Skip to main content

Preconditioning

  • Chapter

Part of the book series: Molecular and Cellular Biology of Critical Care Medicine ((MCCM,volume 2))

Abstract

Patients with critical illnesses often have preexisting medical conditions that may or may not contribute to the acute process. These conditions also may serve to mitigate or exacerbate the sequelae of the acute event and one process that may attenuate the damage of an acute injury is preconditioning. Preconditioning is the phenomenon whereby a non-lethal stimulus sets in motion a cascade of biochemical events that renders cells, tissues or the whole organism tolerant to a future more lethal stimulus. This process was initially studied using ischemia as a primary stimulus within the myocardium, but now has been extensively studied in the brain as well.

“What does not kill me, makes me stronger”, Johann Wolfgang van Goethe, German philosopher, 1749–1842

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Auchampach J, Grover G and Gross G (1995). Blockade of ischemic preconditioning in dogs by the novel ATP-dependent potassium channel antagonist sodium 5-hydroxydecanoate. Cardiovasc Res 26: 1054–1062.

    Article  Google Scholar 

  2. Bahr RD, Leino EV and Christenson RH (2000). Prodromal unstable angina in acute myocardial infarction: prognostic value of short- and long-term outcome and predictor of infarct size. Am Heart J 140: 126–133.

    Article  PubMed  CAS  Google Scholar 

  3. Baxter G, Goma F and Yellon D (1997). Characterization of the infarct-limiting effect of delayed preconditioning: timecourse and dose-dependency studies in rabbit myocardium. Basic Res Cardiol 92: 159–167.

    Article  PubMed  CAS  Google Scholar 

  4. Bruer U, Weih MK, Isaev NK, et al. (1997). Induction of tolerance in rat cortical neurons: hypoxic preconditioning. FEBS Lett 414: 117–121.

    Article  PubMed  CAS  Google Scholar 

  5. Carr CS, Hill RJ, Masamune H, et al. (1997). Evidence for a role for both the adenosine A1 and A3 receptors in protection of isolated human atrial muscle against simulated ischaemia. Cardiovasc Res 36: 52–59.

    Article  PubMed  CAS  Google Scholar 

  6. Chan PH (2001). Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab 21: 2–14.

    Article  PubMed  CAS  Google Scholar 

  7. Chen J, Graham SH, Zhu RL, et al. (1996). Stress proteins and tolerance to focal cerebral ischemia. J Cereb Blood Flow Metab 16: 566–577.

    Article  PubMed  CAS  Google Scholar 

  8. Chen J, Simon RP, Nagayama T, et al. (2000). Suppression of endogenous bcl-2 expression by antisense treatment exacerbates ischemic neuronal death. J Cereb Blood Flow Metab 20: 1033–1039.

    Article  PubMed  CAS  Google Scholar 

  9. Choi DW (1988). Glutamate neurotoxicity and diseases of the nervous system. Neuron 1: 623–634.

    Article  PubMed  CAS  Google Scholar 

  10. Choi DW (1996). Ischemia-induced neuronal apoptosis. Curr Opin Neurobiol 6: 667–672.

    Article  PubMed  CAS  Google Scholar 

  11. Cohen MV, Liu GS and Downey JM (1991). Preconditioning causes improved wall motion as well as smaller infarcts after transient coronary occlusion in rabbits. Circulation 84: 341–349.

    Article  PubMed  CAS  Google Scholar 

  12. del Zoppo GJ, Schmid-Schonbein GW, Mori E, et al. (1991). Polymorphonuclear leukocytes occlude capillaries following middle cerebral artery occlusion and reperfusion in baboons. Stroke 22: 1276–1283.

    Article  PubMed  Google Scholar 

  13. Dougherty JH, Jr., Levy DE and Weksler BB (1977). Platelet activation in acute cerebral ischaemia. Serial measurements of platelet function in cerebrovascular disease. Lancet 1: 821–824.

    Article  PubMed  Google Scholar 

  14. Duchen MR, McGuinness O, Brown LA, et al. (1993). On the involvement of a cyclosporin A sensitive mitochondrial pore in myocardial reperfusion injury. Cardiovasc Res 27: 1790–1794.

    Article  PubMed  CAS  Google Scholar 

  15. Eliasson MJ, Sampei K, Mandir AS, et al. (1997). Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nat Med 3: 1089–1095.

    Article  PubMed  CAS  Google Scholar 

  16. Finklestein SP, Caday CG, Kano M, et al. (1990). Growth factor expression after stroke. Stroke 21: III122–124.

    PubMed  Google Scholar 

  17. Garlid KD, Paucek P, Yarov-Yarovoy V, et al. (1997). Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-sensitive K+ channels. Possible mechanism of cardioprotection. Circ Res 81: 1072–1082.

    Article  PubMed  CAS  Google Scholar 

  18. Greenberg DA, Chan J and Sampson HA (1992). Endothelins and the nervous system. Neurology 42: 25–31.

    Article  PubMed  CAS  Google Scholar 

  19. Gross GJ and Auchampach JA (1992). Blockade of ATP-sensitive potassium channels prevents myocardial preconditioning in dogs. Circ Res 70: 223–233.

    Article  PubMed  CAS  Google Scholar 

  20. Guilian D and Robertson C (1991). Inhibition of mononuclear phagocytes reduces ischemic injury in the spinal cord. Ann Neurol 27: 33–42.

    Article  Google Scholar 

  21. Hall ED and Braughler JM (1989). Central nervous system trauma and stroke. II. Physiological and pharmacological evidence for involvement of oxygen radicals and lipid peroxidation. Free Radic Biol Med 6: 303–313.

    Article  PubMed  CAS  Google Scholar 

  22. Hallenbeck JM (1996). Inflammatory reactions at the blood-endothelial interface in acute stroke. Adv Neurol 71: 281–297.

    PubMed  CAS  Google Scholar 

  23. Heurteaux C, Lauritzen I, Widmann C, et al. (1995). Essential role of adenosine, adenosine A1 receptors, and ATP-sensitive K+ channels in cerebral ischemic preconditioning. Proc Natl Acad Sci U S A 92: 4666–4670.

    Article  PubMed  CAS  Google Scholar 

  24. Iadecola C (1997). Bright and dark sides of nitric oxide in ischemic brain injury. Trends Neurosci 20: 132–139.

    Article  PubMed  CAS  Google Scholar 

  25. Kato H, Liu Y, Araki T, et al. (1991). Temporal profile of the effects of pretreatment with brief cerebral ischemia on the neuronal damage following secondary ischemic insult in the gerbil: cumulative damage and protective effects. Brain Res 553: 238–242.

    Article  PubMed  CAS  Google Scholar 

  26. Kato H, Liu Y, Araki T, et al. (1992). MK-801, but not anisomycin, inhibits the induction of tolerance to ischemia in the gerbil hippocampus. Neurosci Lett 139: 118–121.

    Article  PubMed  CAS  Google Scholar 

  27. Kirino T, Tsujita Y and Tamura A (1991). Induced tolerance to ischemia in gerbil hippocampal neurons. J Cereb Blood Flow Metab 11: 299–307.

    Article  PubMed  CAS  Google Scholar 

  28. Kitagawa K, Matsumoto M, Kuwabara K, et al. (1991). ‘Ischemic tolerance’ phenomenon detected in various brain regions. Brain Res 561: 203–211.

    Article  PubMed  CAS  Google Scholar 

  29. Kitagawa K, Matsumoto M, Tagaya M, et al. (1990). ‘Ischemic tolerance’ phenomenon found in the brain. Brain Res 528: 21–24.

    Article  PubMed  CAS  Google Scholar 

  30. Klatzo I (1985). Concepts of ischemic injury associated with brain edema.  In: Brain Edema, Inaba Y, Klatzo I and Spatz, M (eds) New York: Springer Verlag: 1–5.

    Google Scholar 

  31. Kuzuya T, Hoshida S, Yamashita N, et al. (1993). Delayed effects of sublethal ischemia on the acquisition of tolerance to ischemia. Circ Res 72: 1293–1299.

    Article  PubMed  CAS  Google Scholar 

  32. Li YL and He RR (1995). Protective effect of preconditioning on ischemic heart and characterization of adenosine receptors in ischemic rabbit hearts. Zhongguo Yao Li Xue Bao 16: 505–508.

    PubMed  CAS  Google Scholar 

  33. Lindsburg P, Hallenbeck J and Feuerstein G (1991). Platelet-activating factor in stroke and brain injury. Ann Neurol 30: 117–129.

    Article  Google Scholar 

  34. Liu GS, Thornton J, Van Winkle DM, et al. (1991). Protection against infarction afforded by preconditioning is mediated by A1 adenosine receptors in rabbit heart. Circulation 84: 350–356.

    Article  PubMed  CAS  Google Scholar 

  35. Liu J, Ginis I, Spatz M, et al. (2000). Hypoxic preconditioning protects cultured neurons against hypoxic stress via TNF-alpha and ceramide. Am J Physiol Cell Physiol 278: C144–153.

    PubMed  CAS  Google Scholar 

  36. Liu Y, Sato T, O’Rourke B, et al. (1998). Mitochondrial ATP-dependent potassium channels: novel effectors of cardioprotection? Circulation 97: 2463–2469.

    Article  PubMed  CAS  Google Scholar 

  37. Marber M, Latchman D, Walker J, et al. (1993). Experimental myocardial infarction: Cardiac stress protein elevation 24 hours after brief ischemia or heat stress is associated with resistance to myocardial infarction. Circulation 88: 1264–1272.

    Article  PubMed  CAS  Google Scholar 

  38. Marber MS (2000). Ischemic preconditioning in isolated cells. Circ Res 86: 926–931.

    Article  PubMed  CAS  Google Scholar 

  39. Marber MS, Mestril R, Chi SH, et al. (1995). Overexpression of the rat inducible 70-kD heat stress protein in a transgenic mouse increases the resistance of the heart to ischemic injury. J Clin Invest 95: 1446–1456.

    Article  PubMed  CAS  Google Scholar 

  40. Markham A, Plosker GL and Goa KL (2000). Nicorandil. An updated review of its use in ischaemic heart disease with emphasis on its cardioprotective effects. Drugs 60: 955–974.

    Article  PubMed  CAS  Google Scholar 

  41. Miyashita K, Abe H, Nakajima T, et al. (1994). Induction of ischaemic tolerance in gerbil hippocampus by pretreatment with focal ischaemia. Neuroreport 6: 46–48.

    Article  PubMed  CAS  Google Scholar 

  42. Mun-Bryce S and Rosenberg GA (1998). Matrix metalloproteinases in cerebrovascular disease. J Cereb Blood Flow Metab 18: 1163–1172.

    Article  PubMed  CAS  Google Scholar 

  43. Murphy E, Fralix TA, London RE, et al. (1993). Effects of adenosine antagonists on hexose uptake and preconditioning in perfused rat heart. Am J Physiol 265: C1146–1155.

    PubMed  CAS  Google Scholar 

  44. Nakata N, Kato H and Kogure K (1993). Effects of repeated cerebral ischemia on extracellular amino acid concentrations measured with intracerebral microdialysis in the gerbil hippocampus. Stroke 24: 458–463; discussion 463–454.

    Article  PubMed  CAS  Google Scholar 

  45. Nakata N, Kato H, Liu Y, et al. (1992). Effects of pretreatment with sublethal ischemia on the extracellular glutamate concentrations during secondary ischemia in the gerbil hippocampus evaluated with intracerebral microdialysis. Neurosci Lett 138: 86–88.

    Article  PubMed  CAS  Google Scholar 

  46. Nawashiro H, Kaoru T, Ruetzler C, et al. (1997). TNF-a pretreatment induces protective effects against focal cerebral ischemia in mice. J Cereb Blood Flow Metab 17: 483–490.

    Article  PubMed  CAS  Google Scholar 

  47. Noda T, Minatoguchi S, Fujii K, et al. (1999). Evidence for the delayed effect in human ischemic preconditioning: prospective multicenter study for preconditioning in acute myocardial infarction. J Am Coll Cardiol 34: 1966–1974.

    Article  PubMed  CAS  Google Scholar 

  48. Noma A (1983). ATP-regulated K+ channels in cardiac muscle. Nature 305: 147–148.

    Article  PubMed  CAS  Google Scholar 

  49. Nowak TS, Jr. (1990). Protein synthesis and the heart shock/stress response after ischemia. Cerebrovasc Brain Metab Rev 2: 345–366.

    PubMed  Google Scholar 

  50. Ota A, Ikeda T, Abe K, et al. (1998). Hypoxic-ischemic tolerance phenomenon observed in neonatal rat brain. Am J Obstet Gynecol 179: 1075–1078.

    Article  PubMed  CAS  Google Scholar 

  51. Ottani F, Galvani M, Ferrini D, et al. (1995). Prodromal angina limits infarct size. A role for ischemic preconditioning. Circulation 91: 291–297.

    Article  PubMed  CAS  Google Scholar 

  52. Parratt JR, Vegh A and Papp JG (1995). Bradykinin as an endogenous myocardial protective substance with particular reference to ischemic preconditioning—a brief review of the evidence. Can J Physiol Pharmacol 73: 837–842.

    Article  PubMed  CAS  Google Scholar 

  53. Pickard JD (1981). Role of prostaglandins and arachidonic acid derivatives in the coupling of cerebral blood flow to cerebral metabolism. J Cereb Blood Flow Metab 1: 361–384.

    Article  PubMed  CAS  Google Scholar 

  54. Puisieux F, Deplanque D, Pu Q, et al. (2000). Differential role of nitric oxide pathway and heat shock protein in preconditioning and lipopolysaccharide-induced brain ischemic tolerance. Eur J Pharmacol 389: 71–78.

    Article  PubMed  CAS  Google Scholar 

  55. Riabowol KT, Mizzen LA and Welch WJ (1988). Heat shock is lethal to fibroblasts microinjected with antibodies against hsp70. Science 242: 433–436.

    Article  PubMed  CAS  Google Scholar 

  56. Ritossa F (1962). A new puffing pattern induced by heat shock and DNP in Drosophilia. Experientia 18: 571–573.

    Article  CAS  Google Scholar 

  57. Rothman S and Olney J (1987). Excitotoxicity and the NMDA receptor. Trends Neurol Sci 10: 299–302.

    Article  CAS  Google Scholar 

  58. Samdani AF, Dawson TM and Dawson VL (1997). Nitric oxide synthase in models of focal ischemia. Stroke 28: 1283–1288.

    Article  PubMed  CAS  Google Scholar 

  59. Sato T, O’Rourke B and Marban E (1998). Modulation of mitochondrial ATP-dependent K+ channels by protein kinase C. Circ Res 83: 110–114.

    Article  PubMed  CAS  Google Scholar 

  60. Schott RJ, Rohmann S, Braun ER, et al. (1990). Ischemic preconditioning reduces infarct size in swine myocardium. Circ Res 66: 1133–1142.

    Article  PubMed  CAS  Google Scholar 

  61. Schultz J, Hsu A, Nagase H, et al. (1998). TAN-67, a delta 1-opioid receptor agonist, reduces infarct size via activation of Gi/o proteins and KATP channels. Am J Physiol 274: H909–914.

    CAS  Google Scholar 

  62. Schultz JJ, Hsu AK and Gross GJ (1997). Ischemic preconditioning and morphine-induced cardioprotection involve the delta (delta)-opioid receptor in the intact rat heart. J Mol Cell Cardiol 29: 2187–2195.

    Article  PubMed  CAS  Google Scholar 

  63. Schulz JB, Weller M and Moskowitz MA (1999). Caspases as treatment targets in stroke and neurodegenerative diseases. Ann Neurol 45: 421–429.

    Article  PubMed  CAS  Google Scholar 

  64. Shiki K and Hearse DJ (1987). Preconditioning of ischemic myocardium: reperfusion-induced arrhythmias. Am J Physiol 253: H1470–1476.

    PubMed  CAS  Google Scholar 

  65. Shimazaki K, Ishida A and Kawai N (1994). Increase in bcl-2 oncoprotein and the tolerance to ischemia-induced neuronal death in the gerbil hippocampus. Neurosci Res 20: 95–99.

    Article  PubMed  CAS  Google Scholar 

  66. Simon RP, Niiro M and Gwinn R (1993). Prior ischemic stress protects against experimental stroke. Neurosci Lett 163: 135–137.

    Article  PubMed  CAS  Google Scholar 

  67. Tasaki K, Ruetzler CA, Ohtsuki T, et al. (1997). Lipopolysaccharide pre-treatment induces resistance against subsequent focal cerebral ischemic damage in spontaneously hypertensive rats. Brain Res 748: 267–270.

    Article  PubMed  CAS  Google Scholar 

  68. Tracey WR, Magee W, Masamune H, et al. (1997). Selective adenosine A3 receptor stimulation reduces ischemic myocardial injury in the rabbit heart. Cardiovasc Res 33: 410–415.

    Article  PubMed  CAS  Google Scholar 

  69. Tsuchida A, Miura T, Tanno M, et al. (1998). Time window for the contribution of the delta-opioid receptor to cardioprotection by ischemic preconditioning in the rat heart. Cardiovasc Drugs Ther 12: 365–373.

    Article  PubMed  CAS  Google Scholar 

  70. Walker DM, Walker JM, Pugsley WB, et al. (1995). Preconditioning in isolated superfused human muscle. J Mol Cell Cardiol 27: 1349–1357.

    Article  PubMed  CAS  Google Scholar 

  71. Walker V and Pickard JD (1985). Prostaglandins, thromboxane, leukotrienes and the cerebral circulation in health and disease. Adv Tech Stand Neurosurg 12: 3–90.

    Article  PubMed  CAS  Google Scholar 

  72. Wall TM, Sheehy R and Hartman JC (1994). Role of bradykinin in myocardial preconditioning. J Pharmacol Exp Ther 270: 681–689.

    PubMed  CAS  Google Scholar 

  73. Wang J, Drake L, Sajjadi F, et al. (1997). Dual activation of adenosine A1 and A3 receptors mediates preconditioning of isolated cardiac myocytes. Eur J Pharmacol 320: 241–248.

    Article  PubMed  CAS  Google Scholar 

  74. Weih M, Kallenberg K, Bergk A, et al. (1999). Attenuated stroke severity after prodromal TIA: a role for ischemic tolerance in the brain? Stroke 30: 1851–1854.

    Article  PubMed  CAS  Google Scholar 

  75. Yao Z and Gross GJ (1993). Glibenclamide antagonizes adenosine A1 receptor-mediated cardioprotection in stunned canine myocardium. Circulation 88: 235–244.

    Article  PubMed  CAS  Google Scholar 

  76. Yao Z and Gross GJ (1994). A comparison of adenosine-induced cardioprotection and ischemic preconditioning in dogs. Efficacy, time course, and role of KATP channels. Circulation 89: 1229–1236.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bell, M.J., Hallenbeck, J.M. (2001). Preconditioning. In: Clark, R.S.B., Kochanek, P. (eds) Brain Injury. Molecular and Cellular Biology of Critical Care Medicine, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1721-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1721-4_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5695-0

  • Online ISBN: 978-1-4615-1721-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics