Skip to main content

The Chemical Basis for Nestmate Recognition and Mate Discrimination in Social Insects

  • Chapter

Abstract

In this chapter we discuss the chemical basis for nestmate recognition in social insects. Animals that live in family groups are often able to discriminate family members from non-family members. For example, humans and other mammals can use a variety of cues—visual, auditory, and perhaps olfactory—to learn the identities of family members. Birds, on the other hand, rely primarily on auditory cues (Beecher, 1988). While any phenotypic trait that is associated with group membership could be utilized in nestmate recognition, studies of social insects have shown that they depend solely on olfactory cues to discriminate family members from other conspecifics.

Keywords

  • Social Insect
  • Cuticular Hydrocarbon
  • Floral Scent
  • Macrocyclic Lactone
  • Nestmate Recognition

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4615-1765-8_8
  • Chapter length: 31 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-1-4615-1765-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ayasse, M., Engels, W., Hefetz, A., Lübke, G., and Franke, W. (1990) Ontogenetic patterns in amounts and proportions of Dufour’s gland volatile secretions in virgin and nesting queens of Lasioglossum malachurum (Hymenoptera: Halictidae). Z. Naturforsch. 45c: 709–714.

    Google Scholar 

  • Ayasse, M., Engels, W., Hefetz, A., Tengö, J., Lübke, G., and Franke, W. (1993) Ontogenetic patterns of volatiles identified in Dufour’s gland extracts from queens and workers of the primitively eusocial halictine bee, Lasioglossum malachurum (Hymenoptera: Halictidae). Insectes Soc. 40: 41–58.

    CrossRef  Google Scholar 

  • Barrows, E. M. (1975a) Individually distinctive odors in an invertebrate. Behav. Biol. 15: 57–64.

    PubMed  CAS  CrossRef  Google Scholar 

  • Barrows, E. M. (1975b) Mating behavior in halictine bees (Hymenoptera: Halictidae): III. Copulatory behavior and olfactory communication. Insectes Soc. 22: 307–331.

    CrossRef  Google Scholar 

  • Barrows, E. M., Bell, W. J., and Michener, C. D. (1975) Individual odor differences and their social functions in insects. Proc. Nat. Acad. Sci. USA 72: 2824–2828.

    PubMed  CAS  CrossRef  Google Scholar 

  • Bateson, P. P. G. (1983) Optimal outbreeding. In: Mate Choice (Bateson, P.P.G., ed.). pp 367–377. Cambridge U. Press, Cambridge. U.K.

    Google Scholar 

  • Beecher, M. D. (1988) Kin recognition in birds. Behav. Genet. 18: 465–482.

    PubMed  CAS  CrossRef  Google Scholar 

  • Bekoff, M. (1981) Mammalian sibling interactions. Genes, facilitative environments, and the coefficient of familiarity. In: Parental Care In Mammals (Gubernick, D. J., and Klopfer, P. H.eds.). pp. 307–346. Plenum, New York.

    CrossRef  Google Scholar 

  • Bell, W.J. (1974) Recognition of resident and non-resident individuals in intraspecific nest defense of a primitively eusocial halictine bee. J. Comp. Physiol. 93: 195–202.

    CrossRef  Google Scholar 

  • Bell, W. J., and Hawkins, W. A. (1974) Patterns of intraspecific agonisitc interactions involved in nest defense of a primitively eusocial halictine bee. J. Comp. Physiol. 93: 183–193.

    CrossRef  Google Scholar 

  • Bennett, B. (1989) Nestmate recognition systems in a monogynous-polygynous species pair of ants. Parts I and II. Sociobiol. 16: 121–147.

    Google Scholar 

  • Bergström, G. and Tengö, J. (1979) C24, C22, C20, and C18 macrocyclic lactones in halictid bees. Acta Chem. Scand. B33: 390.

    CrossRef  Google Scholar 

  • Blaustein, A. R. (1983) Kin recognition mechanisms: Phenotype matching or recognition alleles. Am. Nat. 121: 749–754.

    CrossRef  Google Scholar 

  • Blum, M. S. and Fales, H. M. (1988) Eclectic chemisociality of the honeybee: A wealth of behaviors, pheromones, and exocrine glands. J. Chem. Ecol. 14: 2099–2107.

    CAS  CrossRef  Google Scholar 

  • Blum, M. S., Fales, H. M., Jones, T. H., Rinderer, T. E. and Tucker, K. W. (1983) Caste-specific esters derived from the queen honey bee sting apparatus. Comp. Biochem. Physiol. 75B:237–238.

    CAS  Google Scholar 

  • Bonavita-Cougourdan, A., Clement, J-L., and Lange, C. (1989) The role of cuticular hydrocarbons in recognition of larvae by workers of the ant Camponotus vagus: Changes in the chemical signature in response to social environment. Sociobiol. 16: 49–74.

    Google Scholar 

  • Bowden, R.M. and Breed, M.D. (in press) The effects of floral extracts and oils on nestmate recognition in the honey bee. J. Insect Behav.

    Google Scholar 

  • Breed, M. D. (1981) Individual recognition and learning of queen odors by worker honeybees (Apis mellifera). Proc. Natl. Acad. Sci. USA 78: 2635–2637.

    PubMed  CAS  CrossRef  Google Scholar 

  • Breed, M. D. (1983) Nestmate recognition in honey bees. Anim. Behav. 31: 86–91.

    CrossRef  Google Scholar 

  • Breed, M. D. (1987) Multiple inputs in the nestmate discrimination system of the honey bee. In: The Chemistry and Biology of Social Insects (Eder, J., and Rembold, H., eds). pp. 461–462. Verlag J. Peperny: Munich, Germany.

    Google Scholar 

  • Breed, M. D. (1993) Odour detection in bees. Nature 362: 120.

    CrossRef  Google Scholar 

  • Breed, M. D. and Bennett, B. (1987) Kin recognition in highly eusocial insects. In: Kin Recognition In Animals (Fletcher, D.J.C. and Michener, C.D., eds.). pp. 243–285. John Wiley, Chichester, U.K.

    Google Scholar 

  • Breed, M.D., Garry, M.F., Pearce, A.N., Hibbard, B.E., Bjostad, L.B., and Page, R.E. (in press) The role of wax comb in honey bee nestmate recognition: Genetic effects on comb discrimination, acquisition of comb cues by bees, and passage of cues among individuals. Anim. Behav.

    Google Scholar 

  • Breed, M.D., Hibbard, B.E., Bjostad, L.B., and Page, R.E. (in press) Genetic component of variation in comb wax hydrocarbons produced by honey bees. J. Chem. Ecol.

    Google Scholar 

  • Breed, M. D. and G. Julian. (1992) Honey bee nestmate recognition: Simple rules do not apply. Nature. 357: 685–686.

    CrossRef  Google Scholar 

  • Breed, M. D., Smith, T. A., and Torres, A. (1992a) Guard honey bees: role in nestmate recognition and replacement. Annals Entomol. Soc. Am. 85: 633–637.

    Google Scholar 

  • Breed, M. D., Butler, L., and Stiller, T. M. (1985) Kin recognition by worker honey bees in genetically mixed groups. Proc. Natl. Acad. Sci. USA 82: 3058–3061.

    PubMed  CAS  CrossRef  Google Scholar 

  • Breed, M. D., Fewell, J. H. and Williams, K. R. (1988a) Comb wax mediates the acquisition of nest-mate recognition cues in honey bees. Proc. Natl. Acad. Sci. USA 85: 8766–8769.

    PubMed  CAS  CrossRef  Google Scholar 

  • Breed, M. D. and Stiller, T. M. (1992) Honey bee, Apis mellifera, nestmate discrimination: hydrocarbon effects and the evolutionary implications of comb choice. Anim. Behav. 43: 875–883.

    CrossRef  Google Scholar 

  • Breed, M. D., Stiller, T. M., and Moor, M. J., (1988b) The ontogeny of kin discrimination cues in the honey bee, Apis mellifera. Behav. Genet. 18: 439–448.

    CAS  CrossRef  Google Scholar 

  • Breed, M. D., Stiller, T. M., Blum, M. S., and Page, R. E., Jr. (1992b) Honey bee nestmate recognition: effects of queen fecal pheromones. J. Chem. Ecol. 18: 1633–1640.

    CAS  CrossRef  Google Scholar 

  • Brothers, D. J., and Michener, C. D. (1974) Interactions in colonies of primitively social bees, III. Ethometry of division of labor in Lasioglossum zephyrum. J. Comp. Physiol. 90: 129–168.

    CrossRef  Google Scholar 

  • Buckle, G. R., and Greenberg, L. (1981) Nestmate recognition in sweat bees (Lasioglos-sum zephyrum): Does an individual recognize its own odour or only odours of its nestmates? Anim. Behav. 29: 802–809.

    CrossRef  Google Scholar 

  • Butts, D. P., Camann, M. A., and Espelie, K. E. (1993) Discriminant analysis of cuticular hydrocarbons of the baldfaced hornet, Dolichovespula maculata. Sociobiol. 21: 193–201.

    Google Scholar 

  • Cane, J. H. (1981) Dufour’s gland secretion in the cell linings of bees (Hymenoptera: Apoidea). J. Chem. Ecol. 7: 403–410.

    CAS  CrossRef  Google Scholar 

  • Carlin, N. F. and Hölldobler, B. (1986) The kin recognition system of carpenter ants (Camponotus spp.) I. Hierarchical cues in small colonies. Behav. Ecol. Sociobiol. 19: 123–134.

    CrossRef  Google Scholar 

  • Carlson, D. A. and Bolton, A. B.. (1984) Identification of Africanized and European honey bees using extracted hydrocarbons. Bull. Entomol. Soc. Am. 30: 32–35.

    Google Scholar 

  • Clement, J-L., Bonavita-Cougourdan, A. and Lange, C. (1987) Nestmate recognition and cuticular hydrocarbons in Camponotus vagus. In: The Chemistry and Biology of Social Insects (Eder, J. and Rembold, H., eds.). pp. 473–474. Verlag J. Peperny, Munich, Germany.

    Google Scholar 

  • Collins, A. M. and Blum, M. S. (1983) Alarm responses caused by newly identified compounds derived from the honey bee sting. J. Chem. Ecol. 9: 57–65.

    CAS  CrossRef  Google Scholar 

  • Crewe, R. M. (1982) Compositional variability, the key to the social signals produced by honey bee mandibular glands. In: The Biology of Social Insects (Breed, M.D., Michener, C.D. and Evans, H.E., eds.). pp. 318–322. Westview Press, Boulder, Colorado.

    Google Scholar 

  • Crosland, M. W. J. (1989) Kin recognition in the ant Rhytidoponera confusa. II. Gestalt odour. Anim. Behav. 37: 920–926.

    CrossRef  Google Scholar 

  • Crozier R. H., Smith B. H., and Crozier Y. C. (1987) Relatedness and population structure of the primitively eusocial bee Lasioglossum zephyrum in Kansas. Evolution 41: 902–910.

    CrossRef  Google Scholar 

  • Dawkins, R. 1982. The extended phenotype. Freeman: Oxford.

    Google Scholar 

  • de Lello, E. 1971) Adexnal glands of the sting apparatus of bees: Anatomy and histology. II. (Hymenoptera: Halictidae). J. Kansas Entomol. Soc. 44: 14–20.

    Google Scholar 

  • Espelie, K. E., and Hermann, H. R. (1990) Surface lipids of the social wasp Polistes annularis (L.) and its nest and nest pedicel. J. Chem. Ecol. 16: 1841–1852.

    CAS  CrossRef  Google Scholar 

  • Espelie, K. E., Butz, V. M., and Dietz, A. (1990a) Decyl-decanoate—A major component of the tergite glands of honeybee queens. J. Apic. Res. 29: 15–19.

    CAS  Google Scholar 

  • Espelie, K. E., Wenzel, J. W. and Chang, G. (1990b) Surface lipids of social wasp Polistes metricus Say and its nest and nest pedicel and their relation to nestmate recognition. J. Chem. Ecol. 16: 2229–2241.

    CAS  CrossRef  Google Scholar 

  • Ferguson, I. D., Gamboa, G. J. and Jones, J. K. (1987) Discrimination between natal and non-natal nests by the social wasps Dolichovespula maculata and Polistes fuscatus. J. Kansas Entomol. Soc. 60: 65–69.

    Google Scholar 

  • Foster, R. and Gamboa, G. (1989) Nest entrance marking with colony specific odors by the bumble bee Bombus occidentalis. Ethology 81: 273–278.

    CrossRef  Google Scholar 

  • Francis, B. R., Blanton, W. E., Littlefield, J. L. and Nunamaker, R. A. (1989) Hydrocarbons of the cuticle and hemolymph of the adult honey bee. Ann. Entomol. Soc. Am. 82: 486–494.

    CAS  Google Scholar 

  • Franks, N. R., Blum, M., Smith, R.-K. and Allies, A. B. (1990) Behavior and chemical disguise of cuckoo ant Leptothorax kutteri in relation to its host Leptothorax acervorum.. J. Chem. Ecol. 16: 1431–1444.

    CAS  CrossRef  Google Scholar 

  • Free, J. B. (1959) The effect of moving colonies of honeybees to new sites on their subsequent foraging behaviour. J. Agr. Sci. 53: 1–9.

    CrossRef  Google Scholar 

  • Frumhoff, P. C. and Schneider, S. (1987) The social consequence of honeybee polyandry: kinship influences worker interactions within colonies. Anim. Behav. 35: 255–262.

    CrossRef  Google Scholar 

  • Gamboa, G. J., Foster, R. L. and Richards, K. W. (1987) Intraspecific nest and brood recognition by queens of the bumble bee, Bombus occidentalis. Can. J. Zool. 65: 2893–2897.

    CrossRef  Google Scholar 

  • Gamboa, G. J., Reeve, H. K. and Pfennig, D. W. (1986a) The evolution and ontogeny of nestmate recognition in social wasps. Ann. Rev. Entomol. 31: 431–454.

    CrossRef  Google Scholar 

  • Gamboa, G. J., Reeve, H. K., Ferguson, I. and Wacker, T. L. (1986b) Nestmate recognition in social wasps: the origin and acquisition of recognition odours. Anim. Behav. 34: 685–695.

    CrossRef  Google Scholar 

  • Getz, W. M. (1991) The honey bee as a model kin recognition system. In: Kin Recognition (Hepper, P. G., ed.). pp. 358–412. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Getz, W. M. (1993) Odour detection in bees. Nature 362: 119–120.

    CrossRef  Google Scholar 

  • Getz, W.M., and Page, R.E. (1991) Chemosensory kin-communication systems and kin recognition in honey bees. Ethology 87: 298–315.

    CrossRef  Google Scholar 

  • Getz, W. M. and Smith, K. B. (1986) Honeybee kin recognition: learning self and nestmate phenotypes. Anim. Behav. 34: 1617–1626.

    CrossRef  Google Scholar 

  • Getz, W. M. and Smith, K. B. (1987) Olfactory sensitivity and discrimination of mixtures in the honey bee, Apis mellifera. J. Comp. Physiol. A. 160:239–245.

    CAS  CrossRef  Google Scholar 

  • Getz, W. M., Brückner, D. and Parisian, T. R. (1982) Kin structure and the swarming behavior of the honeybee, Apis mellifera. Behav. Ecol. Sociobiol. 10: 265–270.

    CrossRef  Google Scholar 

  • Getz, W. M., Brückner, D. and Smith, K. B. (1989) The ontogeny of cuticular chemosensory cues in worker honey bees Apis mellifera. Apidologie 20: 105–113.

    CAS  CrossRef  Google Scholar 

  • Getz, W. M. and Page, R. E. (1991) Chemosensory kin-communication systems and kin recognition in honey bees. Ethology 87: 298–315.

    CrossRef  Google Scholar 

  • Greenberg, L. (1979) Genetic component of bee odor in kin recognition. Science 206: 1095–1097.

    PubMed  CAS  CrossRef  Google Scholar 

  • Hamilton, W. D. (1964) The genetical evolution of social behaviour. Parts I and II. J. Theor Biol. 7: 1–16.

    PubMed  CAS  CrossRef  Google Scholar 

  • Hefetz, A., Bergström, G., and Tengö, J. (1986) Species, individual, and kin specific blends in Dufour’s gland secretions of halictine bees—Chemical evidence. J. Chem. Ecol. 12: 197–208.

    CAS  CrossRef  Google Scholar 

  • Hefetz, A., Blum, M. S., Eickwort, G. C., and Wheeler, J. W. (1978) Chemistry of the Dufour’s gland secretion of halictine bees. Comp. Biochem. Physiol. 61B: 129–132.

    CAS  Google Scholar 

  • Hefetz, A., Fales, H. M., and Batra, S. W. T. (1979) Natural polyesters: Dufour’s gland macrocyclic lactones form brood cell laminesters in Colletes bees. Science 204: 415–417.

    PubMed  CAS  CrossRef  Google Scholar 

  • Hepburn, H. R. (1986) Honey Bees and Wax. Springer-Verlag, Berlin, Germany.

    CrossRef  Google Scholar 

  • Hepper, P. G. (1991) Kin Recognition. Cambridge University Press, Cambridge, U.K.

    CrossRef  Google Scholar 

  • Hölldobler, B. and Michener, C. D. (1980) Mechanisms of identification and discrimination in social Hymenoptera. In: Evolution of Social Behavior: Hypotheses and Empirical Tests. (Markl, H., ed.). pp. 35–58. Verlag Chemie, Weinheim, Germany.

    Google Scholar 

  • Isigrini, M., Lenoir, A. and Jaisson, P. (1985) Preimaginal learning as a basis of colony-brood recognition in the ant, Cataglyphis cursor. Proc. Natl. Acad. Sci. USA. 82: 8545–8547.

    CrossRef  Google Scholar 

  • Kaitala, V., Smith, B.H., and Getz, W.M. (1990) Nesting strategies of primitively eusocial bees: A model of nest usurpation during the solitary state of the nesting cycle. J. Theor. Biol. 144: 445–471.

    CrossRef  Google Scholar 

  • Kalmus, H. and Ribbands, C. R. (1952) The origin of odors by which honey bees distinguish their companions. Proc. Royal Soc. (B) 140: 50–59.

    CAS  CrossRef  Google Scholar 

  • Knudsen, J. T., Tollsten, L. and Bergström, L. G. (1993) Floral scents—A checklist of volatile compounds isolated by head-space techniques. Phytochem. 33: 253–280.

    CAS  CrossRef  Google Scholar 

  • Kukuk, P. F., Breed, M. D., Sobti, A., and Bell, W. J. (1977) The contributions of kinship and conditioning to nest recognition and colony member recognition in a primitively eusocial bee, Lasioglossum zephyrum. Behav. Ecol. Sociobiol. 2: 319–327.

    CrossRef  Google Scholar 

  • Michener, C. D. (1974) The Social Behavior of the Bees. Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Michener, C. D. (1978) The parasitic groups of the Halictidae (Hymenoptera, Apoidea). University Kansas Sci. Bull. 51: 291–339.

    Google Scholar 

  • Michener, C. D. and Smith, B. H. (1987) Kin recognition in primitively social insects. In: Kin recognition in animals (Fletcher, D.J.C. and Michener, C.D., eds.). pp. 209–242. John Wiley, Chichester, U.K.

    Google Scholar 

  • Morel, L. and Vander Meer, R. K. (1987) Nestmate recognition in Camponotus floridianus: Behavioral and chemical evidence for the role of age and social experience. In: Chemistry and Biology of Social Insects (Eder, J. and Rembold, H., eds.). pp. 471–472. Verlag J. Peperny, Munich, Germany.

    Google Scholar 

  • Moritz, R. F. A. and Crewe, R. M. (1988) Chemical signals of queens in kin recognition of honeybees, Apis mellifera L. J. Comp. Physiol. A 164: 83–89.

    CrossRef  Google Scholar 

  • Moritz, R. F. A. and South wick, E. E. (1987) Metabolic test of volatile odor labels as kin recognition cues in honey bees (Apis mellifera). J. exp. Zool. 243: 503–507.

    CrossRef  Google Scholar 

  • Moure, J. S., C. M. F. and Hurd, P. D. (1987) An Annotated Catalog of the Halictid Bees of the Western Hemisphere (Hymenoptera; Halictidae). Smithsonian Inst. Press, Washington, D.C.

    Google Scholar 

  • Noonan, K. C. (1986) Recognition of queen larvae by worker honey bees (Apis mellifera L.). Ethology 73: 295–306.

    CrossRef  Google Scholar 

  • Obin, M. S. (1986) Nestmate recognition cues in laboratory and field colonies of Solenopsis invicta Buren: effect of environment and the role of cuticular hydrocarbons. J. Chem. Ecol. 12: 1965–1975.

    CAS  CrossRef  Google Scholar 

  • Packer, L. (1991) The evolution of social behavior and nest architecture in sweat bees of the subgenus Evylaeus (Hymenoptera: Halictidae): a phylogenetic approach. Behav. Ecol. Sociobiol. 29: 153–160.

    CrossRef  Google Scholar 

  • Page, R. E. and Erickson, E. (1986) Kin recognition and virgin queen acceptance by worker honey bees (Apis mellifera L.). Anim. Behav. 34: 1061–1069.

    CrossRef  Google Scholar 

  • Page, R. E. Jr., Metealf, R. A., Metealf, R. L., Erickson, E. H. Jr. and Lampman, R. L. (1991) Extractable hydrocarbons and kin recognition in the honey bee. J. Chem. Ecol. 17: 745–756.

    CAS  CrossRef  Google Scholar 

  • Pfennig, D. W., Gamboa, G. J., Reeve, H. K., Shellman-Reeve, J. and Ferguson, I. D. (1983) The mechanism of nestmate discrimination in social wasps (Polistes, Hymenoptera, Vespidae). Behav. Ecol. Sociobiol. 13: 299–305.

    CrossRef  Google Scholar 

  • Plateaux-Quénu, C. (1959) Un nouveau type de société d’insectes: Halictus marginatus Brullé (Hymenoptera, Apoidea). Ann. Biol. 35: 325–444.

    Google Scholar 

  • Ratnieks, F.L.W. (1991) The evolution of genetic odorcue diversity in social Hymenoptera. Am. Nat. 137: 202–226.

    CrossRef  Google Scholar 

  • Reeve, H. K. (1989) The evolution of conspecific acceptance thresholds. Am. Nat. 133: 407–435.

    CrossRef  Google Scholar 

  • Singer, T. L. and Espelie, K. E. (1992) Social wasps use nest paper hydrocarbons for nestmate recognition. Anim. Behav. 44: 63–68.

    CrossRef  Google Scholar 

  • Singer, T. L., Camann, M. A., and Espelie, K. E. (1992a) Discriminant analysis of cuticular hydrocarbons of social wasp Polistes exclamans Viereck and surface hydrocarbons of its nest paper and pedicel. J. Chem. Ecol. 18: 785–797.

    CAS  CrossRef  Google Scholar 

  • Singer, T. L., Espelie, K. E., and Himmelsbach, D. S. (1992b) Ultrastructural and chemical examination of paper and pedicel from laboratory and field nests of the social wasp Polistes metricus Say. J. Chem. Ecol. 18: 77–86.

    CAS  CrossRef  Google Scholar 

  • Smith, B. H. (1983) Recognition of female kin by male bees through olfactory signals. Proc. Natl. Acad. Sci. USA 80: 4551–4553.

    PubMed  CAS  CrossRef  Google Scholar 

  • Smith, B. H. (1987) Effects of genealogical relationship and colony age on the dominance hierarchy of the primitively eusocial bee Lasioglossum zephyrum (Hymenoptera: Halictidae). Anim. Behav. 35: 211–217.

    CrossRef  Google Scholar 

  • Smith, B. H. (1992) Merging mechanism and adaptation: an ethological approach to learning and generalization. In: Insect Learning: Ecological and Evolutionary Perspectives (Papaj, D.R. and Lewis, A.C., eds.). pp. 126–158. Chapman and Hall, New York, N.Y.

    Google Scholar 

  • Smith B. H., and Ayasse M. (1987) Kin-based male mating preferences in two species of halictine bees (Hymenoptera: Halictidae). Behav. Ecol. Sociobiol. 20: 313–318.

    CrossRef  Google Scholar 

  • Smith, B. H., and Weller, C. (1989) Social competition among gynes in halictine bees: the influence of bee size and pheromones on behavior. J. Insect Behav. 2: 397–411.

    CrossRef  Google Scholar 

  • Smith, B. H., and Wenzel, J. W. (1988) Pheromonal covariation and kinship in social bee Lasioglossum zephyrum (Hymenoptera: Halictidae). J. Chem. Ecol. 14: 87–94.

    CAS  CrossRef  Google Scholar 

  • Smith, B. H., Carlson, R. G., and Frasier, J. (1985) Identification and bioassay of macrocyclic lactone sex pheromone of the halictine bee Lasioglossum zephyrum. J. Chem. Ecol. 11: 1447–1456.

    CAS  CrossRef  Google Scholar 

  • Tulloch, A. P. (1980) Beeswax—composition and analysis. Bee World 61: 47–62.

    CAS  Google Scholar 

  • Vander Meer, R. K., Saliwanchik, D. and Lavine, B. (1989) Temporal changes in colony cuticular hydrocarbon patterns of Solenopsis invicta: Implications for nestmate recognition. J. Chem. Ecol. 15: 2115–2125.

    CrossRef  Google Scholar 

  • Wcislo, W. T. (1987) The role of learning in the mating biology of a sweat bee Lasioglossum zephyrum (Hymenoptera: Halictidae). Behav. Ecol. Sociobiol. 20: 179–185.

    CrossRef  Google Scholar 

  • Wcislo, W. T. (1993) Attraction and learning in mate-finding by solitary bees, Lasioglossum (Dialictus) figuersi Wcislo and Nomia triangulifera Vachal (Hymenoptera: Halictidae). Behav. Ecol. Sociobiol. 31: 139–148.

    CrossRef  Google Scholar 

  • Westrich, P. (1989) Die Wildbienen Baden-Württembergs; Spezieller Teil. Verlag Eugen Ulmer, Stuttgart, Germany.

    Google Scholar 

  • Yanega, D. (1988) Social plasticity and early-diapausing females in a primitively eusocial bee. Proc. Natl. Acad. Sci. USA. 85: 4374–4377.

    PubMed  CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Smith, B.H., Breed, M.D. (1995). The Chemical Basis for Nestmate Recognition and Mate Discrimination in Social Insects. In: Chemical Ecology of Insects 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1765-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1765-8_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-03961-4

  • Online ISBN: 978-1-4615-1765-8

  • eBook Packages: Springer Book Archive