Advertisement

Regulation of Eukaryotic Translation

  • Raymond Kaempfer
Part of the Comprehensive Virology book series (COVI, volume 19)

Abstract

There is no doubt about the importance of transcriptional control for eukaryotic gene expression. Modern approaches of reversed genetics, involving analysis of the expression of eukaryotic gene sequences contained in plasmid vectors upon their introduction into eukaryotic cells, have provided a powerful and convenient tool to dissect this manner of control. Because the experimental design of studies of translational control is less straightforward, today, considerably less is understood about its mechanisms. Yet, there is increasing evidence that translational control mechanisms strongly influence the final level of expression of specific genes. Examples of this type of control are encountered in normal growth, in cell differentiation, and in virus infection. Moreover, in a variety of physiological stress conditions, it is the translation process that is most immediately affected. Much valuable information on the subject is summarized in Perez-Bercoff (1982) and in reviews by Austin and Kay (1982) and Maitra et al. (1982). Earlier reviews by Lodish (1976), Revel and Groner (1978), and Ochoa and de Haro (1979) remain useful.

Keywords

Initiation Factor Ribosomal Subunit Translational Control mRNA Species Eukaryotic Initiation Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abreu, S. L., and Lucas-Lenard, J., 1976, Cellular protein synthesis shutoff by mengovirus: Translation of nonviral and viral mRNAs in extracts from uninfected and infected Ehrlich ascites tumor cells, J. Virol. 18:182.PubMedGoogle Scholar
  2. Adamson, S. D., Herbert, E., and Godchaux, W., 1968, Factors affecting the rate of protein synthesis in lysate systems from reticulocytes, Arch. Biochem. Biophys. 125:671.PubMedGoogle Scholar
  3. Amesz, H., Goumans, H., Haubrich-Morree, T., Voorma, H. O., and Benne, R., 1979, Purification and characterisation of a protein factor that reverses the inhibition of protein synthesis by the heme-regulated translational inhibitor in rabbit reticulocyte lysates, Eur. J. Biochem. 98:513.PubMedGoogle Scholar
  4. Anderson, C. W., Lewis, J. B., Atkins, J. F., and Gesteland, R. F., 1974, Cell-free synthesis of adenovirus 2 proteins programmed by fractionated messenger RNA: A comparison of polypeptide products and messenger RNA lengths. Proc. Natl. Acad. Sci. USA 71:2756.PubMedGoogle Scholar
  5. Asselbergs, F. A. M., van Venrooij, W. J., and Bloemendal, H., 1979, Messenger RNA competition in living Xenopus oocytes, Eur. J. Biochem. 94:249.PubMedGoogle Scholar
  6. Asselbergs, F. A. M., Meulenberg, E., van Venrooij, W. J., and Bloemendal, H., 1980. Preferential translation of mRNAs in an mRNA-dependent reticulocyte lysate, Eur. J. Biochem. 109:159.PubMedGoogle Scholar
  7. Austin, S. A., and Clemens, M. J., 1981, The effects of haem on translational control of protein synthesis in cell-free extracts from fed and lysine-deprived Ehrlich ascites cells, Eur. J. Biochem. 117:601.PubMedGoogle Scholar
  8. Austin, S. A., and Kay, J. E., 1982, Translational regulation of protein synthesis in eukaryotes, Essays Biochem. 18:79.PubMedGoogle Scholar
  9. Baglioni, C., Simili, M., and Shafritz, D. A., 1978, Initiation activity of EMC virus RNA, binding to eIF-4B and shut-off of host cell protein synthesis, Nature 275:240.PubMedGoogle Scholar
  10. Balkow, K., Hunt, T., and Jackson, R. J., 1975, Control of protein synthesis in reticulocyte lysates: The effect of nucleotide triphosphates on formation of the translational repressor. Biochem. Biophys. Res. Commun. 67:366.PubMedGoogle Scholar
  11. Ballinger, D. G., and Hunt, T., 1981, Fertilization of sea urchin eggs is accompanied by 40 S ribosomal subunit phosphorylation, Dev. Biol. 87:277.PubMedGoogle Scholar
  12. Ballinger, D. G., and Pardue, M. L., 1983, The control of protein synthesis during heat shock in Drosophila cells involves altered polypeptide chain elongation rates, Cell 33:103.PubMedGoogle Scholar
  13. Banerjee, A. K., 1980, 5′-Terminal cap structure in eucaryotic messenger ribonucleic acids, Microbiol. Rev. 44:175.PubMedGoogle Scholar
  14. Baralle, F. E., and Brownlee, G. G., 1978, AUG is the only recognised signal sequence in the 5′ non-coding regions of eukaryotic mRNA, Nature 274:84.PubMedGoogle Scholar
  15. Barrieux, A., and Rosenfeld, M. G., 1977, Characterization of GTP-dependent MettRNAf binding protein, J. Biol. Chem. 252:3843.PubMedGoogle Scholar
  16. Barrieux, A., and Rosenfeld, M. G., 1978, mRNA-induced dissociation of initiation factor 2, J. Biol. Chem. 253:6311.PubMedGoogle Scholar
  17. Benne, R., and Hershey, J. W. B., 1976, Purification and characterization of initiation factor IF-E3 from rabbit reticulocytes, Proc. Natl. Acad. Sci. USA 73:3005.PubMedGoogle Scholar
  18. Benne, R., and Hershey, J. W. B., 1978, The mechanism of action of protein synthesis initiation factors from rabbit reticulocytes, J. Biol. Chem. 253:3078.PubMedGoogle Scholar
  19. Benne, R., Wong, C., Luedi, M., and Hershey, J. W. B., 1976, Purification and characterization of initiation factor IF-E2 from rabbit reticulocytes, J. Biol. Chem. 251:7675.PubMedGoogle Scholar
  20. Benne, R., Salimans, M., Goumans, H., Amesz, H., and Voorma, H. O., 1980, Regulation of protein synthesis in rabbit reticulocyte lysates. Phosphorylation of eIF-2 does not inhibit its capacity to recycle, Eur. J. Biochem. 104:501.PubMedGoogle Scholar
  21. Bergmann, I. E., and Brawerman, G., 1977, Control of breakdown of polyadenylate sequence in mammalian polyribosomes: Role of poly (adenylic acid)-protein interactions, Biochemistry 16:259.PubMedGoogle Scholar
  22. Bergmann, J. E., Trachsel, H., Sonenberg, N., Shatkin, A. J., and Lodish, H. F., 1979, Characterization of rabbit reticulocyte factor that stimulates the translation of mRNA lacking 5′-terminal 7-methylguanosine, J. Biol. Chem. 254:1440.PubMedGoogle Scholar
  23. Bienz, M., and Gurdon, J. B., 1982, The heat shock response in Xenopus oocytes is controlled at the translational level, Cell 29:811.PubMedGoogle Scholar
  24. Bonanou-Tzedaki, S. A., Smith, K. E., Sheeran, B. A., and Arnstein, H. R. V., 1978, Reduced formation of initiation complexes between met-tRNAf and 40s ribosomal subunits in rabbit reticulocyte lysates at elevated temperature, Eur. J. Biochem. 84:601.PubMedGoogle Scholar
  25. Bos, J. L., Polder, L. J., Bernards, R., Schrier, P. I., van der Elsen, P. J., van der Eb, A. J., and van Ormondt, H., 1981, The 2.2 kb Elb mRNA of human Adl2 and Ad5 codes for two tumor antigens starting at different AUG triplets, Cell 27:121.PubMedGoogle Scholar
  26. Brandhorst, B. P., 1976, Two-dimensional gel patterns of protein synthesis before and after fertilization of sea urchin eggs, Dev. Biol. 52:310.PubMedGoogle Scholar
  27. Brandis, J. W., and Raff, R. A., 1979, Elevation of protein synthesis is a complex response to fertilization, Nature 278:467.PubMedGoogle Scholar
  28. Brawerman, G., 1981, The role of the poly(A) sequence in mammalian messenger RNA, Crit. Rev. Biochem. 10:1.Google Scholar
  29. Breathnach, R., and Chambon, P., 1981, Organization and expression of eucaryotic split genes coding for proteins, Annu. Rev. Biochem. 50:349.PubMedGoogle Scholar
  30. Brendler, T., Godefroy-Colburn, T., Yu, S., and Thach, R. E., 1981, The role of mRNA competition in regulating translation. Comparisons of in vitro and in vivo results, J. Biol. Chem. 256:11755.PubMedGoogle Scholar
  31. Brown, B., and Ehrenfeld, E., 1980, Initiation factor preparations from poliovirus infected cells restrict translation in reticulocyte lysates, Virology 103:327.PubMedGoogle Scholar
  32. Browning, K. S., Leung, D. W., and Clark, J. M., Jr., 1980, Protection of satellite tobacco necrosis virus ribonucleic acid by wheat germ 40 S and 80 S ribosomes, Biochemistry 19:2276.PubMedGoogle Scholar
  33. Buckingham, M. E., Caput, D., Cohen, A., Whalen, R. G., and Gros, F., 1974, The synthesis and stability of cytoplasmic messenger RNA during myoblast differentiation in culture, Proc. Natl. Acad. Sci. USA 71:1466.PubMedGoogle Scholar
  34. Cancedda, R., Villa-Komaroff, L., Lodish, H. F., and Schlesinger, M., 1975, Initiation sites for translation of Sindbis virus 42S and 26S messenger RNAs, Cell 6:215.PubMedGoogle Scholar
  35. Carrasco, L., and Smith, A. E., 1976, Sodium ions and the shut-off of host cell protein synthesis by picornaviruses, Nature 264:807.PubMedGoogle Scholar
  36. Castel, A., Kraal, B., Konieczny, A., and Bosch, L., 1979, Translation by Escherichia coli ribosomes of alfalfa mosaic virus RNA 4 can be initiated at two sites on the monocistronic message, Eur. J. Biochem. 101:123.PubMedGoogle Scholar
  37. Celma, M. L., and Ehrenfeld, E., 1974, Translation of poliovirus RNA in vitro: Detection of two different initiation sites, J. Mol. Biol. 98:761.Google Scholar
  38. Cervera, M., Dryfus, G., and Penman, S., 1981, Messenger RNA is translated when associated with the cytoskeletal framework in normal and VSV-infected HeLa cells, Cell 23:113.PubMedGoogle Scholar
  39. Chaudhuri, A., Stringer, E. A., Valenzuela, D., and Maitra, U., 1981, Characterization of eIF-2 containing two polypeptide chains of M, = 48,000 and 38,000, J. Biol. Chem. 256:3988.PubMedGoogle Scholar
  40. Checkley, J. W., Cooley, L., and Ravel, J. M., 1981, Characterization of eIF-3 from wheat germ, J. Biol. Chem. 256:1582.PubMedGoogle Scholar
  41. Chen, Y., Woodley, C., Bose, K., and Gupta, N. K., 1972, Protein synthesis in rabbit reticulocytes: Characteristics of a Met-tRNAMet f binding factor, Biochem. Biophys. Res. Commun. 48:1.PubMedGoogle Scholar
  42. Cherbas, L., and London, I. M., 1976, On the mechanism of delayed inhibition of protein synthesis in heme-deficient rabbit reticulocyte lysates, Proc. Natl. Acad. Sci. USA 73:3506.PubMedGoogle Scholar
  43. Chroboczek, J., Witt, M., Ostrowka, K., Bassuner, R., Puchel, M., and Zagorski, W., 1980, Seed transmissibility of plant viruses may be modulated by competition between viral and cellular messengers. A proposal, Plant Sci. Lett. 19:263.Google Scholar
  44. Civelli, O., Vincent, A., Maundrell, K., Buri, J-F., and Scherrer, K., 1980. The translational repression of globin mRNA in free cytoplasmic ribonucleoprotein particles, Eur. J. Biochem. 107:577.PubMedGoogle Scholar
  45. Clark, B. F. C., and Marcker, K. A., 1966, The role of iV-formyl-methionyl-sRNA in protein biosynthesis, J. Mol. Biol. 17:394.PubMedGoogle Scholar
  46. Clemens, M. J., 1976, Functional relationships between reticulocyte polypeptide chain initiation factor (IF-MP) and the translational inhibitor involved in regulation of protein synthesis by haemin, Eur. J. Biochem. 66:413.PubMedGoogle Scholar
  47. Clemens, M. J., Safer, B., Merrick, W. C., Anderson, W. F., and London, I. M., 1975, Inhibition of protein synthesis in rabbit reticulocyte lysates by double stranded RNA and oxidized glutathione: Indirect mode of action on polypeptide chain initiation, Proc. Natl. Acad. Sci. USA 72:1286.PubMedGoogle Scholar
  48. Clemens, M. J., Pain, V. M., Wong, S-T., and Henshaw, E. C., 1982, Phosphorylation inhibits guanine nucleotide exchange on eukaryotic initiation factor 2, Nature 296:93.PubMedGoogle Scholar
  49. Colby, D. S., Finnerty, V., and Lucas-Lenard, J., 1974, Fate of mRNA of L-cells infected with mengovirus, J. Virol. 13:858.PubMedGoogle Scholar
  50. Collins, P., Fuller, F., Marcus, P., Hightower, L., and Ball, L. A., 1982, Synthesis and processing of Sindbis virus nonstructural proteins in vitro, Virology 118:363.PubMedGoogle Scholar
  51. Cooper, J. A., and Moss, B., 1978, Transcription of vaccinia virus mRNA coupled to translation in vitro, Virology 88:149.PubMedGoogle Scholar
  52. Coppola, G., and Bablanian, R., 1983, Discriminatory inhibition of protein synthesis in cell-free systems by vaccinia transcripts, Proc. Natl. Acad. Sci. USA 80:75.PubMedGoogle Scholar
  53. Cordell, B., Diamond, D., Smith, S., Punter, J., Schone, H., and Goodman, H. M., 1982, Disproportionate expression of the two nonallelic rat insulin genes in a pancreatic tumor is due to translational control, Cell 31:531.PubMedGoogle Scholar
  54. Daniels-McQueen, S., Detjen, B., Grifo, J. A., Merrick, W. C., and Thach, R. E., 1983, Unusual requirements for optimum translation of polio viral RNA in vitro, J. Biol. Chem. 258:7195.PubMedGoogle Scholar
  55. Darnbrough, C., Hunt, T., and Jackson, R. J., 1972, A complex between Met-tRNAf and native 40 S subunits in reticulocyte lysates and its disappearance during incubation with double-stranded RNA, Biochem. Biophys. Res. Commun. 48:1556.PubMedGoogle Scholar
  56. Darnbrough, C. H., Legon, S., Hunt, T., and Jackson, R. J., 1973, Initiation of protein synthesis: Evidence for messenger RNA independent binding of methionyltransfer RNA to the 40 S ribosomal subunit, J. Mol. Biol. 76:379.PubMedGoogle Scholar
  57. Dasgupta, A., Das, A., Roy, R., Ralston, R., Majumdar, A., and Gupta, N. K., 1978, Protein synthesis in rabbit reticulocytes. XXI. Purification and properties of a protein factor (Co-EIF-1) which stimulates Met-tRNAf binding to EIF-1, J. Biol. Chem. 253:6054.PubMedGoogle Scholar
  58. Davidson, E. H., 1976, Gene Activity in Early Development, Academic Press, New York.Google Scholar
  59. Degener, A. M., Pagnotti, P., Facchini, J., and Perez-Bercoff, R., 1983, Genomic RNA of mengovirus. Translation of its two cistrons in lysates of interferon-treated cells, J. Virol. 45:889.PubMedGoogle Scholar
  60. De Haro, C., and Ochoa, S., 1978, Mode of action of the hemin-controlled inhibitor of protein synthesis: Studies with factors from rabbit reticulocytes, Proc. Natl. Acad. Sci. USA 75:2713.Google Scholar
  61. De Haro, C., and Ochoa, S., 1979, Further studies on the mode of action of the hemin-controlled translational inhibitor: Stimulating protein acts at level of binary complex formation, Proc. Natl. Acad. Sci. USA 76:2163.Google Scholar
  62. De Wachter, R., 1979, Do eukaryotic mRNA 5′ noncoding sequences base-pair with the 18 S ribosomal RNA 3′ terminus? Nucl. Acids Res. 7:2045.Google Scholar
  63. Di Domenico, B., Bugaisky, G., and Lindquist, S., 1982, The heat shock response is self-regulated at both the transcriptional and post-transcriptional levels, Cell 31:593.Google Scholar
  64. Di Segni, G., Rosen, H., and Kaempfer, R., 1979, Competition between a-and β-globin messenger ribonucleic acids for eukaryotic initiation factor 2, Biochemistry 18:2847.PubMedGoogle Scholar
  65. Duncan, R., and McConkey, E. H., 1982, Preferential utilization of phosphorylated 40-S ribosomal subunits during initiation complex formation, Eur. J. Biochem. 123:535.PubMedGoogle Scholar
  66. Efstratiadis, A., Kafatos, F. C., and Maniatis, T., 1977, The primary structure of β-globin mRNA as determined from cloned DNA, Cell 10:571.PubMedGoogle Scholar
  67. Efstratiadis, A., Posakony, J. W., Maniatis, T., Lawn, R. M., O’Connell, C., Spritz, R. A., DeRiel, J. K., Forget, B. G., Weissman, S. M., Slightom, J. L., Blechl, A. E., Smithies, O., Baralle, F., Shoulders, C. C., and Proudfoot, N. J., 1980, The structure and evolution of the human β-globin gene family, Cell 21:653.PubMedGoogle Scholar
  68. Egberts, E., Hackett, P., and Traub, P., 1977, Alteration of the intracellular energetic and ionic conditions by mengovirus infection of Ehrlich ascites tumor cells and its influence on protein synthesis in the midphase of infection, J. Virol. 22:591.PubMedGoogle Scholar
  69. Ehrenfeld, E., and Brown, D., 1981, Stability of poliovirus RNA in cell-free translation systems utilizing two initiation sites, J. Biol. Chem. 256:2656.PubMedGoogle Scholar
  70. Ehrenfeld, E., and Hunt, T., 1971, Double-stranded poliovirus RNA inhibits initiation of protein synthesis by reticulocyte lysates, Proc. Nail. Acad. Sci. USA 68:1075.Google Scholar
  71. Epstein, D. A., Czarniecki, C. W., Jacobsen, H., Friedman, R. M., and Panet, A., 1981, A mouse cell line, which is unprotected by interferon against lytic virus infection, lacks ribonuclease F activity, Ear. J. Biochem. 118:9.Google Scholar
  72. Ernst, V., Levin, D. H., Ranu, R. S., and London, I. M., 1976, Control of protein synthesis in reticulocyte lysates: Effects of cyclic AMP, ATP and GTP on inhibitions induced by heme-deficiency, dsRNA and a reticulocyte translational inhibitor. Proc. Nail. Acad. Sci. USA 73:1112.Google Scholar
  73. Ernst, V., Levin, D. H., and London, I. M., 1978a, Evidence that glucose 6-phos-phate regulates protein synthesis initiation in reticulocyte lysates, J. Biol. Chem. 253:7163.PubMedGoogle Scholar
  74. Ernst, V., Levin, D. H., and London, I. M., 1978b, Inhibition of protein synthesis initiation by oxidized glutathione, Proc. Nail. Acad. Sci. USA 75:4110.Google Scholar
  75. Ernst, V., Levin, D. H., Leroux, A., and London, I. M., 1980, Site-specific phosphorylation of the α-subunit of eukaryotic initiation factor eIF-2 by the hemeregulated and double-stranded RNA-activated eIF-2α kinases from rabbit reticulocyte lysates, Proc. Nail. Acad. Sci. USA 77:1286.Google Scholar
  76. Ernst, V., Zukofsky-Baum, E., and Reddy, P., 1982, Heat shock, protein phosphorylation and the control of translation in rabbit reticulocytes, reticulocyte lysate, and HeLa cells, in: Heai Shock, from Bacteria to Man (M. J. Schlesinger, M. Ashburner, and A. Tissières, eds.), pp. 215–225, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  77. Falvey, A., and Staehelin, T., 1970, Structure and function of mammalian ribosomes. II. Exchange of ribosomal subunits at various stages of in vitro polypeptide synthesis,J. Mol. Biol. 53:21.PubMedGoogle Scholar
  78. Farrell, P. J., Balkow, K., Hunt, T., Jackson, R. J., and Trachsel, H., 1977, Phosphorylation of initiation factor eIF-2 and the control of reticulocyte protein synthesis, Cell 11:187.PubMedGoogle Scholar
  79. Fellner, P., 1979, General organization and structure of the picornavirus genome, in: The Molecular Biology of Picornaviruses (R. Perez-Bercoff, ed.), pp. 25–47, Plenum Publishing, New York.Google Scholar
  80. Furuichi, Y., LaFiandra, A., and Shatkin, A. J., 1977, 5′-Terminal structure and mRNA stability, Nature 266:235.PubMedGoogle Scholar
  81. Gette, W. R., and Heywood, S. M., 1979, Translation of myosin heavy chain mRNA in an eIF-3-and messenger-dependent muscle cell-free system, J. Biol. Chem. 254:9879.PubMedGoogle Scholar
  82. Ghosh-Dastidar, P., Gilbin, D., Yaghmai, B., Das, A., Das, H. K., Parkhurst, H. K., and Gupta, N. K., 1980, A study of the mechanism of interreaction of fluorescently labeled Co-eIF-2A with eIF-2 using fluorescence polarization, J. Biol. Chem. 255:3826.PubMedGoogle Scholar
  83. Gianni, A. M., Giglioni, B., Ottolenghi, S., Comi, P., and Guidotti, G. G., 1972, Globin α-chain synthesis directed by “supernatant” 10S RNA from rabbit reticulocytes, Nature New Biol. 240:183.PubMedGoogle Scholar
  84. Giloh, H., and Mager, J., 1975, Inhibition of peptide chain initiation in lysates from ATP-depleted cells. I. Stages in the evolution of the lesion and its reversal by thiol compounds, cyclic AMP or purine derivatives and phosphorylated sugars, Biochim. Biophys. Acta 414:293.PubMedGoogle Scholar
  85. Giloh, H., Schochat, L., and Mager, J., 1975, Inhibition of peptide chain initiation in lysates from ATP-depleted cells, Biochim. Biophys. Acta 414:309.PubMedGoogle Scholar
  86. Girard, M., and Baltimore, D., 1966, The effect of HeLa cell cytoplasm on the rate of sedimentation of RNA, Proc. Natl. Acad. Sci. USA 56:999.PubMedGoogle Scholar
  87. Glanville, N., Ranki, M., Mörser, J., Kääriäinen, L., and Smith, A. E., 1976, Initiation of translation directed by 42 S and 26 S RNAs from Semliki Forest virus in vitro, Proc. Natl. Acad. Sci. USA 73:3059.PubMedGoogle Scholar
  88. Glover, C. V. C., 1982, Heat shock induces rapid dephosphorylation of a ribosomal protein in Drosophila, Proc. Natl. Acad. Sci. USA 79:1781.Google Scholar
  89. Glover, J. F., and Wilson, T. M. A., 1982, Efficient translation of the coat protein cistron of tobacco mosaic virus in a cell-free system from Escherichia coli, Eur. J. Biochem. 122:485.Google Scholar
  90. Golini, F., Thach, S. S., Birge, C. H., Safer, B., Merrick, W. C., and Thach, R. E., 1976, Competition between cellular and viral mRNAs in vitro is regulated by a messenger discriminatory factor, Proc. Natl. Acad. Sci. USA 73:3040.PubMedGoogle Scholar
  91. Gressner, A. M., and Wool, I. G., 1974, The phosphorylation of liver ribosomal proteins in vivo, J. Biol. Chem. 249:6917.Google Scholar
  92. Grifo, J. A., Tahara, S. M., Leis, J. P., Morgan, M. A., Shatkin, A. J., and Merrick, W. C., 1982, Characterization of eukaryotic initiation factor 4A, a protein involved in ATP-dependent binding of globin mRNA, J. Biol. Chem. 257:5246.PubMedGoogle Scholar
  93. Grifo, J. A., Tahara, S. M., Morgan, M. A., Shatkin, A. J., and Merrick, W. C., 1983, New initiation factor activity required for globin mRNA translation, J. Biol. Chem. 258:5804.PubMedGoogle Scholar
  94. Gross, K. W., Jacobs-Lorena, M., Baglioni, C., and Gross, P. R., 1973, Cell-free translation of maternal messenger RNA from sea urchin eggs, Proc. Natl. Acad. Sci. USA 70:2614.PubMedGoogle Scholar
  95. Gross, M., 1974, Control of globin synthesis by hemin: An intermediate form of the translational repressor in rabbit reticulocyte lysates, Biochim. Biophys. Acta 366:319.PubMedGoogle Scholar
  96. Gross, M., 1978, Regulation of protein synthesis by hemin: Effect of dithiothreitol on the formation and activity of the hemin controlled translational repressor, Biochim. Biophys. Acta 520:642.PubMedGoogle Scholar
  97. Gross, M., and Mendelewski, J., 1977, Additional evidence that the hemin controlled repressor from rabbit reticulocytes is a protein kinase, Biochem. Biophys. Res. Commun. 74:559.PubMedGoogle Scholar
  98. Gross, M., and Mendelewski, J., 1978, Control of protein synthesis by hemin. An association between the formation of the hemin-controlled translational repressor and the phosphorylation of a 100,000 molecular weight protein, Biochim1. Biophys. Acta 520:650.Google Scholar
  99. Gross, M., and Rabinovitz, M., 1972a, Control of globin synthesis in cell-free preparations of reticulocytes by formation of a translational repressor that is inactivated by haemin, Proc. Natl. Acad. Sci. USA 69:1565.PubMedGoogle Scholar
  100. Gross, M., and Rabinovitz, M., 1972b, Control of globin synthesis by hemin: Factors influencing formation of an inhibitor of globin chain initiation in reticulocyte lysates, Biochim. Biophys. Acta 287:340.PubMedGoogle Scholar
  101. Gross, P. R., Malkin, J. L., and Moyer, W. A., 1964, Templates for the first proteins of embryonic development, Proc. Natl. Acad. Sci. USA 51:407.PubMedGoogle Scholar
  102. Grunstein, M., and Schedl, P., 1976, Isolation and sequence analysis of sea urchin (Lytechinus pictus) histone H4 messenger RNA, J. Mol. Biol. 104:323.PubMedGoogle Scholar
  103. Gupta, N. K., 1982, Regulation of eIF-2 activity and initiation of protein synthesis in mammalian cells, in: Protein Biosynthesis in Eukaryotes (R. Perez-Bercoff, ed.), pp. 157–166, Plenum Publishing, New York.Google Scholar
  104. Gupta, S. L., 1979, Specific protein phosphorylation in interferon-treated uninfected and virus infected mouse L929 cells: Enhancement by double-stranded RNA, J. Virol. 29:301.PubMedGoogle Scholar
  105. Gupta, S. L., Sopori, M. L., and Lengyel, P., 1974, Release of the inhibition of mRNA translation in extracts of interferon-treated Ehrlich ascites tumor cells by added tRNA, Biochem. Biophys. Res. Commun. 57:763.PubMedGoogle Scholar
  106. Guthrie, C., and Nomura, M., 1968, Initiation of protein synthesis: A critical test of the 30 S subunit model, Nature 219:232.PubMedGoogle Scholar
  107. Hackett, P. B., Egberts, E., and Traub, P., 1978a, Selective translation of mengovirus RNA over host mRNA in homologous, fractionated, cell-free translational systems from Ehrlich-ascites tumor cells, Eur. J. Biochem. 83:353.PubMedGoogle Scholar
  108. Hackett, P. B., Egberts, E., and Traub, P., 1978b, Translation of ascites and mengovirus RNA in fractionated cell-free systems from uninfected and mengovirusinfected Ehrlich-ascites tumor cells, Eur. J. Biochem. 83:341.PubMedGoogle Scholar
  109. Hagenbüchle, O., Santer, M., Steitz, J. A., and Mans, R. J., 1978, Conservation of the primary structure at the 3′ end of 18 S rRNA from eucaryotic cells, Cell 13:551.PubMedGoogle Scholar
  110. Heindell, H. C., Liu, A., Paddock, G. V., Studnicker, G. M., and Salser, W., 1978, The primary structure of rabbit α-globin mRNA, Cell 15:43.PubMedGoogle Scholar
  111. Hershey, J. W. B., 1982a, The initiation factors, in: Protein Biosynthesis in Eukaryotes (R. Perez-Bercoff, ed.), pp. 97–117, Plenum Publishing, New York.Google Scholar
  112. Hershey, J. W. B., 1982b, Messenger ribonucleoprotein particles, in: Protein Biosynthesis in Eukaryotes (R. Perez-Bercoff, ed.), pp. 157–166, Plenum Publishing, New York.Google Scholar
  113. Herson, D., Schmidt, A., Seal, S., Marcus, A., and van Vloten-Doting, L., 1979, Competitive mRNA translation in an in vitro system from wheat germ, J. Biol. Chem. 254:8245.PubMedGoogle Scholar
  114. Heywood, S. M., and Rich, A., 1968, In vitro synthesis of native myosin, actin, and tropomyosin from embryonic chick polyribosomes, Proc. Natl. Acad. Sci. USA 59:590.Google Scholar
  115. Hickey, E. D., Weber, L. A., and Baglioni, C., 1976, Inhibition of initiation of protein synthesis by 7-methylguanosine-5′-monophosphate, Proc. Natl. Acad. Sci. USA 73:19.PubMedGoogle Scholar
  116. Horst, H., Fraenkel-Conrat, H., and Mandeles, 1971, Terminal heterogeneity at both ends of the satellite tobacco necrosis virus ribonucleic acid, Biochemistry 10:4748.PubMedGoogle Scholar
  117. Hovanessian, A. G., Meurs, E., Aujean, O., Vaquero, C., Stefanos, S. and Falcoff, E., 1980, Antiviral response and induction of specific proteins in cells treated with immune (Type II) interferon analogous to that from viral interferon (Type I)-treated cells, Virology 104:195.PubMedGoogle Scholar
  118. Howard, G., Adamson, S., and Herbert, E., 1970, Subunit recycling during translation in a reticulocyte cell-free system, J. Biol. Chem. 245:6237.PubMedGoogle Scholar
  119. Humphreys, T., 1969, Efficiency of translation of messenger-RNA before and after fertilization in sea urchins, Dev. Biol. 20:435.PubMedGoogle Scholar
  120. Humphreys, T., 1971, Measurements of messenger RNA entering polysomes upon fertilization of sea urchin eggs, Dev. Biol. 26:201.PubMedGoogle Scholar
  121. Hunt, T., 1974, The control of globin synthesis in rabbit reticulocytes, Ann. N.Y. Acad. Sci. 241:223.PubMedGoogle Scholar
  122. Hunt, T., 1976, Control of globin synthesis, Br. Med. Bull. 32:257.PubMedGoogle Scholar
  123. Hunt, T., and Ehrenfeld, E., 1971, Cytoplasm from poliovirus infected HeLa cells inhibits cell-free haemoglobin synthesis, Nature New Biol. 230:91.PubMedGoogle Scholar
  124. Hunt, T., Hunter, T., and Munro, A., 1968, Control of haemoglobin synthesis: A difference in the size of the polysomes making a and β chains, Nature 220:481.PubMedGoogle Scholar
  125. Hunt, T., Herbert, P., Campbell, E. A., Delidakis, C., and Jackson, R. J., 1983, The use of affinity chromatography on 2′5′ADP-sepharose reveals a requirement for NADPH, thioredoxin and thioredoxin reductase for the maintenance of high protein synthesis activity in rabbit reticulocyte lysates, Eur. J. Biochem. 131:303.PubMedGoogle Scholar
  126. Hunter, T., Hunt, T., Jackson, R. J., and Robertson, H. D., 1975, The characteristics of inhibition of protein synthesis by double-stranded ribonucleic acid in reticulocyte lysates, J. Biol. Chem. 250:409.PubMedGoogle Scholar
  127. Hunter, A. R., Hunt, T., Knowland, J., and Zimmern, D., 1976, Messenger RNA for the coat protein of tobacco mosaic virus, Nature 260:759.PubMedGoogle Scholar
  128. Ignotz, G. G., Hokari, S., DePhilip, R. M., Tsukada, K., and Lieberman, I., 1981, Lodish model and regulation of ribosomal protein synthesis by insulin-deficient chick embryo fibroblasts, Biochemistry 20:2550.PubMedGoogle Scholar
  129. Jackson, R. J., 1982, The cytoplasmic control of protein synthesis, in: Protein Biosynthesis in Eukaryotes (R. Perez-Bercoff, ed.), pp. 363–418, Plenum Publishing, New York.Google Scholar
  130. Jackson, R. J., Herbert, P., Campbell, E. A., and Hunt, T., 1983, The roles of sugar phosphates and thiol-reducing systems in the control of reticulocyte protein synthesis, Eur. J. Biochem. 131:313.PubMedGoogle Scholar
  131. Jacobsen, H., Epstein, D. A., Friedmann, R. A., Safer, B., and Torrence, P. F., 1983, Double-stranded RNA-dependent phosphorylation of protein PI and eukaryotic initiation factor 2α does not correlate with protein synthesis inhibition in a cell-free system from interferon-treated mouse L cells, Proc. Natl. Acad. Sci. USA 80:41.Google Scholar
  132. Jacobson, M. F., and Baltimore, D., 1968, Polypeptide cleavages in the formation of poliovirus proteins, Proc. Natl. Acad. Sci. USA 61:77.PubMedGoogle Scholar
  133. Jagus, R., and Safer, B., 1981α, Activity of eukaryotic initiation factor 2 is modified by processes distinct from phosphorylation. Activities of eukaryotic initiation factor 2 and eukaryotic initiation factor 2α kinase in lysate gel filtered under different conditions, J. Biol. Chem. 256:1317.PubMedGoogle Scholar
  134. Jagus, R., and Safer, B., 1981b, Activity of eukaryotic initiation factor 2 is modified by processes distinct from phosphorylation. Activity of eukaryotic initiation factor 2 in lysate modified by oxidation-reduction state of its sulfhydryl groups, J. Biol. Chem. 256:1324.PubMedGoogle Scholar
  135. Jain, S. K., and Sarkar, S., 1979, Poly(riboadenylate)-containing messenger ribonucleoprotein particles of chick embryonic muscles, Biochemistry 18:745.PubMedGoogle Scholar
  136. Jay, G., Nomura, S., Anderson, C. W., and Khoury, G., 1981, Identification of the SV40 agnogene product: A DNA binding protein, Nature 291:346.PubMedGoogle Scholar
  137. Jen, G., Birge, C. H., and Thach, R. E., 1978, Comparison of initiation rates of encephalomyocarditis virus and host protein synthesis in infected cells, J. Virol. 27:640.PubMedGoogle Scholar
  138. Jense, H., Knauert, F., and Ehrenfeld, E., 1978, Two initiation sites for translation of poliovirus in vitro: Comparison of LSc and Moloney strains, J. Virol. 28:387.PubMedGoogle Scholar
  139. Jones, R. L., Sadnik, I., Thompson, H. A., and Moldave, K., 1980, Studies on native ribosomal subunits from rat liver, Arch. Biochem. Biophys. 199:277.PubMedGoogle Scholar
  140. Kääriäinen, L., and Söderlund, H., 1978, Structure and replication of α-viruses, Curr. Top. Microbiol. Immunol. 82:15.PubMedGoogle Scholar
  141. Kabat, D., and Chappell, M. R., 1977, Competition between globin messenger ribonucleic acids for a discriminating initiation factor, J. Biol. Chem. 252:2684.PubMedGoogle Scholar
  142. Kaempfer, R., 1968, Ribosomal subunit exchange during protein synthesis, Proc. Natl. Acad. Sci. USA 61:106.PubMedGoogle Scholar
  143. Kaempfer, R., 1969, Ribosomal subunit exchange in the cytoplasm of a eukaryote, Nature 222:950.PubMedGoogle Scholar
  144. Kaempfer, R., 1970, Dissociation of ribosomes on polypeptide chain termination and origin of single ribosomes, Nature 228:534.PubMedGoogle Scholar
  145. Kaempfer, R., 1971, Control of single ribosome formation by an initiation factor for protein synthesis, Proc. Natl. Acad. Sci. USA 68:2458.PubMedGoogle Scholar
  146. Kaempfer, R., 1972, Initiation factor IF-3: A specific inhibitor of ribosomal subunit association, J. Mol. Biol. 71:583.PubMedGoogle Scholar
  147. Kaempfer, R., 1974a, The ribosome cycle, in: Ribosomes (M. Nomura, A. Tissières, and P. Lengyel, eds.), pp. 679–704, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  148. Kaempfer, R., 1974b, Identification and RNA binding properties of an initiation factor capable of relieving translational inhibition induced by heme deprivation or double-stranded RNA, Biochem. Biophys. Res. Commun. 61:591.Google Scholar
  149. Kaempfer, R., 1979, Purification of initiation factor eIF-2 by RNA-affinity chro-matography, in: Methods in Enzymology, Vol. 60, Part G (L. Grossman and K. Moldave, eds.), pp. 247–255, Academic Press, New York.Google Scholar
  150. Kaempfer, R., 1982, Messenger RNA Competition, in: Protein Biosynthesis in Eukaryotes (R. Perez-Bercoff, ed.), pp. 441–458, Plenum Publishing, New York.Google Scholar
  151. Kaempfer, R., 1984, Differential gene expression by messenger RNA competition for eukaryotic initiation factor 2, in: Protein Synthesis: Translation and Post-Translational Events (A. K. Abraham, T. S. Eikhom, and I. F. Pryme, eds.), pp. 57–76, The Humana Press, Clifton, New Jersey.Google Scholar
  152. Kaempfer, R., and Kaufman, J., 1972, Translational control of hemoglobin synthesis by an initiation factor required for recycling of ribosomes and for their binding to messenger RNA, Proc. Natl. Acad. Sci. USA 69:3317.PubMedGoogle Scholar
  153. Kaempfer, R., and Kaufman, J., 1973, Inhibition of cellular protein synthesis by double-stranded RNA: Inactivation of an initiation factor, Proc. Natl. Acad. Sci. USA 70:1222.PubMedGoogle Scholar
  154. Kaempfer, R., and Konijn, A. M., 1983, Translational competition by mRNA species encoding albumin, ferritin, haemopexin and globin, Eur. J. Biochem. 131:545.PubMedGoogle Scholar
  155. Kaempfer, R., Meselson, M., and Raskas, H., 1968, Cyclic dissociation into stablesubunits and reformation of ribosomes during bacterial growth, J. Mol. Biol. nan. 31:277.Google Scholar
  156. Kaempfer, R., Hollender, R., Abrams, W. R., and Israeli, R., 1978a, Specific binding of messenger RNA and methionyl-tRNAMet f by the same initiation factor for eukaryotic protein synthesis, Proc. Natl. Acad. Sci. USA 75:209.PubMedGoogle Scholar
  157. Kaempfer, R., Rosen, H., and Israeli, R., 1978b, Translational control: Recognition of the methylated 5′ end and an internal sequence in eukaryotic mRNA by the initiation factor that binds methionyl-tRNAMet f, Proc. Natl. Acad. Sci. USA 75:650.PubMedGoogle Scholar
  158. Kaempfer, R., Hollender, R., Soreq, H., and Nudel, U., 1979a, Recognition of messenger RNA in eukaryotic protein synthesis: Equilibrium studies of the interaction between messenger RNA and the initiation factor that binds methionyl-tRNAf, Eur. J. Biochem. 94:591.PubMedGoogle Scholar
  159. Kaempfer, R., Israeli, R., Rosen, H., Knoller, S., Zilberstein, A., Schmidt, A., and Revel, M., 1979b, Reversal of the interferon-induced block of protein synthesis by purified preparations of eucaryotic initiation factor 2, Virology 99:170.PubMedGoogle Scholar
  160. Kaempfer, R., Van Emmelo, J., and Fiers, W., 1981, Specific binding of eukaryotic initiation factor 2 to satellite tobacco necrosis virus RNA at a 5′-terminal sequence comprising the ribosome binding site, Proc. Natl. Acad. Sci. USA 78:1542.PubMedGoogle Scholar
  161. Kaempfer, R., Rosen, H., Di Segni, G., and Knoller, S., 1984, Structural feature of picornavirus RNA involved in pathogenesis: A very high affinity binding site for a messenger RNA-recognizing protein, in: Developments in Molecular Virology, Vol. 6, Mechanisms of Viral Pathogenesis (A. Kohn and P. Fuchs, eds.), pp. 180–200, Martinus Nijhoff, The Hague.Google Scholar
  162. Kakidani, H., Furutani, Y., Takahashi, H., Noda, M., Morimoto, Y., Hirose, T., Asai, M., Inayama, S., Nakanishi, S., and Numa, S., 1982, Cloning and sequence analysis of cDNA for porcine β-neo-endorphin/dynorphin precursor, Nature 298:245.PubMedGoogle Scholar
  163. Kay, J. E., Wallace, D. M., Benzie, C. R., and Jagus, R., 1979, Regulation of protein synthesis during lymphocyte activation by phytohaemagglutinin, in: Cell Biology and Immunology of Leukocyte Function (M. R. Quastel, ed.), pp. 107–114, Academic Press, New York.Google Scholar
  164. Kaziro, Y., 1978, The role of guanosine 5′-triphosphate in polypeptide chain elongation, Biochim. Biophys. Acta 505:95.PubMedGoogle Scholar
  165. Kelley, D., Coleclough, C., and Perry, R. P., 1982, Functional significance and evolutionary development of the 5′-terminal regions of immunoglobulin variableregion genes, Cell 29:681.PubMedGoogle Scholar
  166. Kerr, I. M., Brown, R. E., and Ball, L. A., 1974, Increased sensitivity of cell free protein synthesis to double stranded RNA after interferon treatment, Nature 250:57.PubMedGoogle Scholar
  167. Kimchi, A., Zilberstein, A., Schmidt, A., Shulman, L., and Revel, M., 1979, The interferon induced protein kinase PK-i from mouse L cells, J. Biol. Chem. 254:9846.PubMedGoogle Scholar
  168. Kinniburgh, A., McMullen, M. D., and Martin, T. E., 1979, Distribution of cytoplasmic poly(A) + RNA sequences in free mRNP and polysomes of mouse ascites cells, J. Mol. Biol. 132:695.PubMedGoogle Scholar
  169. Kitamura, N., Semler, B., Rothberg, P., Larsen, G., Adler, C., Dorner, A., Emini, E., Hanecak, R., Lee, J., van der Werf, S., Anderson, C. W., and Wimmer, E., 1981, Primary structure, gene organization and polypeptide expression of poliovirus RNA, Nature 291:547.PubMedGoogle Scholar
  170. Klein, W. H., Nolan, C., Lazar, J. M., and Clark, J. M., Jr., 1972, Translation of satellite tobacco necrosis virus RNA: Characterization of in vitro procaryotic and eucaryotic translation products, Biochemistry 11:2009.PubMedGoogle Scholar
  171. Knauert, F., and Ehrenfeld, E., 1979, Translation of poliovirus RNA in vitro: Studies on N-formylmethionine-labeled polypeptides initiated in cell-free extracts prepared from poliovirus infected HeLa cells, Virology 93:537.PubMedGoogle Scholar
  172. Koch, F., Koch, G., and Kruppa, J., 1982, Virus-induced shut-off of host specific protein synthesis, in: Protein Biosynthesis in Eukaryotes (R. Perez-Bercoff, ed.), pp. 339–361, Plenum Publishing, New York.Google Scholar
  173. Konienczny, A., and Safer, B., 1983, Purification of the eukaryotic initiation factor 2-eukaryotic initiation factor 2B complex and characterization of its guanine nucleotide exchange activity during protein synthesis initiation, J. Biol. Chem. 258:3402.Google Scholar
  174. Kosower, N. S., Vanderhoff, G. A., and Kosower, E. M., 1972, Glutathione. VIII. The effects of glutathione disulfide on initiation of protein synthesis, Biochim. Biophys. Acta 272:623.PubMedGoogle Scholar
  175. Kozak, M., 1978, How do eucaryotic ribosomes select initiation regions in messenger RNA? Cell 15:1109.PubMedGoogle Scholar
  176. Kozak, M., 1980a, Influence of mRNA secondary structure on binding and migration of 40 S ribosomal subunits, Cell 19:79.PubMedGoogle Scholar
  177. Kozak, M., 1980b, Role of ATP in binding and migration of 40 S ribosomal subunits, Cell 22:459.PubMedGoogle Scholar
  178. Kozak, M., 1981a, Mechanism of mRNA recognition by eukaryotic ribosomes during initiation of protein synthesis, Curr. Top. Microbiol. Immunol. 93:81.PubMedGoogle Scholar
  179. Kozak, M., 1981b, Possible role of flanking nucleotides in recognition of the AUG initiator codon by eukaryotic ribosomes, Nucl. Acids Res. 9:5233.Google Scholar
  180. Kozak, M., 1983, Comparison of initiation of protein synthesis in procaryotes, eucaryotes, and organelles, Microbiol. Rev. 47:1.PubMedGoogle Scholar
  181. Kramer, G., Cimadevilla, M., and Hardesty, B., 1976, Specificity of the protein kinase activity associated with the hemin-controlled repressor of rabbit reticulocytes, Proc. Natl. Acad. Sci. USA 73:3078.PubMedGoogle Scholar
  182. Kronenberg, H., Roberts, B., and Efstratiadis, A., 1979, The 3′ noncoding region of β-globin mRNA is not essential for in vitro translation, Nucl. Acids Res. 6:153.Google Scholar
  183. Krüger, C., and Benecke, B-J., 1981, In vitro translation of Drosophila heat-shock and non-heat-shock mRNAs in heterologous and homologous cell-free systems, Cell 23:595.PubMedGoogle Scholar
  184. Laskey, R. A., Mills, A. D., Gurdon, J. B., and Partington, G. A., 1977, Protein synthesis in oocytes of Xenopus laevis is not regulated by the supply of mRNA, Cell 11:345.PubMedGoogle Scholar
  185. Lawrence, C., and Thach, R. E., 1974, Encephalomyocarditis virus infection of mouse plasmacytoma cells. I. Inhibition of cellular protein synthesis, J. Virol. 14:598.PubMedGoogle Scholar
  186. Lebleu, B., Sen, G. C., Shaila, S., Cabrer, B., and Lengyel, P., 1976, Interferon, double-stranded RNA and protein phosphorylation, Proc. Natl. Acad. Sci. USA 73:3107.PubMedGoogle Scholar
  187. Lee, K. A. W., and Sonenberg, N., 1982, Inactivation of cap-binding proteins accompanies the shut-off of host protein synthesis by poliovirus, Proc. Natl. Acad. Sci. USA 79:3447.PubMedGoogle Scholar
  188. Lee, K. A. W., Guertin, D., and Sonenberg, N., 1983, mRNA secondary structure as a determinant in cap recognition and initiation complex formation, J. Biol. Chem. 258:707.PubMedGoogle Scholar
  189. Legon, S., Jackson, R. J., and Hunt, T., 1973, Control of protein synthesis in reticulocyte lysates by haemin, Nature New Biol. 241:150.PubMedGoogle Scholar
  190. Lehtovaara, P., Söderlund, H., Keränen, S., Pettersson, R., and Kääriäinen, L., 1982, Extreme ends of the genome are conserved and rearranged in the defective interfering RNAs of Semliki Forest virus, J. Mol. Biol. 156:731.PubMedGoogle Scholar
  191. Lengyel, P., 1982a, Biochemistry of interferons and their actions, Annu. Rev. Biochem. 51:251.PubMedGoogle Scholar
  192. Lengyel, P., 1982b, Interferon action: Control of RNA processing, translation and degradation, in: Protein Biosynthesis in Eukaryotes (R. Perez-Bercoff, ed.), pp. 459–483, Plenum Publishing, New York.Google Scholar
  193. Lenz, J. R., Chatterjee, G. E., Maroney, P. A., and Baglioni, C., 1978, Phosphorylated sugars stimulate protein synthesis and Met-tRNAf binding activity in extracts of mammalian cells, Biochemistry 17:80.PubMedGoogle Scholar
  194. Leroux, A., and London, I. M., 1982, Regulation of protein synthesis by phosphorylation of eukaryotic initiation factor 27α in intact reticulocytes and reticulocyte lysates, Proc. Natl. Acad. Sci. USA 79:2147.PubMedGoogle Scholar
  195. Leung, D. W., Gilbert, C. W., Smith, R. E., Sasavage, N. L., and Clark, J. M., Jr., 1976, Translation of satellite tobacco necrosis virus ribonucleic acid by an in vitro system from wheat germ, Biochemistry 15:4943.PubMedGoogle Scholar
  196. Leung, D. W., Browning, K. S., Heckmann, J. E., RajBhandary, U. L., and Clark, J. M., Jr., 1979, Nucleotide sequence of the 5′ terminus of satellite tobacco necrosis virus ribonucleic acid, Biochemistry 18:1361.PubMedGoogle Scholar
  197. Levin, D. H., Kyner, D., and Acs, G., 1973, Protein initiation in eukaryotes: Formation and function of a ternary complex composed of a partially purified ribosomal factor, methionyl transfer RNA, and guanosine triphosphate, Proc. Natl. Acad. Sci. USA 70:41.PubMedGoogle Scholar
  198. Levin, D. H., Ranu, R., Ernst, V., and London, I. M., 1976, Regulation of protein synthesis in reticulocyte lysates: Phosphorylation of the methionyl-tRNAf binding factor by the protein kinase activity of the translational inhibitor isolated from heme-deficient lysates, Proc. Natl. Acad. Sci. USA 73:3112.PubMedGoogle Scholar
  199. Levin, D. H., Petryshyn, R., and London, I. M., 1981, Characterisation of purified double-stranded RNA-activated eIF-2 kinase from rabbit reticulocytes, J. Biol. Chem. 256:7638.PubMedGoogle Scholar
  200. Lin, S., and Riggs, A. D., 1972, Lac repressor binding to non-operator DNA: Detailed studies and a comparison of equilibrium and rate competition methods, J. Mol. Biol. 72:671.PubMedGoogle Scholar
  201. Lin, S., and Riggs, A. D., 1915a, The general affinity of lac repressor for E. coli DNA: Implications for gene regulation in procaryotes and eucaryotes, Cell 4:107.Google Scholar
  202. Lin, S., and Riggs, A. D., 1975b, A comparison of lac repressor binding to operator and nonoperator DNA, Biochem. Biophys. Res. Commun. 62:704.PubMedGoogle Scholar
  203. Lindquist, S., 1981, Regulation of protein synthesis during heat shock, Nature 293:311.PubMedGoogle Scholar
  204. Lindquist, S., DiDomenico, B., Bugaisky, G., Kurtz, S., Petko, L., and Sonoda, S., 1982, Regulation of heat-shock response in Drosophila and yeast, in: Heat Shock, from Bacteria to Man (M. J. Schlesinger, M. Ashburner, and A. Tissières, eds.), pp. 167–175, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  205. Lloyd, M. A., Osbourne, J. C., Safer, B., Powell, G. M., and Merrick, W. C., 1980, Characteristics of eukaryotic initiation factor 2 and its subunits, J. Biol. Chem. 255:1189.PubMedGoogle Scholar
  206. Lodish, H. F., 1971, Alpha and beta globin mRNA: Different amounts and rates of initiation of translation, J. Biol. Chem. 246:7131.PubMedGoogle Scholar
  207. Lodish, H. F., 1974, Model for the regulation of mRNA translation applied to haemoglobin synthesis, Nature 251:385.PubMedGoogle Scholar
  208. Lodish, H. F., 1976, Translational control of protein synthesis, Annu. Rev. Biochem. 45:39.PubMedGoogle Scholar
  209. Lodish, H. F., and Froshauer, S., 1977, Rates of initiation of protein synthesis by two purified species of vesicular stomatitis virus messenger RNA, J. Biol. Chem. 252:8804.PubMedGoogle Scholar
  210. Lodish, H. F., and Jacobsen, M., 1972, Regulation of hemoglobin synthesis. Equal rates of translation and termination of α and β globin chains, J. Biol. Chem. 247:3622.PubMedGoogle Scholar
  211. Lodish, H. F., and Porter, M., 1980, Translational control of protein synthesis after infection by vesicular stomatitis virus, J. Virol. 36:719.PubMedGoogle Scholar
  212. Lodish, H. F., and Rose, J. K., 1977, Relative importance of 7-methylguanosine in ribosome binding and translation of vesicular stomatitis virus mRNAs in wheat germ and reticulocyte cell-free systems, J. Biol. Chem. 252:1181.PubMedGoogle Scholar
  213. Lomedico, P. T., and Saunders, G. F., 1977, Cell-free modulation of proinsulin synthesis, Science 198:620.PubMedGoogle Scholar
  214. Maitra, U., Stringer, E. A., and Chaudhuri, A., 1982, Initiation factors in protein biosynthesis, Annu. Rev. Biochem. 51:869.PubMedGoogle Scholar
  215. Majumdar, A., Roy, R., Das, A., Dasgupta, A., and Gupta, N. K., 1977, Protein synthesis in rabbit reticulocytes XIX. eIF-2 promotes dissociation of met-tRNAf. eIF-1. GTP complex and met-tRNAf binding to 40s ribosomes, Biochem. Biophys. Res. Commun. 78:161.PubMedGoogle Scholar
  216. Marcus, A., 1970, Tobacco mosaic virus ribonucleic acid-dependent amino acid incorporation in a wheat embryo system, J. Biol. Chem. 245:955.PubMedGoogle Scholar
  217. Martin, S., Zimmer, E., Davidson, W., Wilson, A., and Kan, Y. W., 1981, The untranslated regions of β-globin mRNA evolve at a functional rate in higher primates, Cell 25:737.PubMedGoogle Scholar
  218. Martini, O. H. W., and Kruppa, J., 1979, Ribosomal phosphorylation of mouse myeloma cells, Eur. J. Biochem. 95:349.PubMedGoogle Scholar
  219. Matts, R. L., Levin, D. H., and London, I. M., 1983, Effect of phosphorylation of the α-subunit of eukaryotic initiation factor 2 on the function of reversing factor in the initiation of protein synthesis, Proc. Natl. Acad. Sci. USA 80:2559.PubMedGoogle Scholar
  220. Maundrell, K., Maxwell, E. S., Civelli, O., Vincent, A., Goldenberg, S., Buri, J-F., Imaizumi-Scherrer, M-T., and Scherrer, K., 1979, Messenger ribonucleoprotein complexes in avian erythroblasts: Carriers of post-transcriptional regulation? Mol. Biol. Rep. 5:43.PubMedGoogle Scholar
  221. Mauron, A., and Spohr, G., 1978, Kinetics of synthesis of cytoplasmic messengerlike RNA not associated with ribosomes in HeLa cells, Eur. J. Biochem. 82:619.PubMedGoogle Scholar
  222. McKeehan, W. L., 1974, Regulation of hemoglobin synthesis: Effect of concentration of messenger ribonucleic acid, ribosome subunits, initiation factors, and salts on ratio of a and β chains synthesized in vitro, J. Biol. Chem. 249:6517.PubMedGoogle Scholar
  223. McMullen, M. D., Shaw, P. H., and Martin, T. E., 1979, Characterization of poly(A) + RNA in free mRNP and polysomes of mouse Taper ascites cells, J. Mol. Biol. 132:679.PubMedGoogle Scholar
  224. Mermod, J. J., Schatz, G., and Crippa, M., 1980, Specific control of messenger RNA translation in Drosophila oocytes and embryos, Dev. Biol. 75:177.PubMedGoogle Scholar
  225. Meyer, L. J., Brown-Leudi, M., Corbett, S., Tolan, D. R., and Hershey, J. W. B., 1981, The purification and characterization of multiple forms of protein synthesis eukaryotic initiation factors 2, 3 and 5 from rabbit reticulocytes, J. Biol. Chem. 256:351.PubMedGoogle Scholar
  226. Miyata, T., Yasunaga, T., and Nishida, T., 1980, Nucleotide sequence divergence and functional constraint in mRNA evolution, Proc. Natl. Acad. Sci. USA 77:7328.PubMedGoogle Scholar
  227. Mizuno, S., 1977, Temperature sensitivity of protein synthesis initiation. Inactivation of a ribosomal factor by an inhibitor formed at elevated temperatures, Arch. Biochem. Biophys. 179:289.PubMedGoogle Scholar
  228. Morgan, M. A., and Shatkin, A. J., 1980, Initiation of reovirus transcription by ITP and properties of m7I-capped, inosine-substituted mRNAs, Biochemistry 19:5960.PubMedGoogle Scholar
  229. Nilsen, T. W., and Baglioni, C., 1979, Mechanism for discrimination between viral and host mRNA in interferon-treated cells, Proc. Natl. Acad. Sci. USA 76:2600.PubMedGoogle Scholar
  230. Nudel, U., Soreq, H., Littauer, U. Z., Marbaix, G., Huez, G., Leclercq, M., Hubert, E., and Chantrenne, H., 1976, Globin mRNA species containing poly(A) segments of different lengths, their functional stability in Xenopus oocytes, Eur. J. Biochem. 64:115.PubMedGoogle Scholar
  231. Nuss, D. L., and Koch, G., 1976a, Variation in the relative synthesis of immunoglobulin G and non-immunoglobulin G proteins in cultured MPC-11 cells with changes in the overall rate of polypeptide chain initiation and elongation, J. Mol. Biol. 102:601.PubMedGoogle Scholar
  232. Nuss, D. L., and Koch, G., 1976b, Differential inhibition of vesicular stomatitis virus polypeptide synthesis by hypertonic initiation block, J. Virol. 17:283.Google Scholar
  233. Nuss, D. L., Oppermann, H., and Koch, G., 1975, Selective blockage of initiation of host protein synthesis in RNA-virus infected cells, Proc. Natl. Acad. Sci. USA 72:1258.PubMedGoogle Scholar
  234. Nygard, O., Westermann, P., and Hultin, T., 1980, Met-tRNAMet f is located in close proximity to the β subunit of eIF-2 in the eucaryotic initiation complex, eIF-2. Met-tRNAMet f. GDPCP, FEBS Lett. 113:125.Google Scholar
  235. Ochoa, S., and de Haro, C., 1979, Regulation of protein synthesis in eukaryotes, Annu. Rev. Biochem. 48:549.PubMedGoogle Scholar
  236. Pain, V. M., and Clemens, M. J., 1983, Assembly and breakdown of mammalian protein synthesis initiation complexes: Regulation by guanine nucleotides and by phosphorylation of initiation factor eIF-2, Biochemistry 22:726.PubMedGoogle Scholar
  237. Pain, V. M., Lewis, J. A., Huvos, P., Henshaw, E. C., and Clemens, M. J., 1980, The effects of amino acid starvation on regulation of polypeptide chain initiation in Ehrlich ascites tumor cells, J. Biol. Chem. 255:1486.PubMedGoogle Scholar
  238. Palmiter, R. D., 1972, Regulation of protein synthesis in chick oviduct, J. Biol. Chem. 247:6770.PubMedGoogle Scholar
  239. Palmiter, R. D., 1974, Differential rates of initiation on conalbumin and ovalbumin messenger ribonucleic acid in reticulocyte lysates, J. Biol. Chem. 249:6779.PubMedGoogle Scholar
  240. Parets-Soler, A., Reibel, L., and Schapira, G., 1981, Differential stimulation of α-and β-globin mRNA translation by M f 50,000 and 28,000 polypeptide-containing fractions isolated from reticulocyte polysomes, FEBS Lett. 136:259.Google Scholar
  241. Pavlakis, G. N., Lockard, R. E., Vamvakopoulos, N., Rieser, L., RajBhandary, V. L., and Vournakis, J. N., 1980, Secondary structure of mouse and rabbit a-and β-globin mRNAs: Differential accessibility of α and β initiator AUG codons towards nucleases, Cell 19:91.PubMedGoogle Scholar
  242. Pelham, H. R. B., and Jackson, R. J., 1976, An efficient mRNA-dependent translation system from reticulocyte lysates, Eur. J. Biochem. 61:241.Google Scholar
  243. Perez-Bercoff, R. (ed.), 1982, Protein Biosynthesis in Eukaryotes, Plenum Publishing, New York.Google Scholar
  244. Perez-Bercoff, R., and Gander, M., 1977, The genomic RNA of mengovirus. I: Location of the poly(C) tract, Virology 80:426.PubMedGoogle Scholar
  245. Perez-Bercoff, R., and Kaempfer, R., 1982, Genomic RNA of Mengovirus: Recognition of common features by ribosomes and eukaryotic initiation factor 2, J. Virol. 41:30.PubMedGoogle Scholar
  246. Person, A., Ben-Hamida, F., and Beaud, G., 1980, Inhibition of 40 S-Met-tRNAMet f ribosomal initiation complex formation by vaccinia virus, Nature 287:355.PubMedGoogle Scholar
  247. Peterson, D. T., Merrick, W. C., and Safer, B., 1979, Binding and release of radiolabeled eukaryotic initiation factors 2 and 3 during 80 S initiation complex formation, J. Biol. Chem. 254:2509.PubMedGoogle Scholar
  248. Petryshyn, R., Trachsel, H., and London, I. M., 1979, Regulation of protein synthesis in reticulocyte lysates: Immune serum inhibits heme-regulated protein kinase activity and differentiates heme-regulated protein kinase from double-stranded RNA induced protein kinase, Proc. Natl. Acad. Sci. USA 76:1575.PubMedGoogle Scholar
  249. Porter, A. G., Frisby, D. P., Carey, N. H., and Fellner, P., 1975, Nucleotide sequence studies on picornavirus RNAs, in: In Vitro Transcription and Translation of Viral Genomes (A. L. Haenni and G. Beaud, eds.), pp. 169–176, INSERM, Paris.Google Scholar
  250. Ranu, R. S., and London, I. M., 1979, Regulation of protein synthesis in rabbit reticulocyte lysates: Additional initiation factor required for formation of ternary complex (eIF-2-GTP-met.tRNAf) and demonstration of the inhibitory effect of heme-regulated protein kinase. Proc. Natl. Acad. Sci. USA 76:1079.PubMedGoogle Scholar
  251. Ray, B. K., Brendler, T. G., Adya, S., Daniels-McQueen, S., Miller, J. K., Hershey, J. W. B., Grifo, J. A., Merrick, W. C., and Thach, R. E., 1983, Role of mRNA competition in regulating translation: Further characterization of mRNA discriminatory factors, Proc. Natl. Acad. Sci. USA 80:663.PubMedGoogle Scholar
  252. Regier, J. C., and Kafatos, F. C., 1977, Absolute rates of protein synthesis in sea urchins with specific activity measurements of radioactive leucine and leucyltRNA, Dev. Biol. 57:270.PubMedGoogle Scholar
  253. Revel, M., and Groner, Y., 1978, Post-transcriptional and translational control of gene expression in eukaryotes, Annu. Rev. Biochem. 47:1079.PubMedGoogle Scholar
  254. Roberts, W. K., Hovanessian, A., Brown, R. E., Clemens, M. J., and Kerr, I. M., 1976, Interferon mediated protein kinase and low-molecular weight inhibitor of protein synthesis, Nature 264:477.PubMedGoogle Scholar
  255. Robertson, H. D., and Mathews, M. B., 1973, Double-stranded RNA as an inhibitor of protein synthesis and as a substrate for a nuclease in extracts of Krebs II ascites cells, Proc. Natl. Acad. Sci. USA 70:225.PubMedGoogle Scholar
  256. Rose, J. K., 1980, Complete intergenic and flanking gene sequences from the genome of vesicular stomatitis virus, Cell 19:415.PubMedGoogle Scholar
  257. Rose, J. K., Trachsel, H., Leong, K., and Baltimore, D., 1978, Inhibition of translation by poliovirus: Inactivation of a specific initiation factor, Proc. Natl. Acad. Sci. USA 73:2732.Google Scholar
  258. Rosen, H., and Kaempfer, R., 1979, Mutually exclusive binding of messenger RNA and initiator methionyl transfer RNA to eukaryotic initiator factor 2, Biochem. Biophys. Res. Commun. 91:449.PubMedGoogle Scholar
  259. Rosen, H., Knoller, S., and Kaempfer, R., 1981a, Messenger RNA specificity in the inhibition of eukaryotic translation by double-stranded RNA, Biochemistry 20:3011.PubMedGoogle Scholar
  260. Rosen, O. M., Rubin, C. S., Cobb, M. H., and Smith, C. J., 1981b, Insulin stimulates the phosphorylation of ribosomal protein S6 in a cell-free system derived from 3T3-L1 adipocytes, J. Biol. Chem. 256:3630.PubMedGoogle Scholar
  261. Rosen, H., Di Segni, G., and Kaempfer, R., 1982, Translational control by messenger RNA competition for eukaryotic initiation factor 2, J. Biol. Chem. 257:946.PubMedGoogle Scholar
  262. Rosenthal, E. T., Hunt, T., and Ruderman, J. V., 1980, Selective translation of mRNA controls the pattern of protein synthesis during early development of the surf clam Spisula solidissima, Cell 20:487.Google Scholar
  263. Rosenthal, E. T., Brandhorst, B. P., and Ruderman, J. V., 1982, Translationally mediated changes in patterns of protein synthesis during maturation of starfish oocytes, Dev. Biol. 91:215.PubMedGoogle Scholar
  264. Roy, R., Ghosh-Dastidar, P., Das, A., Yaghmai, B., and Gupta, N. K., 1981, Protein synthesis in rabbit reticulocytes. Co-eIF-2A reverses mRNA inhibition of ternary complex (Met-tRNAf.eIF-2.GTP) formation by eIF-2, J. Biol. Chem. 256:4719.PubMedGoogle Scholar
  265. Russell, D. W., and Spremulli, L. L., 1979, Purification and characterization of ribosome dissociation factor (eIF-6) from wheat germ, J. Biol. Chem. 254:8796.PubMedGoogle Scholar
  266. Russell, D. W., and Spremulli, L. L., 1980, Mechanism of action of the wheat germ ribosomal dissociation factor: Interaction with the 60 S subunit, Arch. Biochem. Biophys. 201:518.PubMedGoogle Scholar
  267. Sabol, S., and Ochoa, S., 1971, Ribosomal binding of labelled initiation factor F3, Nature New Biol. 234:233.3PubMedGoogle Scholar
  268. Sacerdot, C., Fayat, G., Dessen, P., Springer, M., Plumridge, J., Grunberg-Manago, M., and Blanquet, S., 1982, Sequence of a 1.26 kb DNA fragment containing the structural gene for E. coli initiation factor IF3: presence of an AUU initiator codon, EMBO J. 1:311.Google Scholar
  269. Safer, B., Peterson, D., and Merrick, W. C., 1977, The effect of hemin controlled repressor on initiation factor functions during sequential formation of the 80s initiation complex, in: Translation of Natural and Synthetic Polynucleotides (A. B. Legocki, ed.), pp. 24–31, Poznan Agricultural University Press, Poznan, Poland.Google Scholar
  270. Samuel, C. E., 1979, Mechanism of interferon action: Phosphorylation of protein synthesis initiation factor eIF-2 in interferon treated human cells by a ribosome associated kinase processing site specificity similar to hemin-regulated rabbit reticulocyte kinase, Proc. Natl. Acad. Sci. USA 76:600.PubMedGoogle Scholar
  271. Sangar, D. V., Black, D. N., Rowlands, D. J., Harris, T. J. R., and Brown, F., 1980, Location of the initiation site for protein synthesis on foot-and-mouth disease virus RNA by in vitro translation of defined fragments of the RNA, J. Virol. 33:59.PubMedGoogle Scholar
  272. Sargan, D. R., Gregory, S. P., and Butterworth, P., 1982, A possible novel interaction between the 3′-end of 18 S ribosomal RNA and the 5′-leader sequence of many eukaryotic messenger RNAs, FEBS Lett. 147:133.Google Scholar
  273. Schlesinger, M. J., Ashburner, M., and Tissières, A. (eds.), 1982, Heat Shock, from Bacteria to Man, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  274. Schmid, H.-P., Köhler, K., and Setyono, B., 1982, Possible involvement of messenger RNA-associated proteins in protein synthesis, J. Cell Biol. 93:893.PubMedGoogle Scholar
  275. Schreier, M. H., and Staehelin, T., 1973, Initiation of eukaryotic protein synthesis: (Met-tRNAf.40 S ribosome) initiation complex catalysed by purified initiation factors in the absence of mRNA, Nature New Biol. 242:35.PubMedGoogle Scholar
  276. Schreier, M. H., Erni, B., and Staehelin, T., 1977, Initiation of mammalian protein synthesis. I. Purification and characterization of seven initiation factors, J. Mol. Biol. 116:727.PubMedGoogle Scholar
  277. Scott, M. P., and Pardue, M. L., 1981, Translational control in lysates of Drosophila melanogaster cells, Proc. Natl. Acad. Sci. USA 78:3353.PubMedGoogle Scholar
  278. Seal, S. N., Schmidt, A., Tomaszewski, M., and Marcus, A., 1978, Inhibition of mRNA translation by the cap analogue, 7-methylguanosine-5′-phosphate, Biochem. Biophys. Res. Commun. 82:553.PubMedGoogle Scholar
  279. Sen, G. C., Taira, H., and Lengyel, P., 1978, Interferon, double-stranded RNA and protein phosphorylation. Characteristics of a double-stranded RNA-activated protein kinase system partially purified from interferon-treated Ehrlich ascites tumor cells, J. Biol. Chem. 253:5915.PubMedGoogle Scholar
  280. Setzer, D. R., McGrogan, M., Nunberg, J., and Schimke, R. T., 1980, Size heterogeneity in the 3′ end of dihydrofolate reductase messenger RNAs in mouse cells, Cell 22:361.PubMedGoogle Scholar
  281. Shafritz, D., Weinstein, J., Safer, B., Merrick, W. C., Weber, L., Hickey, E., and Baglioni, C., 1976, Evidence for role of m7G-phosphate group in recognition of eukaryotic mRNA by initiation factor IF-M3, Nature 261:291.PubMedGoogle Scholar
  282. Shatkin, A. J., 1976, Capping of eucaryotic mRNAs, Cell 9:645.PubMedGoogle Scholar
  283. Shatkin, A. J., 1982, A closer look at the 5′-end of mRNA in relation to initiation, in: Protein Biosynthesis in Eukaryotes (R. Perez-Bercoff, ed.), pp. 199–221, Plenum Publishing, New York.Google Scholar
  284. Shaw, M. W., Choppin, P. W., and Lamb, R. A., 1983, A previously unrecognized influenza B virus glycoprotein from a bicistronic mRNA that also encodes the viral neuraminidase, Proc. Natl. Acad. Sci. USA 80:4879.PubMedGoogle Scholar
  285. Shih, D. S., and Kaesberg, P., 1973, Translation of brome mosaic viral RNA in a cell-free system derived from wheat embryo, Proc. Natl. Acad. Sci. USA 70:1799.PubMedGoogle Scholar
  286. Shine, J., and Dalgarno, L., 1974, The 3′-terminal sequence of E. coli 16 S ribosomal RNA: Complementarity to nonsense triplets and ribosome binding sites, Proc. Natl. Acad. Sci. USA 71:1342–1346.PubMedGoogle Scholar
  287. Shull, G. E., and Theil, E. C., 1982, Translational control of ferritin synthesis by iron in embryonic reticulocytes of the bullfrog, J. Biol. Chem. 257:14187.PubMedGoogle Scholar
  288. Siekierka, J., Mitsui, K. I., and Ochoa, S., 1981, Mode of action of the heme controlled translational inhibitor: Relationship of eukaryotic initiation factor 2-stimulating protein to translation restoring factor, Proc. Natl. Acad. Sci. USA 78:220.PubMedGoogle Scholar
  289. Siekierka, J., Mauser, L., and Ochoa, S., 1982, Mechanism of polypeptide chain initiation in eukaryotes and its control by phosphorylation of the α subunit of initiation factor 2, Proc. Natl. Acad. Sci. USA 79:2537.PubMedGoogle Scholar
  290. Siekierka, J., Manne, V., Mauser, L., and Ochoa, S., 1983, Polypeptide chain initiation in eukaryotes: Reversibility of the ternary complex-forming reaction, Proc. Natl. Acad. Sci. USA 80:1232.PubMedGoogle Scholar
  291. Sippel, A. E., Stavrianopoulos, J. G., Schutz, G., and Feigelson, P., 1974, Translational properties of rabbit globin mRNA after specific removal of poly(A) with ribonuclease H, Proc. Natl. Acad. Sci. USA 71:3143.Google Scholar
  292. Skup, D., Zarbl, H., and Millward, S., 1981, Regulation of translation in L-cells infected with reovirus, J. Mol. Biol. 151:35.PubMedGoogle Scholar
  293. Smith, A. E., 1975, Control of translation of animal virus messenger RNA, in: Control Processes in Virus Multiplication, (D. C. Burke and W. C. Russell, eds.), pp. 183–223, 25th Symp. Soc. Gen. Microbiol., Cambridge University Press, Cambridge.Google Scholar
  294. Smith, A. E., Kamen, R., Mangel, W., Shure, H., and Wheeler, T., 1976, Location of the sequences coding for capsid proteins VP1 and VP2 on polyoma virus DNA, Cell 9:481.PubMedGoogle Scholar
  295. Sonenberg, N., 1981, ATP/Mg2+-dependent cross-linking of cap binding proteins to the 5′ end of eukaryotic mRNA, Nucl. Acids Res. 9:1643.Google Scholar
  296. Sonenberg, N., and Shatkin, A. J., 1977, Reovirus RNA can be covalently crosslinked via the 5′-cap to proteins in initiation complexes, Proc. Natl. Acad. Sci. USA 74:4288.PubMedGoogle Scholar
  297. Sonenberg, N., Rupprecht, K. M., Hecht, S. M., and Shatkin, A. J., 1979, Eukaryotic mRNA cap binding protein: Purification by affinity chromatography on Sepharose-coupled m7GDP, Proc. Natl. Acad. Sci. USA 76:4345.PubMedGoogle Scholar
  298. Sonenberg, N., Guertin, D., Cleveland, D., and Trachsel, H., 1981, Probing the function of the eukaryotic 5′ cap structure by using a monoclonal antibody directed against cap-binding proteins, Cell 27:563.PubMedGoogle Scholar
  299. Sonenberg, N., Guertin, D., and Lee, K. A. W., 1982, Capped mRNAs with reduced secondary structure can function in extracts of poliovirus-infected cells, Mol. Cell Biol. 2:1633.PubMedGoogle Scholar
  300. Sonenshein, G. E., and Brawerman, G., 1976a, Regulation of immunoglobulin synthesis in mouse myeloma cells, Biochemistry 15:5497.PubMedGoogle Scholar
  301. Sonenshein, G. E., and Brawerman, G., 1976b, Differential translation of mouse myeloma messenger RNAs in a wheat-germ cell-free system, Biochemistry 15:5501.PubMedGoogle Scholar
  302. Sonenshein, G. E., and Brawerman, G., 1977, Entry of mRNA into polyribosomes during recovery from starvation in mouse sarcoma 180 cells, Eur. J. Biochem. 73:307.PubMedGoogle Scholar
  303. Soreq, H., Nudel, U., Salomon, R., Revel, M., and Littauer, U. Z., 1974, In vitro translation of polyadenylic acid-free rabbit globin mRNA, J. Mol. Biol. 88:233.PubMedGoogle Scholar
  304. Soreq, H., Sagar, A., and Sehgal, P., 1981, Translational activity and functional stability of human fibroblast β1 and β2 interferon mRNAs lacking 3′-terminal RNA sequences, Proc. Natl. Acad. Sci. USA 78:1741.PubMedGoogle Scholar
  305. Spirin, A. S., 1969, Informosomes, Eur. J. Biochem. 10:20.PubMedGoogle Scholar
  306. Spohr, G., Granboulan, N., Morel, C., and Scherrer, K., 1970, Messenger RNA in HeLa cells: An investigation of free and polyribosome-bound cytoplasmic messenger ribonucleoprotein particles by kinetic labelling and electron microscopy, Eur. J. Biochem. 17:296.PubMedGoogle Scholar
  307. Storti, R. V., Scott, M. P., Rich, A., and Pardue, M. L., 1980, Translational control of protein synthesis in response to heat shock in Drosophila melanogaster cells, Cell 22:825.PubMedGoogle Scholar
  308. Summers, D. F., and Maizel, J. V., 1968, Evidence for large precursor proteins in poliovirus synthesis, Proc. Natl. Acad. Sci. USA 59:966.PubMedGoogle Scholar
  309. Svitkin, Y. V., Ginevskaya, V. A., Ugarova, T. Y., and Agol, V. I., 1978, A cellfree model of the encephalomyocarditis virus-induced inhibition of host cell protein synthesis, Virology 87:199.PubMedGoogle Scholar
  310. Tahara, S. M., Morgan, M. A., and Shatkin, A. J., 1981, Two forms of purified m7Gcap binding protein with different effects on capped mRNA translation in extracts of uninfected and poliovirus infected HeLa cells, J. Biol. Chem. 256:7691.PubMedGoogle Scholar
  311. Talkington, C. A., and Leder, P., 1982, Rescuing the in vitro function of a globin pseudogene promoter, Nature 298:192.PubMedGoogle Scholar
  312. Thach, R. E., Sundararajan, T. A., Dewey, K., Brown, J. C., and Doty, P., 1966, Translation of synthetic messenger RNA, Cold Spring Harbor Symp. Quant. Biol. 31:85.PubMedGoogle Scholar
  313. Thomas, G. P., and Mathews, M. B., 1982, Control of polypeptide chain elongation in the stress response: A novel translational control, in: Heat Shock, from Bacteria to Man (M. J. Schlesinger, M. Ashburner, and A. Tissieres, eds.), pp. 207–213, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  314. Thomas, A., Goumans, H., Voorma, H. O., and Benne, R., 1980a, The mechanism of action of eukaryotic initiation factor 4C in protein synthesis, Eur. J. Biochem. 107:39.PubMedGoogle Scholar
  315. Thomas, G., Siegmann, M., Kubler, A-M., Gordo, J., and Jimenez de Asua, L., 1980b, Regulation of 40 S ribosomal protein S6 phosphorylation in Swiss mouse 3T3 cells, Cell 19:1015.PubMedGoogle Scholar
  316. Thomas, G., Martin Perez, J., Siegmann, M., and Otto, A., 1982, The effect of serum, EGF, PGF2α and insulin on S6 phosphorylation and the initiation of protein and DNA synthesis, Cell 30:235.PubMedGoogle Scholar
  317. Trachsel, H., and Staehelin, T., 1978, Binding and release of eucaryotic initiation factor eIF 2 and GTP during protein synthesis initiation, Proc. Natl. Acad. Sci. USA 75:204.PubMedGoogle Scholar
  318. Trachsel, H., and Staehelin, T., 1979, Initiation of mammalian protein synthesis. The multiple functions of the initiation factor eIF-3, Biochim. Biophys. Acta 565:305.PubMedGoogle Scholar
  319. Trachsel, H., Erni, B., Schreier, M., and Staehelin, T., 1977, Initiation of mammalian protein synthesis. The assembly of the initiation complex with purified initiation factors, J. Mol. Biol. 116:755.PubMedGoogle Scholar
  320. Trachsel, H., Erni, B., Schreier, M. H., Braun, L., and Staehelin, T., 1979, Purification of seven protein synthesis initiation factors from Krebs II ascites cells, Biochim. Biophys. Acta 561:484.PubMedGoogle Scholar
  321. Trachsel, H., Sonenberg, N., Shatkin, A. J., Rose, J. K., Leong, K., Bergmann, J. E., Gordon, J., and Baltimore, D., 1980, Purification of a factor that restores translation of VSV mRNA in extracts from poliovirus-infected HeLa cells, Proc. Natl. Acad. Sci. USA 77:770.PubMedGoogle Scholar
  322. Valenzuela, P., Chaudhuri, A., and Maitra, U., 1982, Eukaryotic ribosomal subunit anti-association activity of calf liver is contained in a single polypeptide chain protein of M r+ = 25,500 (eukaryotic initiation factor 6), J. Biol. Chem. 257:7712.PubMedGoogle Scholar
  323. Van Steeg, M., Van Grinsven, M., Van Mansfeld, F., Voorma, H. O., and Benne, R., 1981, Initiation of protein synthesis in neuroblastoma cells infected by Semliki Forest virus, FEBS Lett. 129:62.Google Scholar
  324. Van Venrooij, W. J. W., Henshaw, E. C., and Hirsh, C. A., 1972, Effects of deprival of glucose or individual amino acids on polyribosome distribution and rate of protein synthesis in cultured mammalian cells, Biochim. Biophys. Acta 259:127.PubMedGoogle Scholar
  325. Villareal, L. P., Breindl, M., and Holland, J. J., 1976, Determination of molar ratios of vesicular stomatitis virus induced RNA species in BHK21 cells, Biochemistry 15:1663.Google Scholar
  326. Vincent, A., Goldenberg, S., Standart, N., Civelli, O., Imaizumi-Scherrer, T., Maundrell, K., and Scherrer, K., 1981, Potential role of mRNP proteins in cytoplasmic control of gene expression in duck erythroblasts, Mol. Biol. Rep. 7:71.PubMedGoogle Scholar
  327. Vlasik, T., Domogatsky, S., Bezlepkina, T., and Ovchinnikov, L., 1980, RNA-binding activity of eukaryotic initiation factors of translation, FEBS Lett. 116:8.Google Scholar
  328. Von Hippel, P., Revzin, A., Gross, C. A., and Wang, A. C., 1974, Non-specific DNA binding of genome regulating proteins as biological control mechanism. The lac operon: Equilibrium aspects, Proc. Natl. Acad. Sci. USA 71:4808.Google Scholar
  329. Waiden, W. E., Godefroy-Colburn, T., and Thach, R. E., 1981, The role of mRNA competition in regulating translation. Demonstration of competition in vivo, J. Biol. Chem. 256:11739.Google Scholar
  330. Walton, G. M., and Gill, G. N., 1976, Regulation of ternary protein synthesis initiation complex formation by the adenylate energy charge, Biochim. Biophys. Acta 418:195.PubMedGoogle Scholar
  331. Weber, L. A., Feman, E. R., and Baglioni, C., 1975, A cell-free system from HeLa cells active in initiation of protein synthesis, Biochemistry 14:5315.PubMedGoogle Scholar
  332. Weber, L. A., Hickey, E. D., Maroney, P. A., and Baglioni, C., 1977, Inhibition of protein synthesis by Cl-, J. Biol. Chem. 252:4007.PubMedGoogle Scholar
  333. Weber, L., Hickey, E., and Baglioni, C., 1978, Influence of potassium salt concentration and temperature on inhibition of mRNA translation by 7-methylguanosine 5′-monophosphate, J. Biol. Chem. 253:178.PubMedGoogle Scholar
  334. Weiss, S. R., Varmus, H. E., and Bishop, J. M., 1977, The size and genetic composition of virus-specific RNAs in the cytoplasm of cells producing avian sarcomaleukosis viruses, Cell 12:983.PubMedGoogle Scholar
  335. Wengler, G., Wengler, G., and Gross, H. J., 1979, Replicative form of Semliki Forest virus RNA contains an unpaired guanosine, Nature 282:754.PubMedGoogle Scholar
  336. West, D. K., Lenz, J. R., and Baglioni, C., 1979, Stimulation of protein synthesis and Met tRNAf binding by phosphorylated sugars: Studies on their mechanism of action, Biochemistry 18:624.PubMedGoogle Scholar
  337. Wieringa, B., van der Zwaag, J., Mulder, J., Ab, G., and Gruber, M., 1981, Translation in vivo and in vitro of mRNAs coding for vitellogenin, serum albumin and very-low density lipoprotein II from chicken liver. A difference in translational efficiency, Ear. J. Biochem. 114:635.Google Scholar
  338. Wimmer, E., Chang, A. Y., Clark, J. M., Jr., and Reichmann, M. E., 1968, Sequence studies of satellite tobacco necrosis virus RNA: Isolation and characterization of a 5′-terminal trinucleotide, J. Mol. Biol. 38:59.PubMedGoogle Scholar
  339. Wodnar-Filipowicz, A., Szczesna, E., Zan-Kowalczewska, M., Muthukrishnan, S., Szybiak, U., Legocki, A., and Filipowicz, W., 1978, 5′-Terminal 7-methylguanosine and mRNA function, Eur. J. Biochem. 92:69.PubMedGoogle Scholar
  340. Woodland, H. R., and Wilt, F. H., 1980, The stability and translation of sea urchin histone messenger RNA molecules injected into Xenopus laevis eggs and developing embryos, Dev. Biol. 75:214.PubMedGoogle Scholar
  341. Wreschner, D. H., McCauley, J. W., Skehel, J. J., and Kerr, I. M., 1981, Interferon action: Sequence specificity of the ppp(A2′p)nA-dependent ribonuclease, Nature 289:414.PubMedGoogle Scholar
  342. Yoo, O. J., Powell, C. T., and Agarwal, K. L., 1982, Molecular cloning and nucleotide sequence of full-length cDNA coding for porcine gastrin, Proc. Natl. Acad. Sci. USA 79:1049.PubMedGoogle Scholar
  343. Ysebaert, M., van Emmelo, J., and Fiers, W., 1980, Total nucleotide sequence of a nearly full-size DNA copy of satellite tobacco necrosis virus RNA, J. Mol. Biol. 143:273.PubMedGoogle Scholar
  344. Zagorska, L., Chroboczek, J., Klita, S., and Szafranski, P., 1982, Effect of secondary structure of mRNA on the formation of initiation complexes with prokaryotic and eukaryotic ribosomes, Eur. J. Biochem. 122:265.PubMedGoogle Scholar
  345. Zähringer, J., Baliga, B. S., and Munro, H. N., 1976, Subcellular distribution of total poly(A)-containing RNA and ferritin mRNA in the cytoplasm of rat liver, Biochem. Biophys. Res. Commun. 68:1088.PubMedGoogle Scholar
  346. Zilberstein, A., Kimchi, A., Schmidt, A., and Revel, M., 1978, Isolation of two interferon induced translational inhibitors: A protein kinase and an oligo-isoadenylate synthetase, Proc. Natl. Acad. Sci. USA 75:4734.PubMedGoogle Scholar
  347. Zingsheim, H. P., Geisler, N., Weber, K., and Mayer, F., 1977, Complexes of Escherichia coli lac-repressor with non-operator DNA revealed by electron microscopy: Two repressor molecules can share the same segment of DNA, J. Mol. Biol. 115:565.PubMedGoogle Scholar
  348. Zucker, W. V., and Schulman, H. M., 1968, Stimulation of globin chain initiation by haemin in the reticulocyte cell free system, Proc. Natl. Acad. Sci. USA 59:582.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Raymond Kaempfer
    • 1
  1. 1.Department of Molecular VirologyThe Hebrew University-Hadassah Medical SchoolJerusalemIsrael

Personalised recommendations