The KATP Channel and the Sulfonylurea Receptor

  • Susumu Seino
  • Takashi Miki
  • Hideki Yano
Chapter
Part of the Endocrine Updates book series (ENDO, volume 11)

Abstract

ATP-sensitive K+ channels (KAgp channels) were first described in cardiac myocytes (1) and were subsequently found in many other tissues including pancreatic 13-cells (25), skeletal muscle (6), smooth muscle (7), brain (8), pituitary (9), and kidney (10) and in mitochondria (11). KA,p channels were originally characterized by inhibition when the ATP concentration at the cytoplasmic surface was increased (12). It is now known that regulation of KATP channel activity is complex, involving factors including nucleotide diphosphates such as ADP, Mgt*, and phosphatidylinositol bisphosphate (13-18). KATP channels play important roles in endocrine cells, muscles, and neurones, by coupling metabolic state to membrane potential (12,19,20). In pancreatic 13 cells, KATP channels regulate glucose-induced insulin secretion. Inhibition of the KATP channels by glucose depolarizes the 13-cell membrane, leading to opening of the voltage-dependent calcium channels (VDCCs), and allowing calcium influx. The rise in intracellular calcium concentration ([Ca21) in the 13-cell triggers exocytosis of the insulin granules. While the K+ channel opener diazoxide inhibits insulin secretion by activating the KATP channels, sulfonylureas such as glibenclamide, which is widely used in the treatment of type 2 diabetes mellitus, stimulate insulin release by inhibiting the KATP channels (21,22) Fig1 The cloning of members of the inwardly rectifying K+ channel subfamily Kir6.0 and the sulfonylurea receptors has clarified the structure of KA,p channels and revealed a new paradigm of channel/receptor assembly.

Keywords

Codon Adenosine Adenine Hypoglycemia Guanine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Noma A. ATP-regulated K* channels in cardiac muscle. Nature 1983;305:147–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Ashcroft FM, Harrison DE, Ashcroft SJH. Glucose induces closure of single potassium channels in isolated rat pancreatic n-cells. Nature 1984;312:446–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Cook DL, Hales CN. Intracellular ATP directly blocks K* channels in pancreatic 0-cells. Nature 1984; 311: 271–3.PubMedCrossRefGoogle Scholar
  4. 4.
    Findly 1, Dunne MJ, Petersen OH. ATP-sensitive inward rectifier and voltage and calcium activated K* channels in cultured pancreatic islet cells. J Memb Biol 1985;88:165–72.CrossRefGoogle Scholar
  5. 5.
    Rorsman P, Trube G. Glucose dependent K* -channels in pancreatic 0-cells are regulated by intracellular ATP. Pflügers Arch 1985;405:305–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Spruce AE, Standen NB, Stanfield PR. Voltage-dependent ATP-sensitive potassium channels of skeletal muscle membrane. Nature 1985;316:736–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Standen NB, Quayle JM, Davies NW, et al. Hyperpolarizing vasodilators activate ATP-sensitive K* Channels in arterial smooth muscle. Science 1989;245:177–80.PubMedCrossRefGoogle Scholar
  8. 8.
    Ashford MU, Sturgess NC, Trout NJ, Gardner NJ, Hales CN. Adenosine-5’-triphosphatesensitive ion channels in neonatal rat cultured central neurones. Pflügers Arch 1988;412:297–304.PubMedCrossRefGoogle Scholar
  9. 9.
    Bernardi H, De Weille JR, Epelbaum J, et al. ATP-modulated K* channels sensitive to antidiabetic sulfonylureas are present in adenohypophysis and are involved in growth hormone release. Proc Natl Acad Sci USA 1993;90:1340–4.PubMedCrossRefGoogle Scholar
  10. 10.
    Hunter M, Giebisch G. Calcium-activated K`-channels of Amphiuma early distal tubule: inhibition by ATP. Pflügers Arch 1988;412:331–3.PubMedCrossRefGoogle Scholar
  11. 11.
    Inoue I, Nagase H, Kishi K, Higuti T. ATP-sensitive K* channel in the mitochondrial inner membrane. Nature 1991;352:244–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Ashcroft FM. Adenosine 5’-triphosphate-sensitive potassium channels. Annu Rev Neurosci 1988;11:97–118.PubMedCrossRefGoogle Scholar
  13. 13.
    Dunne MJ and Petersen MJ. Intracellular ADP activates K* channels that are inhibited by ATP in an insulin-secreting cell line. FEBS Lett 1986;208:59–62.PubMedCrossRefGoogle Scholar
  14. 14.
    Kakei M, Kelly RP, Ashcroft AJH, Ashcroft FM. The ATP- sensitivity of K. channels in rat pancreatic p-cells is modulated by ADP. FEBS Lett 1986;208:63–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Misler S, Falke LC, Gillis K, McDaniel ML. A metabolite-regulated potassium channel in rat pancreatic p-cells. Proc Natl Acad Sci USA 1986;83:7119–23.PubMedCrossRefGoogle Scholar
  16. 16.
    Hilgemann DW, Ball R. Regulation of cardiac Na’, Ca’ exchange and KATp potassium channels by PIP2. Science 1996;273:956–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Shyng SL, Nichols CG. Membrane phospholipid control of nucleotide sensitivity of KATp channels. Science 1998;282:1138–41.PubMedCrossRefGoogle Scholar
  18. 18.
    Baukrowitz T, Schulte U, Oliver D, et al. PIP2 and PIP as determinants for ATP inhibition of KA T p channels. Science 1998;282:1141–44.PubMedCrossRefGoogle Scholar
  19. 19.
    Henquin JC. D-glucose inhibits potassium efflux from pancreatic islet cells. Nature 1978;271:2713.Google Scholar
  20. 20.
    Terzic A, Jahangir A, Kurachi Y. Cardiac ATP-sensitive K* channels regulation by intracellular nucleotides and K* channel-opening drugs. Am J Physio11995;269:C525–45.Google Scholar
  21. 21.
    Sturgess NC, Ashford NU, Cook DL, Hales CN. The sulphonylurea receptor may be an ATP-sensitive potassium channel. Lancet 1985;8453:474–5.CrossRefGoogle Scholar
  22. 22.
    Trube G, Rorsman P, Olmo S. Opposite effects of tolbutamide and diazoxide in the ATP-dependent K* channel in mouse pancreatic p-cells. Eur J Physiol 1986;407:493–9.CrossRefGoogle Scholar
  23. 23.
    Inagaki N, Tsuura Y, Namba N, et al. Cloning and functional characterization of a novel ATP-sensitive potassium channel ubiquitously expressed in rat tissues, including pancreatic islets, pituitary, skeletal muscle, and heart. J Biol Chem 1995;270:5691–4.PubMedCrossRefGoogle Scholar
  24. 24.
    Yamada M, Isomoto S, Matsumoto S, et al. Sulphonylurea receptor 2B and Kir6.1 form a sulphonylurea-sensitive but ATP-insensitive K` channel. J Physiol (Lond) 1997;499:715–20.Google Scholar
  25. 25.
    Beech DJ, Zhang H, Nakao K, Bolton TB. Single channel and whole-cell K-currents evoked by levcromakalim in smooth muscle cells from the rabbit portal vein. Br J Pharmacol 1993;110:583–90.Google Scholar
  26. 26.
    Kajioka S, Kitamura K, Kuriyama H. Guanosine diphosphate activates an adenosine 5’triphosphate-sensitive K* channel in the rabbit portal vein. J Physiol (Loud) 1991;444:397–418.Google Scholar
  27. 27.
    Nelson MT, Quayle JM. Physiological roles and properties of potassium channels in arterial smooth muscle. Am J Physiol 1995;268:C799–C822.PubMedGoogle Scholar
  28. 28.
    Suzuki M, Kotake K, Fujikura K, et al. Kir6.1: a possible subunit of ATP-sensitive K` channels in mitochondria. Biochem Biophys Res Commun 1998;241:693–97.CrossRefGoogle Scholar
  29. 29.
    Inagaki N, Inazawa J, Seino S. cDNA sequence, gene structure, and chromosomal localization of human ATP-sensitive potassium channel, u KATp-1 gene (KCNJ8). Genomics 1995;30:102–4.PubMedCrossRefGoogle Scholar
  30. 30.
    Inagaki N, Gonoi T, Clement IV JP, et al. Reconstitution of 1KATp: An inward rectifier subunit plus the sulfonylurea receptor. Science 1995;270:1166–70.PubMedCrossRefGoogle Scholar
  31. 31.
    Suzuki M, Fujikura K, Inagaki N, Seino S, Takata K. Localization of the ATP-sensitive K* channel subunit Kir6.2 in mouse pancreas. Diabetes 1997;46:1440–4.PubMedCrossRefGoogle Scholar
  32. 32.
    Aguilar-Bryan L, Nichols CG, Wechsler SW, et al. Cloning of the 0-cells high affinity sulfonylurea receptor: A regulator of insulin secretion. Science 1995;268:423–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Thomas PM, Cote GJ, Wohllk N, et al. Mutations in the sulfonylurea receptor gene in familial persistent hyperinsulinemic hypoglycemia of infancy. Science 1995;268:426–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Evans GA, Athanasiou M, Aguayo P, et al. Homo sapiens Chromosome 1 1 p14.3 PAC clone pDJ239b22, complete sequence. GenBank accession number U90583 1998.Google Scholar
  35. 35.
    Faure C, Partiseti M, Gouhier C, Graham D. GenBank accession number X97279.Google Scholar
  36. 36.
    Higgins. ABC transporters: from microorganisms to man. Ann Rev Cell Biol 1992;8:67–113.PubMedCrossRefGoogle Scholar
  37. 37.
    Walker JE, Saraste MJ, Runswick MJ, Gay NJ. Distantly related sequences in the A- and 8- subunits of ATP synthase, myoson, kinase and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J;1:945–51.Google Scholar
  38. 38.
    Tusnady GE, Bakos E, Varadi A, Sarkadi B. Membrane topology distinguishes a subfamily of the ATP-binding cassette (ABC) transporters. FEBS Lett1997;402:1–3.Google Scholar
  39. 39.
    Suzuki M, Fujikawa K, Kotake K, Inagaki N, Seino S, Takata K. Immuno-localization of sulfonylurea receptor 1 in rat pancreas. Diabetologia 1999;42:1204–11.PubMedCrossRefGoogle Scholar
  40. 40.
    Inagaki N, Gonoi T, Clement IV JP, et al. A family of sulfonylurea receptors determines the pharmacological properties of ATP-sensitive K* channels. Neuron 1996;16:1011–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Isomoto S, Kondo C, Yamada M, et al. A novel sulfonylurea receptor forms with BIR (Kir6.2) a smooth muscle type ATP-sensitive K* channel. J Biol Chem1996;271:24321–4.Google Scholar
  42. 42.
    Chutkow WA, Simon MC, Le Beau MM, Burant CF. Cloning, tissue expression, and chromosomal localization of SUR2, the putative drug-binding subunit of cardiac, skeletal muscle, and vascular KAW channels. Diabetes 1996;45:1439–45.PubMedCrossRefGoogle Scholar
  43. 43.
    Aguilar-Bryan L, Clement IV JP, Gonzalez G, Kunjilwar K, Babenko A, Bryan J. Toward understanding the assembly and structure of KATp channels. Physiol Rev 1998;78:227–45.PubMedGoogle Scholar
  44. 44.
    Chutkow WA, Makielski JC, Nelson D, Burant CF, Fan Z. Alternative splicing of SUR2 exon 17 regulates nucleotide sensitivity of KA.,p. J Biol Chem 1999;274:13656–65.PubMedCrossRefGoogle Scholar
  45. 45.
    Aguilar-Bryan L, Bryan J. ATP-sensitive potassium channels, sulfonylurea receptors, and persistent hyperinsulinemic hypoglycemia of infancy. Diabetes Review 1996;4:336–46.Google Scholar
  46. 46.
    Ueda K, Inagaki N, Seino S. MgADP antagonism to me-independent ATP binding of the sulfonylurea receptor SURI. J Biol Chem 1997;272:22983–6.PubMedCrossRefGoogle Scholar
  47. 47.
    Clement IV JP, Kunjilwar K, Gonzales G, et al. Association and stoichiometry of KAY channel subunits. Neuron 1997;18:827–38.PubMedCrossRefGoogle Scholar
  48. 48.
    Inagaki N, Gonoi T, Seino S. Subunit stoichiometry of the pancreatic ß-cells ATP-sensitive K+ channel. FEBS Lett 1997;409:232–6.PubMedCrossRefGoogle Scholar
  49. 49.
    Shyng SL, Nichols CG. Octameric stoichiometry of the KA.,,„ channel complex. J Gen Physiol 1997;110:655–64.PubMedCrossRefGoogle Scholar
  50. 50.
    Meglasson MD, Matschinsky FM. Pancreatic islet glucose metabolism and regulation of insulin secretion. Diabetes Metab Rev 1986;2:163–214.PubMedCrossRefGoogle Scholar
  51. 51.
    Ashcroft FM, Ashcroft SJH, Harrison DE. Properties of single channels modulated by glucose in rat pancreatic 13-cells. J Physiol (Lond) 1988;400:501–27.Google Scholar
  52. 52.
    Shyng S-L, Ferrigni T, Nichols CG. Regulation of KA channel activity by diazoxide and MgADP distinct functions of the two nucleotide binding folds of the sulfonylurea receptor. J Gen Physiol 1997;110:643–54.PubMedCrossRefGoogle Scholar
  53. 53.
    Gribble FM, Tucker SJ, Ashcroft FM. The essential role of the Walker A motifs of SURI in KATP channel activation by Mg-ADP and diazoxide. EMBO J 1997;16:1145–52.PubMedCrossRefGoogle Scholar
  54. 54.
    Tucker SJ, Gribble FM, Zhao C, Trapp S, Ashcroft FM. Truncation of Kir6.2 produces ATP-sensitive K* channels in the absence of the sulphonylurea receptor. Nature 1997;387:179–83.PubMedCrossRefGoogle Scholar
  55. 55.
    Ueda K, Inagaki N, Seino S. MgADP Antagonism to Mgt*- independent ATP binding of the sulfonylurea receptor SUR1. J Biol Chem 1997;272:22983–86.PubMedCrossRefGoogle Scholar
  56. 56.
    Tanabe K, Tucker SJ, Matsuo M, et al. Direct photoaffinity labelling of the Kir6.2 subunit of the ATP-sensitive K* channel by 8-azido-ATP. J Biol Chem 1999;274:3931–33.PubMedCrossRefGoogle Scholar
  57. 57.
    Ueda K, Komine J, Matsuo M, Seino S, Amachi T. Cooperative binding of ATP and MgADP in the sulfonylurea receptor is mediated by glibenclamide. Proc Natl Acad Sci USA 1999;96:1268–72.PubMedCrossRefGoogle Scholar
  58. 58.
    Seino S, Inagaki N, Namba N, Gonoi T. Molecular biology of the 0-cells ATP-sensitive K* channel. Diabetes Rev 1996;4:177–90.Google Scholar
  59. 59.
    Ashcroft FM, Gribble FM. Correlating structure and function in ATP-sensitive K* channels. Trends Neurosci 1998;21:288–94.PubMedCrossRefGoogle Scholar
  60. 60.
    Ashcroft FM, Ashcroft SJH. Properties and functions of ATP-sensitive K -channels. Cell Signal 1990;2:197–214.PubMedCrossRefGoogle Scholar
  61. 61.
    Gribble F, Tucker SJ, Seino S, Ashcroft FM. Tissue specificity of sulfonylyreas: studies on cloned cardiac and a-cell KA.I., channels. Diabetes1998;47:1412–18.Google Scholar
  62. 62.
    Axelrod L, Levitsky LL. Nesidioblastosis in HYPOGLYCEMIA. In: Kahn CR, Weir GC eds. Joslin’s Diabetes Mellitus, 13th ed. Malveem: Lea & Febiger. 1994;99–1.Google Scholar
  63. 63.
    Leibowitz G, Glaser B, Higazi AA, Salameh M, Cerasi E, Landau H. Hyperinsulinemic hypoglycemia of infancy (nesidioblastosis) in clinical remission: high incidence of diabetes mellitus and persistent 13-cell dysfunction at long-term follow-up. J Clin Endocrinol Metab 1995;80:386–92.PubMedCrossRefGoogle Scholar
  64. 64.
    Glaser B, Hirsch HJ, Landau H. Persistent hyperinsulinemic hypoglycemia of infancy: Long-term octreotide treatment without pancreatectomy. J Pediatr 1993;123:637–43.CrossRefGoogle Scholar
  65. 65.
    Shilyansky J, Fisher S, Cutz E, Perlman K, Filler RM. Is 95% pancreatectomy the procedure of choice for treatment of persistent hyperinsulinemic hypoglycemia of the neonate? J Pediatr Surg 1997;32:342–6.PubMedCrossRefGoogle Scholar
  66. 66.
    Dacou-Voutetakis C, Psychou F, Maniati-Christides M. Persistent hyperinsulinemic hypoglycemia of infancy: Long term result. J Pediatr Endocrinol Metab 1998;Suppl 11:131–41.Google Scholar
  67. 67.
    Glaser B, Phillip M, Carmi R, Lieberman E, Landau H. Persistent hyperinsulinemic hypoglycemia of infancy (“nesidioblastosis”): autosomal recessive inheritance in 7 pedigrees. Am J Med Genet 1990;37:511–5.PubMedCrossRefGoogle Scholar
  68. 68.
    Woolf DA, Leonard JV, Trembath RC, Pembrey ME, Grant DB. Nesidioblastosis: evidence for autosomal recessive inheritance. Arch Dis Child 1991;66:529–30.PubMedCrossRefGoogle Scholar
  69. 69.
    Thornton PS, Sumner AE, Ruchelli ED, Spielman RS, Baker L, Stanley CA. Familial and sporadic hyperinsulinism: histopathologic findings and segregation analysis support a single autosomal recessive disorder. J Pediat 1991;119:721–24.PubMedCrossRefGoogle Scholar
  70. 70.
    Bruining GJ. Recent advances in hyperinsulinism and the pathogenesis of diabetes mellitus. Curr Opin Pediat 1990;2:758–65.CrossRefGoogle Scholar
  71. 71.
    Mathew PM, Young JM, Abu-Osba YK, et al. Persistent neonatal hyperinsulinism. Clin Pediat 1988;27:148–51.Google Scholar
  72. 72.
    Glaser B, Chiu KC, Anker R, et al. Familial hyperinsulinism maps to chromosome 11p14–15.1, 30 cM centromeric to the insulin gene. Nature Genet 1994;7:185–8.PubMedCrossRefGoogle Scholar
  73. 73.
    Thomas PM, Cote GJ, Hallman DM, Mathew PM. Homozygosity mapping, to chromosome 11p, of the gene for familial persistent hyperinsulinemic hypoglycemia of infancy. Am J Hum Genet 1995;56:416–21.PubMedGoogle Scholar
  74. 74.
    Glaser B, Chiu KC, Liu L, et al. Recombinant mapping of the familial hyperinsulinism gene to an 0.8 cM region on chromosome 11p15.1 and demonstration of a founder effect in Ashkenazi Jews. Hum Mol Genet1995;4:879–86.PubMedCrossRefGoogle Scholar
  75. 75.
    Thomas PM, Wohlik N, Huang E, et al. Inactivation of the first nucleotide binding fold of the sulfonylurea receptor, and familial persistent hyperinsulinemic hypoglycemia of infancy. Am J Hum Genet 1996;59:510–8.PubMedGoogle Scholar
  76. 76.
    Nestorowicz A, Wilson BA, Schoor KP, et al. Mutations in the sulfonylurea receptor gene are associated with familial hyperinsulinism in Ashkenazi Jews. Hum Mol Genet 1996;5:1813–22.Google Scholar
  77. 77.
    Nichols CG, Shyng SL, Nestorowicz A, et al. Adenosine diphosphate as an intracellular regulator of insulin secretion. Science 1996;272:1785–7.PubMedCrossRefGoogle Scholar
  78. 78.
    Dunne MJ, Kane C, Shepherd RM, et al. Familial persistent hyperinsulinemic hypoglycemia of infancy and mutations in the sulfonylurea receptor. New Engl J Med 1997;336:703–6.PubMedCrossRefGoogle Scholar
  79. 79.
    Shyng SL, Ferrigni T, Shepard JB, et al. Functional analyses of novel mutations in the sulfonylurea receptor 1 associated with persistent hyperinsulinemic hypoglycemia of infancy. Diabetes 1998;47:1145–51.PubMedCrossRefGoogle Scholar
  80. 80.
    Nestorowicz A, Glaser B, Wilson BA, et al. Genetic heterogeneity in familial hyperinsulinism. Hum Mol Genet 1998;7:1119–28.PubMedCrossRefGoogle Scholar
  81. 81.
    Filler RM, Weinberg MJ, Cutz E, Wesson DE, Ehrlich RM. Current status of pancreatectomy for persistent idiopathic neonatal hypoglycemia due to islet cell dysplasia. Prog Pediatr Surg 1991;26:60–75.PubMedCrossRefGoogle Scholar
  82. 82.
    Verkarre, V.; Fournet, J.-C.; de Lonlay, P.; Gross-Morand, M.-S.; Devillers. Paternal mutation of the sulfonylurea receptor (SURI) gene and maternal loss of 11p15 imprinted genes lead to persistent hyperinsulinism in focal adenomatous hyperplasia. J Clin Invest 1998;102:1286–91.PubMedCrossRefGoogle Scholar
  83. 83.
    de Lonlay P, Fournet JC, Rahier J, et al. Somatic deletion of the imprinted 11p15 region in sporadic persistent hyperinsulinemic hypoglycemia of infancy is specific of focal adenomatous hyperplasia and endorses partial pancreatectomy. J Clin Invest 1997;100:802–7.CrossRefGoogle Scholar
  84. 84.
    Dubois J, Brunelle F, Touati G, et al. Hyperinsulinism in children: diagnostic value of pancreatic venous sampling correlated with clinical, pathological and surgical outcome in 25 cases. Pediatr Radiol 1995;25:512–6.PubMedCrossRefGoogle Scholar
  85. 85.
    Thomas P, Ye Y, Lightner E. Mutation of the pancreatic islet inward rectifier Kir6.2 also leads to familial persistent hyperinsulinemic hypoglycemia of infancy. Hum Mol Genet 1996;5:1809–12.PubMedCrossRefGoogle Scholar
  86. 86.
    Nestorowicz A, Inagaki N, Gonoi T, et al. A nonsense mutation in the inward rectifier potassium channel gene, Kir6.2, is associated with familial hyperinsulinism. Diabetes 1997;46:1743–8.PubMedCrossRefGoogle Scholar
  87. 87.
    Kukuvitis A, Deal C, Arbour L, Polychronakos C. An autosomal dominant form of familial persistent hyperinsulinemic hypoglycemia of infancy, not linked to the sulfonylurea receptor locus. J Clin Endocrinol Metab 1997;82:1192–4.PubMedCrossRefGoogle Scholar
  88. 88.
    Glaser B, Kesavan P, Heyman M, et al. Familial hyperinsulinism caused by an activating glucokinase mutation. N Engl J Med 1998;338:226–30.PubMedCrossRefGoogle Scholar
  89. 89.
    Stanley CA, Lieu YK, Hsu BY, et al. Hyperinsulinism and hyperammonemia in infants with regulatory mutations of the glutamate dehydrogenase gene. N Engl J Med 1998;338:1352–7.PubMedCrossRefGoogle Scholar
  90. 90.
    Tokuyama Y, Fan Z, Furuta H, et al. Rat inwardly rectifying potassium channel Kir6.2: cloning electrophysiological characterization, and decreased expression in pancreatic islets of male Zucker diabetic fatty rats. Biochem Biophys Res Commun 1996; 220:532–8.PubMedCrossRefGoogle Scholar
  91. 91.
    Iwasaki N, Kawamura M, Yamagata K, et al. Identification of microsatellite markers near the human genes encoding the I3-cells ATP-sensitive K` channel and linkage studies with NIDDM in Japanese. Diabetes 1996;45:267–9.PubMedCrossRefGoogle Scholar
  92. 92.
    Sakura H, Wat N, Horton V, Milles H, Turner RC, Ashcroft FM. Sequence variations in the human Kir6.2 gene, a subunit of the beta-cell ATP-sensitive K-channel: no association withNIDDM in while Caucasian subjects or evidence of abnormal function when expressed in vitro. Diabetologia 1996;39:1233–6.PubMedCrossRefGoogle Scholar
  93. 93.
    Inoue H, Ferrer J, Warren-Perry M, et al. Sequence variants in the pancreatic islet 13-cell inwardly rectifying K* channel Kir6.2 (Bir) gene: identification and lack of role in Caucasian patients with NIDDM. Diabetes 1997;46:502–7.PubMedCrossRefGoogle Scholar
  94. 94.
    Hansen L, Echwald SM, Hansen T, Urhammer SA, Clausen JO, Pedersen O. Amino acid polymorphisms in the ATP-regulatable inward rectifier Kir6.2 and their relationships to glucose and tolbutamide-induced insulin secretion, the insulin sensitivity index, and NIDDM. Diabetes 1997;46:508–12.PubMedCrossRefGoogle Scholar
  95. 95.
    Hani EH, Boutin P, Durand E, et al. Missense mutations in the pancreatic islet p-cell inwardly rectifying K* channel gene (KIR6.2BIR): a meta-analysis suggests a role in the polygenic basis of Type II diabetes mellitus in Caucasians. Diabetologia 1998;41:1511–5.PubMedCrossRefGoogle Scholar
  96. 96.
    Stirling B, Cox NJ, Bell GI, Hanis CL, Spielman RS, Concannon P. Linkage studies in NIDDM with markers near the sulphonylurea receptor gene. Diabetologia 1995;38:1479–81.PubMedCrossRefGoogle Scholar
  97. 97.
    Ohta Y, Tanizawa Y, Inoue H, et al. Identification and functional analysis of sulfonylurea receptor 1 variants in Japanese patients with NIDDM. Diabetes 1998;47:476–81.PubMedCrossRefGoogle Scholar
  98. 98.
    Ishiyama-Shigemoto S, Yamada K, Yuan X, Koyama W, Nonaka K. Clinical characterization of polymorphisms in the sulphonylurea receptor 1 gene in Japanese subjects with Type 2 diabetes mellitus. Diabet Med 1998;15:826–9.PubMedCrossRefGoogle Scholar
  99. 99.
    Inoue H, Ferrer J, Welling CM, Elbein SC, Hoffman M et al. Sequence variants in the sulfonylurea receptor (SUR) gene are associated with NIDDM in Caucasians. Diabetes 1996;45:825–31PubMedCrossRefGoogle Scholar
  100. 100.
    Hansen T, Echwald SM, Hansen L, et al. Decreased tolbutamide-stimulated insulin secretion in healthy subjects with sequence variants in the high-affinity sulfonylurea receptor gene. Diabetes 1998;47:598–605.PubMedCrossRefGoogle Scholar
  101. 101.
    Hani EH, Clement K, Velho G, et al. Genetic studies of the sulfonylurea receptor gene locus in NIDDM and in morbid obesity among French Caucasians. Diabetes 1997;46: 688–94PubMedCrossRefGoogle Scholar
  102. 102.
    Goksel DL, Fischbach K, Duggirala R, et al. Variant in sulfonylurea receptor-1 gene is associated with high insulin concentrations in non-diabetic Mexican Americans: SUR-1 gene variant and hyperinsulinemia. Hum Genet 1998;103:280–5.PubMedCrossRefGoogle Scholar
  103. 103.
    Heginbotham L, Abramson T, MacKinnon R. A functional connection between the pores of distantly related ion channels as revealed by mutant K* channels. Science 1992;258:1152–5.PubMedCrossRefGoogle Scholar
  104. 104.
    Jan LY, Jan Y. Potassium channels and their evolving gates. Nature 1994;371:119–22.PubMedCrossRefGoogle Scholar
  105. 105.
    Kerr ID, Sansom MS. Cation selectivity in ion channels. Nature 1995;373:112.PubMedCrossRefGoogle Scholar
  106. 106.
    Mild T, Tashiro F, Iwanaga T, et al. Abnormalities of pancreatic islets by targeted expression of a dominant-negative KA1,, channel. Proc Nati Acad Sci USA 1997;94:11969–73.CrossRefGoogle Scholar
  107. 107.
    Mild T, Nagashima K, Tashiro F, et al. Defective insulin secretion and enhanced insulin action in Km? channel-deficient mice. Proc Natl Acad Sci USA 1998;95:10402–6.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Susumu Seino
    • 1
  • Takashi Miki
    • 1
  • Hideki Yano
    • 1
  1. 1.Chiba UniversityJapan

Personalised recommendations