Seeds pp 253-303 | Cite as

Mobilization of Stored Seed Reserves

  • J. Derek Bewley
  • Michael Black


The mobilization of the stored reserves in the storage organs invariably commences after radicle elongation; i.e., it is a postgerminative event. In the growing regions (i.e., axis) some mobilization can occur before germination is completed; here the reserves are generally present in minor amounts, although the products of their hydrolysis might be important for early seedling establishment.


Mung Bean Protein Body Castor Bean Ricinoleic Acid Aleurone Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Useful Literature References

General References

  1. Ap Rees, T., 1974, in: Plant Biochemistry, Biochemistry Series One, Volume 11 (H. L. Kornberg and D. C. Phillips, eds.,) Butterworths, London, pp. 89–127 (carbohydrate catabolism pathways).Google Scholar
  2. Ashton, F. M., 1976, Ann. Rev. Plant Physiol. 27:95–117 (storage protein mobilization).CrossRefGoogle Scholar
  3. Beevers, H., 1979, Ann. Rev. Plant Physiol. 30:159–193 (microbodies).CrossRefGoogle Scholar
  4. Briggs, D. E., 1973, in: Biosynthesis and Its Control in Plants (B. V. Milborrow, ed.), Academic Press, London, New York, pp. 219–277 (hormones and carbohydrate metabolism).Google Scholar
  5. Brown, H. T., and Morris, G. H., 1890, J. Chem. Soc. 57:458–528 (classic studies on cereal reserve mobilization).CrossRefGoogle Scholar
  6. Chrispeels, M. J., and Jones, R. L., 1980/81, Isr. J. Bot. 29:225–245 (endoplasmic reticulum and reserve hydrolysis).Google Scholar
  7. Macleod, A. M., 1969, Sci. Prog. Oxf. 57:99–112 (cereal reserve catabolism).Google Scholar
  8. Manners, D. J., 1973, in: Plant Carbohydrate Biochemistry (J. B. Pridham, ed.), Academic Press, London, pp. 109–125 (starch catabolism).Google Scholar
  9. Pernollet, J. C., 1978, Phytochemistry 17:1473–1480 (protein bodies).CrossRefGoogle Scholar
  10. Richardson, M., 1977, Phytochemistry 16:159–169 (proteinase inhibitors).CrossRefGoogle Scholar

Sections 7.1 and 7.2

  1. Adams, C. A., and Novellie, L., 1975, Plant Physiol. 55:7–11 (mobilization in sorghum).PubMedCrossRefGoogle Scholar
  2. Ballance, G. M., and Manners, D. J., 1978, Carbohydrate Res. 61:107–118 (endosperm cell wall hydrolysis).CrossRefGoogle Scholar
  3. Edelman, J., Shibko, S. I., and Keys, A. J., 1959, J. Exp. Bot. 10:178–189 (sucrose transport and scutellum).CrossRefGoogle Scholar
  4. Fincher, G. B., and Stone, B. A., 1974, Aust. J. Plant Physiol. 1:297–311 (hydrolysis in wheat endosperm).CrossRefGoogle Scholar
  5. Gibbons, G. C., 1979, Carlsberg Res. Comm. 44:353–366. (amylase production in barley).CrossRefGoogle Scholar
  6. Glennie, C. W., Harris, J., and Liebenberg, N. V. D. W., 1983, Cereal Chem. 60:27–31 (endosperm digestion in sorghum).Google Scholar
  7. Humphreys, T., and Echeverria, E., 1980, Phytochemistry 19:189–193 (sugar uptake by scutellum).CrossRefGoogle Scholar
  8. James, A. L., 1940, New Phytol. 39:133–144 (barley axis metabolism).CrossRefGoogle Scholar
  9. Miyata, S., and Akazawa, T., 1983, J. Cell Biol. 96:802–806 (amylase synthesis in rice).PubMedCrossRefGoogle Scholar
  10. Palmer, G. H., 1982, J. Inst. Brew. 88:145–153 (scutellar α-amylase production).Google Scholar
  11. Yamada, J., 1981, Agric. Biol. Chem. 45:747–750 (rice debranching enzymes).CrossRefGoogle Scholar

Section 7.3

  1. Davis, B. D., 1977, Plant Physiol. 60:513–517 (amylase in pea axis).PubMedCrossRefGoogle Scholar
  2. Juliano, B. O., and Varner, J. E., 1969, Plant Physiol. 44:886–892 (starch catabolism in pea cotyledons).PubMedCrossRefGoogle Scholar
  3. Keusch, L., 1968, Planta 78:321–350 (mannans in date).CrossRefGoogle Scholar
  4. Matheson, N. K., and Saini, H. S., 1977, Phytochemistry 16:59–66 (lupin cotyledons).CrossRefGoogle Scholar
  5. McCleary, B. V., and Matheson, N. K., 1976, Phytochemistry 15:43–47 (galactomannan mobilization).CrossRefGoogle Scholar
  6. Reid, J. S. G., 1971, Planta 100:131–142 (fenugreek endosperm hydrolysis).CrossRefGoogle Scholar
  7. Reid, J. S. G., and Bewley, J. D., 1979, Planta 147:145–150 (roles of fenugreek endosperm).CrossRefGoogle Scholar
  8. Yamasaki, Y., and Suzuki, Y., 1979, Plant Cell Physiol. 20:553–562 (amylase in bean).Google Scholar
  9. Yellowlees, D., 1980, Carbohyd. Res. 83:109–118 (debranching enzyme of pea).CrossRefGoogle Scholar

Section 7.4

  1. Bortman, S. J., Trelease, R. N., and Miernyk, J. A., 1981, Plant Physiol. 68:82–87 (glyoxysomes in cotton).PubMedCrossRefGoogle Scholar
  2. Breidenbach, R. W., and Beevers, H., 1967, Biochem. Biophys. Res. Comm. 27:462–469 (discovery of glyoxysome).PubMedCrossRefGoogle Scholar
  3. Huang, A. H. C., 1975, Plant Physiol. 55:555–558 (glycerol metabolism).PubMedCrossRefGoogle Scholar
  4. Huang, A. H. C., and Morgan, R. A., 1978, Planta 141:111–116 (lipases in oil seeds).CrossRefGoogle Scholar
  5. Hutton, D., and Stumpf, P. K., 1971, Arch. Biochem. Biophys. 142:48–60 (ricinoleic acid catabolism).PubMedCrossRefGoogle Scholar
  6. Khan, F. R., Saleemuddin, M., Siddiqi, M., and McFadden, B. A., 1979, J. Biol. Chem. 254:6938–6944 (destruction of isocitrate lyase).PubMedGoogle Scholar
  7. Kindl, H., Köller, W., and Frevert, J., 1980, Hoppe-Seyler’s Z. Physiol. Chem. 361:465–467 (cytosolic synthesis of glyoxysome enzymes).PubMedGoogle Scholar
  8. Lord, J. M., and Bowden, L., 1978, Plant Physiol. 61:266–270 (glyoxysome biogenesis).PubMedCrossRefGoogle Scholar
  9. Mettler, I. J., and Beevers, H., 1980, Plant Physiol. 66:555–560 (glyoxysomal NADH reoxidation).PubMedCrossRefGoogle Scholar
  10. Moore, T. S., Jr., Lord, J. M., Kagawa, T., and Beevers, H., 1973, Plant Physiol. 52:50–53 (membrane phospholipid biosynthesis).PubMedCrossRefGoogle Scholar
  11. Muto, S., and Beevers, H., 1974, Plant Physiol. 54:23–28 (lipid hydrolysis).PubMedCrossRefGoogle Scholar
  12. Nishimura, M., and Beevers, H., 1979, Plant Physiol. 64:31–37 (gluconeogenesis).PubMedCrossRefGoogle Scholar
  13. Opute, F. I., 1975, Ann. Bot. 39:1057–1061 (oil palm lipid catabolism).Google Scholar
  14. Rosnitschek, I., and Theimer, R. R., 1980, Planta 148:193–198 (rapeseed lipase).CrossRefGoogle Scholar
  15. Vick, B., and Beevers, H., 1978, Plant Physiol. 62:173–178 (plastid phospholipid synthesis).PubMedCrossRefGoogle Scholar
  16. Weir, E. M., Riezman, H., Grienenberger, J.-M., Becker, W. M., and Leaver, C. J., 1980, Eur. J. Biochem. 112:469–477 (cucumber glyoxysomal enzyme synthesis).PubMedCrossRefGoogle Scholar

Section 7.5

  1. Basha, S. M. M., and Beevers, L., 1975, Planta 124:77–87 (proteolysis in pea cotyledons).CrossRefGoogle Scholar
  2. Baumgartner, B., and Chrispeels, M. J., 1976, Plant Physiol. 58:1–6 (mung bean proteinase inhibitors).PubMedCrossRefGoogle Scholar
  3. Dilworth, M. F., and Dure, L., III, 1978, Plant Physiol. 61:698–702 (asparagine and glutamine synthesis).PubMedCrossRefGoogle Scholar
  4. Ericson, M. C., and Chrispeels, M. J., 1973, Plant Physiol. 52:98–104 (mung bean storage proteins).PubMedCrossRefGoogle Scholar
  5. Gilkes, N. R., and Chrispeels, M. J., 1980, Planta 149:361–369 (ER synthesis).CrossRefGoogle Scholar
  6. Hara, I., and Matsubara, H., 1980, Plant Cell Physiol. 21:219–232 (pumpkin seed globulins).Google Scholar
  7. Harris, N., 1981, Plant Cell Environ. 4:169–175 (plasmalemmasomes).CrossRefGoogle Scholar
  8. Herman, E. M., Baumgartner, B., and Chrispeels, M. J., 1981, Eur. J. Cell Biol. 24:226–235 (autophagic vacuoles).PubMedGoogle Scholar
  9. Higgins, C. F., and Payne, J. W., 1981, Plant Physiol. 67:785–792 (peptide uptake by scutellum).PubMedCrossRefGoogle Scholar
  10. Kern, R., and Chrispeels, M. J., 1978, Plant Physiol. 62:815–819 (amides in mung bean).PubMedCrossRefGoogle Scholar
  11. Khavin, E. E., Misharin, S. I., Markov, Y. Y., and Peshkova, A. A., 1978, Planta 143:11–20 (maize embryo proteins).CrossRefGoogle Scholar
  12. Larson, L. A., and Beevers, H., 1965, Plant Physiol. 40:424–432 (homoserine in peas).PubMedCrossRefGoogle Scholar
  13. Lichtenfeld, C., Manteurtel, R., Müntz, K., Neumann, D., Scholz, G., and Weber, E., 1979, Biochem. Physiol. Pflanzen. 174:255–274 (proteolysis in Vicia faba).Google Scholar
  14. Miflin, B. J., Wallsgrove, R. M., and Lea, P. J., 1981, in: Current Topics in Cellular Regulation, Volume 20, Academic Press, New York, pp. 1–43 (glutamine metabolism in plants).Google Scholar
  15. Moureaux, T., 1979, Phytochemistry 18:1113–1117 (proteolysis in maize endosperm).CrossRefGoogle Scholar
  16. Reilly, C. C., O’Kennedy, B. T., Titus, J. S., and Splittstoesser, W. E., 1978, Plant Cell Physiol. 19:1235–1246 (pumpkin globulin solubilization).Google Scholar
  17. Sopanen, T., Uuskallio, M., Nyman, S. and Mikola, J., 1980, Plant Physiol. 65:249–253 (scutellar leucine uptake).PubMedCrossRefGoogle Scholar
  18. Stewart, C. R., and Beevers, H., 1967, Plant Physiol. 42:1587–1595 (castor bean amino acids).PubMedCrossRefGoogle Scholar
  19. Sundblom, N.-O., and Mikola, J., 1972, Physiol. Plant. 27:281–284 (proteinases in barley aleurone).CrossRefGoogle Scholar
  20. Van Der Wilden, W., Gilkes, N. R., and Chrispeels, M. J., 1980, Plant Physiol. 66:390–394 (vicilin peptidohydrolase synthesis).PubMedCrossRefGoogle Scholar
  21. Van Der Wilden, W., Herman, E. M., and Chrispeels, M. J., 1980, Proc. Natl. Acad. Sci. USA 77:428–432 (autophagic vacuoles).PubMedCrossRefGoogle Scholar

Section 7.6

  1. Hall, J. R., and Hodges, T. K., 1966, Plant Physiol. 41:1459–1464 (P metabolism in oats).PubMedCrossRefGoogle Scholar
  2. Maiti, I. B., and Loewus, F. A., 1978, Planta 142:55–60 (myo-inositol metabolism).CrossRefGoogle Scholar
  3. Sugiura, M., and Sunobe, Y., 1962, Bot. Mag. (Tokyo) 75:63–71 (dicot P metabolism).Google Scholar
  4. Walker, K. A., 1974, Planta 116:91–98 (phytin in development and germination).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • J. Derek Bewley
    • 1
  • Michael Black
    • 2
  1. 1.Plant Physiology Research Group, Department of BiologyUniversity of CalgaryCalgaryCanada
  2. 2.Department of Biology, Queen Elizabeth CollegeUniversity of LondonCampden Hill, LondonEngland

Personalised recommendations