Skip to main content

Abstract

The interest in ceramic materials for construction of engineering components has grown considerably during the last decade. This is not surprising because ceramics offer excellent physical properties that are necessary to meet the demands of many high-technology applications. Examples of such properties are high-temperature endurance, extreme wear resistance, nontoxicity, and biocompatibility. On the other hand, the brittleness and low fracture resistance of ceramic materials can be major shortcomings. Unlike metals, ceramics do not yield plastically under sudden load and impact, and they are usually highly susceptible to scratches and flaws arising during production or use. Consequently, special attention must be paid by the design engineer to avoid high peak tensile stresses and to use only specimens that are absolutely flawless, at least when viewed macroscopically. Moreover, because of microscopic flaw size variations the strength within a batch of ceramic specimens can vary considerably. Another problem is that the performance behavior of ceramics is time dependent. A ceramic part can fail over time as a result of stress—corrosion cracking (i.e., the subcritical growth of microscopic cracks inside the stressed ceramic material resulting from water vapor or other environmental influences) even if the tensile stresses are below the critical level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, T. L. (1991). Fracture Mechanics-Fundamentals and Applications. Boca Raton, Florida: CRC Press.

    Google Scholar 

  • Batdorf, S. B., and J. G. Crose (1974). A statistical theory for the fracture of brittle structures subjected to nonuniform polyaxial stresses. Journal of Applied Mechanics 41:459–465.

    Article  MATH  Google Scholar 

  • Batdorf, S. B., and H. L. Heinisch, J. R. (1978). Weakest link theory reformulated for arbitrary fracture criterion. Journal of the American Ceramic Society 61(7–8):355–358.

    Article  Google Scholar 

  • Beierlein, G. (1988). Festigkeitsverhalten keramischer Werkstoffe unter mehrachsiger mechanischer Beanspruchung. Ph.D. Thesis. Zwickau, Germany: Ingenierhuochschule Zwickau.

    Google Scholar 

  • Bertolotti, R. L. (1973). Fracture toughness of polycrystalline Al2O3. Journal of the American Ceramic Society 56:107.

    Article  Google Scholar 

  • Bornhauser, A. C. (1983). Direkte Beobachtung der unterkritischen Rißausbreitung in keramischen Werkstoffen bei hohen Temperaturen. Ph.D. Thesis. Stuttgart, Germany: Universität Stuttgart.

    Google Scholar 

  • Charles, R. J. (1961). A review of glass strength. In: Progress in Ceramic Science. J. E. Burke, Ed. Oxford, England: Pergamon Press, pp. 1–38.

    Google Scholar 

  • Chao, L. Y., and D. K. Shetrr (1990). Equivalence of physically based statistical fracture theories for reliability analysis of ceramics in multiaxial loading. Journal of the American Ceramic Society 73(7):1917–1921.

    Article  Google Scholar 

  • Engineering Ceramics (1990). Think Ceramics. Prospectus from Kyocera, Kyoto, Japan.

    Google Scholar 

  • Evans, A. G. (1972). A method for evaluating the time-dependent failure characteristics of brittle materials and its application to polycrystalline alumina. Journal of Material Science 7(10):1137–1146.

    Article  Google Scholar 

  • Evans, A. G., and E. A. Charles (1976). Fracture toughness determinations by indentations. Journal of the American Ceramic Society 59(7–8):371–372.

    Article  Google Scholar 

  • Evans, A. G. (1978). A general approach for the statistical analysis of multiaxial fracture. Journal of the American Ceramic Society 61(7–8):302–308.

    Article  Google Scholar 

  • Evans, A. G. (1980). Fatigue in ceramics. International Journal of Fracture 16(6):485–498.

    Article  Google Scholar 

  • Evans, A. G., and E. R. Fuller (1974). Crack propagation in ceramic materials under cyclic loading conditions. Metallurgical Transactions 5:27–33.

    Google Scholar 

  • Evans, A. G., and S. M. Wiederhorn (1974). Crack propagation and failure prediction in silicon nitride at elevated temperatures. Journal of Material Science 9(2):270–278.

    Article  Google Scholar 

  • Fujii, T., and T. Nose (1989). Evaluation of fracture toughness for ceramic materials. Industrial Standards of Japan International (ISIJ International), Vol. 29. pp. 717–725.

    Google Scholar 

  • Griffith, A. A. (1920). The phenomena of rupture and flow in solids. Philosophical Transactions Series A 221: 163–198.

    Article  Google Scholar 

  • Haug, T. H. (1985). Der Einfluß einer Glasphase in einer Al 2 0 3 - Keramik auf die langsame Rißausbreitung bei Raumtemperatur und im Hochtemperaturbereich. Ph.D. Thesis. Stuttgart, Germany: Universität Stuttgart.

    Google Scholar 

  • Irwin, G. R. (1957). Analysis of stresses and strains near the end of a crack traversing a plate. Journal of Applied Mechanics 24:361–364.

    Google Scholar 

  • Lawn, B. R., A. G. Evans, and D. B. Marshall (1980). The median/radial crack system. Journal of the American Ceramic Society 63(9–10):574–581.

    Article  Google Scholar 

  • Kriz, K. (1983). Einfluß der Mikrostruktur auf die langsame Rißausbreitung und mechanische Eigenschaften von heißgepreßtem Siliziumnitrid zwischen Raumtemperatur und 1500 °C. Ph.D. Thesis. Erlangen, Germany: Universität Erlangen.

    Google Scholar 

  • Manderscheid, J. M., and J. P. Gyekenyesi (1988). Fracture Mechanics Concepts in Reliability Analysis of Monolithic Ceramics. Report No. E-3743. Washington, D.C.: National Aeronautics and Space Administration.

    Google Scholar 

  • Murakami, Y., Ed. (1988). Stress Intensity Factors Handbook. Oxford, England: Pergamon Press.

    Google Scholar 

  • Müller, W. H. (1991). PC-Ceramtest: Ein Softwareprogramm für die keramische Werkstoffprüfung. Fortschrittsberichte Deutschen Keramischen Gesellschaft (journal).

    Google Scholar 

  • Müller, W. H., and S. Schmauder (1993). Interface stresses in fiber-reinforced materials with regular fiber arrangements. Composite Structures 24(1):1–21.

    Article  Google Scholar 

  • Nadler, P. (1972). Die Anwendung der statistischen Festigkeitstheorie in der keramischen Werkstoffprüfung, Teil 1. Hermsdorfer Technische Mitteilungen 33:1031–1038.

    Google Scholar 

  • Nadler, P. (1974). Die Anwendung der statistischen Festigkeitstheorie in der keramischen Werkstoffprüfung, Teil 2. Hermsdorfer Technische Mitteilungen 40:1262–1271.

    Google Scholar 

  • Nadler, P. (1989). Beitrag zur Charakterisierung und Berücksichtigung des spezifisch keramischen Festigkeitsverhaltens. Ph.D. Thesis. Freiberg, Germany: Berkakademie Freiberg.

    Google Scholar 

  • Nemeth, N. N., J. M. Manderscheid, and J. P. Gyekenyesi (1989). Designing ceramic components with the CARES computer program. Ceramic Bulletin 68(12):2064–2072.

    Google Scholar 

  • Pai, S. S., and J. P. Gyekenyesi (1988). Calculation of Weibull Strength Parameters and Batdorf Flaw-Density Constants for Volume-and Surface Flaw-Induced Fracture in Ceramics. Report No. E-4128. Washington, D.C.: National Aeronautics and Space Administration.

    Google Scholar 

  • Ramme, R. (1991). Unpublished research.

    Google Scholar 

  • Sm, G. C., and H. Liebowitz (1967). On the Griffith energy criterion for brittle fracture. International Journal of Solids and Structures 3:1–22.

    Article  Google Scholar 

  • Suresh, S., C. F. Shin, A. Morrone, and N. P. O’Dowd (1990). Mixed-mode fracture toughness of ceramic materials. Journal of the American Ceramic Society 73(5): 1257–1267.

    Article  Google Scholar 

  • Tada, H., P. C. Paris, and G. R. Irwin (1985). The Stress Analysis of Cracks Handbook. St. Louis, Missouri: Paris Productions, Inc.

    Google Scholar 

  • Timoshenko, S., and J. N. Goodier (1951). Theory of Elasticity. New York: McGraw-Hill.

    MATH  Google Scholar 

  • Tralnnik, W. (1980). Aspekte der modernen Bruchstatistik Hausarbeit aus Physik. Institut für Festkörperphysik der Universität Wien und Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaften. Stuttgart, Germany.

    Google Scholar 

  • Vogel, W. D. (1987). Einflußder Mikrostruktur auf die Rißausbreitung inteilstabilisierten Zr0 2 -Werkstoffen bis zu hohen Temperaturen. Ph.D. Thesis. Stuttgart, Germany: Universität Stuttgart.

    Google Scholar 

  • Weibull, W. (1939). A statistical theory of the strength of materials. Ingenieurvetenskapsakademiens Handlingar 151:5–45.

    Google Scholar 

  • Wiederhorn, S. M. (1968). Moisture assisted crack growth in ceramics. International Journal of Fracture Mechanics 4(2):171–177.

    Article  Google Scholar 

  • Wiederhorn, S. M. (1978). Mechanisms of subcritical crack growth in glass. In: Fracture Mechanics of Ceramics. R. Bradt, D. P. H. Hasselman, and F. F. Lange, Eds. New York: Plenum Press, pp. 549–580.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Müller, W.H., Ramme, R., Bornhauser, A.C. (1995). Applications in Ceramic Structures. In: Sundararajan, C. (eds) Probabilistic Structural Mechanics Handbook. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1771-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1771-9_30

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5713-1

  • Online ISBN: 978-1-4615-1771-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics