Griss, C., Simpson, S. J., Rohrbacher, J., and Rowell, C. H. F. (1991). Localization in the central nervous system of larval Manduca sexta (Lepidoptera: Sphingidae) of areas responsible for aspects of feeding behaviour. J. Insect Physiol. 37, 477–482.CrossRefGoogle Scholar
  44. Gronenberg, W., Tautz, J., and Hölldobler, B. (1993). Fast trap jaws and giant neurons in the ant Odontomachus. Science 262, 561–563.PubMedCrossRefGoogle Scholar
  45. Hamamura, Y., Hayashiya, K., Naito, K.-I., Matsuura, K., and Nishida, J. (1962). Food selection by silkworm larvae. Nature (London) 194, 754–755.CrossRefGoogle Scholar
  46. Hillerton, J. E., and Vincent, J. F. V. (1982). The specific location of zinc in insect mandibles. J. Exp. Biol. 101, 333–336.Google Scholar
  47. Hillerton, J. E., Reynolds, S. E., and Vincent, J. F. V. (1982). On the indentation hardness of insect cuticle. J. Exp. Biol. 96, 45–52.Google Scholar
  48. Hillerton, J. E., Robertson, B., and Vincent, J. F. V. (1984). The presence of zinc or manganese as the predominant metal in the mandibles of adult, stored-product beetles. J. Stored Product Res. 20, 133–137.CrossRefGoogle Scholar
  49. Houston, W. W. K. (1981). The life cycles and age of Carabus glabratus Paykull and C. problematicus Herbst (Col.: Carabidae) on moorland in northern England. Ecol. Entomol. 6, 263–271.CrossRefGoogle Scholar
  50. Isely, F. B. (1944). Correlation between mandibular morphology and food specificity in grasshoppers. Ann. Entomol. Soc. Am. 37, 47–67.Google Scholar
  51. Kaufmann, T. (1971). Biology and Ecology of Melanoplus borealis (Orthoptera: Acrididae) in Fairbanks, Alaska with special reference to feeing habits. Michigan Entomol. 4, 3–13.Google Scholar
  52. Kent, K. S., and Hildebrand, J. G. (1987). Cephalic sensory pathways in the central nervous system of larval Manduca sexta (Lepidoptera: Sphingidae). Philos. Trans. R. Soc. 315B, 1–36.Google Scholar
  53. Köhler, H.-R., Alberti, G., and Storch, V. (1991). The influence of the mandibles of Diplopoda on the food—a dependence of fine structure and assimilation efficiency. Pedobiologia 35, 108–116.Google Scholar
  54. Le Berre, J. R., and Louveaux, A. (1969). Equipementes sensoriels des mandibules de la larve du premier stade de Locusta migratoria L. C. R. Acad. Sci. Paris 268, 2907–2910.Google Scholar
  55. Louveaux, A. (1972). Equipementes sensoriels et système nerveux périphérique des pièces buccales de Locusta migratoria L. Insectes Sociaux 19, 359–368.CrossRefGoogle Scholar
  56. Ma, W. C. (1972). Dynamics of feeding responses in Pieris brassicae Linn, as a function of chemosensory input: a behavioral, ultrastructural and electrophysiological study. Meded. Lanbouwhogesch. Wageningen 72–11, 162 pp.Google Scholar
  57. Patterson, B. D. (1984). Correlation between mandibular morphology and specific diet of some desert grassland Acrididae (Orthoptera). Am. Midl. Natl. 111, 296–303.CrossRefGoogle Scholar
  58. Penzlin, H. (1985). Stomatogastric nervous system. In: Kerkut, G. A., and Gilbert, L. I. (eds.) Comprehensive Insect Physiology, Biochemistry and Pharmacology, vol. 5. Pergamon Press, Oxford, pp. 371–406.Google Scholar
  59. Raupp, M. J. (1985). Effects of leaf toughness on mandibular wear of the leaf beetle, Plagiodera versicolora. Ecol. Entomol. 10, 73–79.CrossRefGoogle Scholar
  60. Rowell, C. H. F., and Simpson, S.J. (1992). A peripheral input of thoracic origin inhibits chewing in the larva of Manduca sexta. J. Insect Physiol. 38, 475–483.CrossRefGoogle Scholar
  61. Schachtner, J., and Bräunig, P. (1993). The activity pattern of identified neurosecretory cells during feeding behaviour in the locust. J. Exp. Biol. 185, 287–303.PubMedGoogle Scholar
  62. Schofield, R., and Lefevre, H. (1989). High concentrations of zinc in the fangs and manganese in the teeth of spiders. J. Exp. Biol. 144, 577–581.Google Scholar
  63. Schofield, R. M. S., Lefevre, H. W., Overley, J. C., and MacDonald, J. D. (1988). X-ray microanalytical surveys of minor element concentrations in unsectioned biological samples. Nucl Instrum Methods Physics Res B30, 398–403.CrossRefGoogle Scholar
  64. Seath, I. (1977a). Sensory feedback in the control of mouthpart movements in the desert locust Schistocerca gregaria. Physiol. Entomol. 2, 147–156.CrossRefGoogle Scholar
  65. Seath, I. (1977b). The effects of increasing load on electrical activity in the mandibular closer muscles during feeding in the desert locust, Schistocerca gregaria. Physiol. Entomol. 2, 237–240.CrossRefGoogle Scholar
  66. Sinoir, Y. (1969). Le rôle des palpes et du labre dans le comportement de prise de nourriture chez la larve du criquet migrateur. Ann. Nutrit. Aliment. 23, 167–194.Google Scholar
  67. Skaife, S. H. (1955). Dwellers in Darkness. Longmans, London.Google Scholar
  68. Spence, J. R., and Sutcliffe, J. F. (1982). Structure and function of feeding in larvae of Nebria (Coleoptera: Carabidae). Can. J. Zool. 60, 2382–2394.CrossRefGoogle Scholar
  69. Thomas, J. G. (1966). The sense organs on the mouth parts of the desert locust (Schistoc-erca gregarid). J. Zool. 148, 420–448.CrossRefGoogle Scholar
  70. Wallin, H. (1988). Mandible wear in the carabid beetle Pterostichus melanarius in relation to diet and burrowing behaviour. Entomol. Exp. Appl. 48, 43–50.CrossRefGoogle Scholar
  71. Welton, M. N. (1988). A morphometric analysis of mandibular teeth in Folsomia (Collembola: Isotomidae). Zool. J. Linn. Soc. 94, 99–109.CrossRefGoogle Scholar
  72. Wheater, C.P., and Evans, M. E. G. (1989). The mandibular forces and pressures of some predacious Coleoptera. J. Insect Physiol. 35, 815–820.CrossRefGoogle Scholar
  73. Zacharuk, R. Y. (1962). Sense organs of the head of larvae of some Elateridae (Coleoptera): Their distribution, structure and innervation. J. Morphol. 111, 1–22.CrossRefGoogle Scholar
  74. Zacharuk, R. Y. (1985). Antennae and sensilla. In: Kerkut, G. A., and Gilbert, L. I. (eds.) Comprehensive Insect Physiology, Biochemistry and Pharmacology, vol. 6. Pergamon Press, Oxford, pp. 1–69.Google Scholar
  75. Zacharuk, R. Y., and Albert, P. J. (1978). Ultrastructure and function of scolopophorous sensilla in the mandible of an elaterid larva (Coleoptera). Can. J. Zool. 56, 246–259.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • R. F. Chapman

There are no affiliations available

Personalised recommendations