Investigation of Electron Transfer Between Hexaarylbiimidazole and a Visible Sensitizer

  • Yi Lin
  • Andong Liu
  • Alexander D. Trifunac
  • Vadim V. Krongauz


Hexaarylbiimidazole (HABI) is a widely used photopolymer photoinitiator (Structure I). 1,2 Triarylimidazolyl (lophyl = L) radicals recombine in the dark and form HABI reversibly. The L radical generated in the photodecomposition can interact with chain-transfer agents either by direct hydrogen abstraction or by electron transfer to produce an initiating species capable of being added to the monomer molecule 2,3 Because of the development of inexpensive visible and IR light sources, it is advantageous to develop materials sensitive in these spectral regions. Therefore, there has been considerable interest in producing L radicals with visible light excitation. It was observed that the polymerization processes may be initiated by a visible light excitation (λ > 480 nm) if certain visible absorption dyes such as JAW (Structure II) are added to the solution. 4–7


Electron Transfer Transient Absorption Laser Flash Photolysis Instrument Response Function Sensitizer Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. B. Cohen and R. Walker, Imaging Processes and Materials, Neblette’s 8th edition, J. M. Sturge, V. Walworth, and A. Shepp, eds. (Van Nostrand Reinhold, New York, 1989), pp. 226–262.Google Scholar
  2. 2.
    G. R. Coraor, A. Maclachlan, R. H. Riem, and E. J. Urban, J. Org. Chem. 36, 2272 (1971).CrossRefGoogle Scholar
  3. 3.
    D. F. Eaton Topics in Current Chemistry, Vol. 156 (Springer-Verlag, Berlin, 1990).Google Scholar
  4. 4.
    G. A. Delzenne, Advances in Photochemistry, 11,1 (1979).Google Scholar
  5. 5.
    T. E. Dueber, 1979 U.S. Patent 4,162–162.Google Scholar
  6. 6.
    T. E. Dueber, 1979 U.S. Patent 4,454–218.Google Scholar
  7. 7.
    T. E. Dueber, 1979 U.S. Patent 4,535–052.Google Scholar
  8. 8.
    A. Liu, A. D. Trifunac, and V. V. Krongauz, J. Phys. Chem. 96 207 (1992).CrossRefGoogle Scholar
  9. 9.
    M. Barnabas, A. Liu, A. D. Trinfunac, V. V. Krongauz, and C. T. Chang, J. Phys. Chem. 96 212 (1992).CrossRefGoogle Scholar
  10. 10.
    M. Inokuti and F. Hirayama, J. Chem. Phys. 43 1978 (1965).CrossRefGoogle Scholar
  11. 11.
    D. F. Calef and J. M. Deutch, Ann. Rev. Phys. Chem. 34 493 (1983).CrossRefGoogle Scholar
  12. 12.
    K. Allinger and A. Blumen, J. Chem. Phys. 75 2762 (1981).CrossRefGoogle Scholar
  13. 13.
    L. A. Cescon, G. R. Coraor, R. Dessaur, E. F. Silversmith, and E. J. Urban, J. Org. Chem. 36 2262 (1971).CrossRefGoogle Scholar
  14. 14.
    D. L. Dexter, J. Chem. Phys. 21 836 (1953).CrossRefGoogle Scholar
  15. 15.
    N. R. Kestner, J. Logan, and J. Jortner, J. Phys. Chem. 78 2148 (1974).CrossRefGoogle Scholar
  16. 16.
    R. K. Huddleston and J. R. Miller, J. Phys. Chem. 86 200 (1983).CrossRefGoogle Scholar
  17. 17.
    R. C. Dorfman, Y. Lin, and M. D. Fayer, J. Phys. Chem. 94 8007 (1990).CrossRefGoogle Scholar
  18. 18.
    B. Sipp and R. Voltz, J. Chem. Phys. 79 434 (1983).CrossRefGoogle Scholar
  19. 19.
    A. Blumen, J. Chem. Phys. 72, 2632 (1980).CrossRefGoogle Scholar
  20. 20.
    M. Abramowitz and J. A. Stegun, eds., Handbook of Mathematical Functions, (Dover, New York, 1968).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • Yi Lin
  • Andong Liu
  • Alexander D. Trifunac
  • Vadim V. Krongauz

There are no affiliations available

Personalised recommendations