Facilitation of Organ Transplantation with Gene Therapy

  • Nick Giannoukakis
  • Paul D. Robbins

Abstract

Currently, prolonging survival or promoting permanent acceptance of an organ graft depends mostly on the judicious use of pharmacologic agents, usually for the lifespan of the recipient. More recently, humanized antibodies against immunostimulatory molecules have become available and offer improved specificity than earlier agents. The problem with both approaches, however, lies in the degree of toxicity and unwanted immune modulation, either in the form of stimulation or suppression. Consequently, more specific intervention is required. At the same time, it is becoming apparent that the procedures initiated at the time of organ procurement may be important in determining the outcome of graft survival. Gene-based approaches offer the potential for intervention at early stages of organ procurement to prevent oxidative damage and cell death, during preservation to maintain viability, peri-transplant to promote acceptance by suppressing unwanted immune responses and post-transplant to promote long-term survival.

Keywords

Ischemia Adenosine Prostaglandin Integrin Cyclosporin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Jaeschke H. Vascular oxidant stress and hepatic ischemia/reperfusion injury. Free Radic Res Commun. 1991;12-13:737–43.PubMedCrossRefGoogle Scholar
  2. 2.
    Jaeschke H. Reactive oxygen and ischemia/reperfusion injury of the liver. Chem Biol Interact. 1991;79:115–36.PubMedCrossRefGoogle Scholar
  3. 3.
    Nagano H, Tilney NL. Chronic allograft failure: the clinical problem. Am J Med Sci. 1997;313:305–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Bulkley GB. Free radical-mediated reperfusion injury: a selective review. Br J Cancer Suppl. 1987;8:66–73.PubMedGoogle Scholar
  5. 5.
    Koyama I, Bulkley GB, Williams GM, Im MJ. The role of oxygen free radicals in mediating the reperfusion injury of cold-preserved ischemic kidneys. Transplantation. 1985;40:590–5.PubMedCrossRefGoogle Scholar
  6. 6.
    Jaeschke H. Preservation injury: mechanisms, prevention and consequences. J Hepatol. 1996;25:774–80.PubMedCrossRefGoogle Scholar
  7. 7.
    Jaeschke H, Smith CW, Clemens MG, Ganey PE, Roth RA. Mechanisms of inflammatory liver injury: adhesion molecules and cytotoxicity of neutrophils. Toxicol Appl Pharmacol. 1996;139:213–26.PubMedCrossRefGoogle Scholar
  8. 8.
    Colletti LM, Kunkel SL, Walz A, Burdick MD, Kunkel RG, Wilke CA, Strieter RM. The role of cytokine networks in the local liver injury following hepatic ischemia/reperfusion in the rat. Hepatology. 1996;23:506–14.PubMedCrossRefGoogle Scholar
  9. 9.
    Pirsch JD, Ploeg RJ, Gange S, D’Alessandro AM, Knechtle SJ, Sollinger HW, Kalayoglu M, Belzer FO. Determinants of graft survival after renal transplantation. Transplantation. 1996;61:1581–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Perico N, Remuzzi G. Prevention of transplant rejection: current treatment guidelines and future developments. Drugs. 1997;54:533–70.PubMedCrossRefGoogle Scholar
  11. 11.
    Meldrum DR, Cain BS, Cleveland JC, Jr., Meng X, Ayala A, Banerjee A, Harken AH. Adenosine decreases post-ischaemic cardiac TNF-alpha production: anti- inflammatory implications for preconditioning and transplantation. Immunology. 1997;92:472–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Bottino R, Fernandez LA, Ricordi C, Lehmann R, Tsan MF, Oliver R, Inverardi L. Transplantation of allogeneic islets of Langerhans in the rat liver: effects of macrophage depletion on graft survival and microenvironment activation. Diabetes. 1998;47:316–23.PubMedCrossRefGoogle Scholar
  13. 13.
    Essani NA, Fisher MA, Farhood A, Manning AM, Smith CW, Jaeschke H. Cytokine-induced upregulation of hepatic intercellular adhesion molecule-1 messenger RNA expression and its role in the pathophysiology of murine endotoxin shock and acute liver failure. Hepatology. 1995;21:1632–9.PubMedGoogle Scholar
  14. 14.
    Essani NA, McGuire GM, Manning AM, Jaeschke H. Differential induction of mRNA for ICAM-1 and selectins in hepatocytes, Kupffer cells and endothelial cells during endotoxemia. Biochem Biophys Res Commun. 1995;211:74–82.PubMedCrossRefGoogle Scholar
  15. 15.
    Wyble CW, Desai TR, Clark ET, Hynes KL, Gewertz BL. Physiologic concentrations of TNFalpha and IL-lbeta released from reperfused human intestine upregulate E-selectin and ICAM-1. J Surg Res. 1996;63:333–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Hancock WH, Whitley WD, Tullius SG, Heemann UW, Wasowska B, Baldwin WMd, Tilney NL. Cytokines, adhesion molecules, and the pathogenesis of chronic rejection of rat renal allografts. Transplantation. 1993;56:643–50.PubMedCrossRefGoogle Scholar
  17. 17.
    Shirasugi N, Wakabayashi G, Shimazu M, Oshima A, Shito M, Kawachi S, Karahashi T, Kumamoto Y, Yoshida M, Kitajima M. Up-regulation of oxygen-derived free radicals by interleukin-1 in hepatic ischemia/reperfusion injury. Transplantation. 1997;64:1398–403.PubMedCrossRefGoogle Scholar
  18. 18.
    Shito M, Wakabayashi G, Ueda M, Shimazu M, Shirasugi N, Endo M, Mukai M, Kitajima M. Interleukin 1 receptor blockade reduces tumor necrosis factor production, tissue injury, and mortality after hepatic ischemia-reperfiision in the rat. Transplantation. 1997;63:143–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Natori S, Fujii Y, Kurosawa H, Nakano A, Shimada H. Prostaglandin El protects against ischemia-reperfusion injury of the liver by inhibition of neutrophil adherence to endothelial cells. Transplantation. 1997;64:1514–20.PubMedCrossRefGoogle Scholar
  20. 20.
    Oubenaissa A, Mouas C, Bourgeois F, Le Deist F, Alberici G, Moalic JM, Menasche P. Evidence for an involvement of the neutrophil integrin lymphocyte function-associated antigen-1 in early failure of heart transplants. Circulation. 1996;94:11254–9.Google Scholar
  21. 21.
    DeMeester SR, Molinari MA, Shiraishi T, Okabayashi K, Manchester JK, Wick MR, Cooper JD, Patterson GA. Attenuation of rat lung isograft reperfusion injury with a combination of anti-ICAM-1 and anti-beta2 integrin monoclonal antibodies. Transplantation. 1996;62:1477–85.PubMedCrossRefGoogle Scholar
  22. 22.
    Chen W, Bennett CF, Wang ME, Dragun D, Tian L, Stecker K, Clark JH, Kahan BD, Stepkowski SM. Perfusion of kidneys with unformulated "naked" intercellular adhesion molecule-1 antisense oligodeoxynucleotides prevents ischemic/reperfusion injury. Transplantation. 1999;68:880–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Poston RS, Ing DJ, Ennen MP, Hoyt EG, Robbins RC. ICAM-1 affects reperfusion injury and graft function after cardiac transplantation. J Surg Res. 1999;87:25–31.PubMedCrossRefGoogle Scholar
  24. 24.
    Poston RS, Mann MJ, Hoyt EG, Ennen M, Dzau VJ, Robbins RC. Antisense oligodeoxynucleotides prevent acute cardiac allograft rejection via a novel, nontoxic, highly efficient transfection method. Transplantation. 1999;68:825–32.PubMedCrossRefGoogle Scholar
  25. 25.
    Feeley BT, Park AK, Alexopoulos S, Hoyt EG, Ennen MP, Poston RS, Jr., Robbins RC. Pressure delivery of AS-ICAM-1 ODN with LFA-1 mAb reduces reperfusion injury in cardiac allografts. Ann Thorac Surg. 1999;68:119–24.PubMedCrossRefGoogle Scholar
  26. 26.
    Mann MJ, Gibbons GH, Hutchinson H, Poston RS, Hoyt EG, Robbins RC, Dzau VJ. Pressure-mediated oligonucleotide transfection of rat and human cardiovascular tissues. Proc Natl Acad Sci USA. 1999;96:6411–6.PubMedCrossRefGoogle Scholar
  27. 27.
    Schneeberger H, Schleibner S, Schilling M, Illner WD, Abendroth D, Hancke E, Janicke U, Land W. Prevention of acute renal failure after kidney transplantation by treatment with rh-SOD: interim analysis of a double-blind placebo- controlled trial. Transplant Proc. 1990;22:2224–5.PubMedGoogle Scholar
  28. 28.
    Land W, Schneeberger H, Schleibner S, Illner WD, Abendroth D, Rutili G, Arfors KE, Messmer K. The beneficial effect of human recombinant superoxide dismutase on acute and chronic rejection events in recipients of cadaveric renal transplants. Transplantation. 1994;57:211–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Bennett JF, Bry WI, Collins GM, Halasz NA. The effects of oxygen free radicals on the preserved kidney. Cryobiology. 1987;24:264–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Lee PH, Chung YC, Hu RH, Huang MT, Lee CS. Protective effect of superoxide dismutase and allopurinol on oxygen free radical-induced damage to the kidney. Transplant Proc. 1992;24:1353–4.PubMedGoogle Scholar
  31. 31.
    Mizoe A, Kondo S, Azuma T, Fujioka H, Tanaka K, Hashida M, Kanematsu T. Preventive effects of superoxide dismutase derivatives modified with monosaccharides on reperfusion injury in rat liver transplantation. J Surg Res. 1997;73:160–5.PubMedCrossRefGoogle Scholar
  32. 32.
    Shiraishi T, Kuroiwa A, Shirakusa T, Kawahara K, Yoneda S, Kitano K, Okabayashi K, Iwasaki A. Free radical-mediated tissue injury in acute lung allograft rejection and the effect of superoxide dismutase. Ann ThoracSurg. 1997;64:821–5.CrossRefGoogle Scholar
  33. 33.
    Woo YJ, Zhang JC, Vijayasarathy C, Zwacka RM, Englehardt JF, Gardner TJ, Sweeney HL. Recombinant adenovirus-mediated cardiac gene transfer of superoxide dismutase and catalase attenuates postischemic contractile dysfunction. Circulation. 1998;98:11255–60; discussion II260–1.Google Scholar
  34. 34.
    Zwacka RM, Zhou W, Zhang Y, Darby CJ, Dudus L, Halldorson J, Oberley L, Engelhardt JF. Redox gene therapy for ischemia/reperfusion injury of the liver reduces API and NF-kappaB activation. Nat Med. 1998;4:698–704.PubMedCrossRefGoogle Scholar
  35. 35.
    Jaeschke H. Chemokines, neutrophils, and inflammatory liver injury [editorial; comment]. Shock. 1996;6:403–4.PubMedCrossRefGoogle Scholar
  36. 36.
    Dairaghi DJ, Fan RA, McMaster BE, Hanley MR, Schall TJ. HHV8-encoded vMIP-I selectively engages chemokine receptor CCR8. Agonist and antagonist profiles of viral chemokines. J Biol Chem. 1999;274:21569–74.PubMedCrossRefGoogle Scholar
  37. 37.
    Howard OM, Oppenheim JJ, Wang JM. Chemokines as molecular targets for therapeutic intervention. J Clin Immunol. 1999;19:280–92.PubMedCrossRefGoogle Scholar
  38. 38.
    Gallichan WS, Kafri T, Krahl T, Verma IM, Sarvetnick N. Lentivirus-mediated transduction of islet grafts with interleukin 4 results in sustained gene expression and protection from insulitis. Hum Gene Ther. 1998;9:2717–26.PubMedCrossRefGoogle Scholar
  39. 39.
    Giannoukakis N, Mi Z, Gambotto A, Eramo A, Ricordi C, Trucco M, Robbins P. Infection of intact human islets by a lentiviral vector. Gene Ther. 1999;6:1545–1551.PubMedCrossRefGoogle Scholar
  40. 40.
    Leibowitz G, Beattie GM, Kafri T, Cirulli V, Lopez AD, Hayek A, Levine F. Gene transfer to human pancreatic endocrine cells using viral vectors. Diabetes. 1999;48:745–53.PubMedCrossRefGoogle Scholar
  41. 41.
    Naldini L, Blomer U, Gage FH, Trono D, Verma IM. Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci USA. 1996;93:11382–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol. 1997;15:871–5.PubMedCrossRefGoogle Scholar
  43. 43.
    Krisky DM, Wolfe D, Goins WF, Marconi PC, Ramakrishnan R, Mata M, Rouse RJ, Fink DJ, Glorioso JC. Deletion of multiple immediate-early genes from herpes simplex virus reduces cytotoxicity and permits long-term gene expression in neurons. Gene Ther. 1998;5:1593–603.PubMedCrossRefGoogle Scholar
  44. 44.
    Fink DJ, Ramakrishnan R, Marconi P, Goins WF, Holland TC, Glorioso JC. Advances in the development of herpes simplex virus-based gene transfer vectors for the nervous system. Clin Neurosci. 1995;3:284–91.PubMedGoogle Scholar
  45. 45.
    Robbins PD, Tahara H, Ghivizzani SC. Viral vectors for gene therapy. Trends Biotechnol. 1998;16:35–40.PubMedCrossRefGoogle Scholar
  46. 46.
    Xiao W, Chirmule N, Berta SC, McCullough B, Gao G, Wilson JM. Gene therapy vectors based on adeno-associated virus type 1. J Virol. 1999;73:3994–4003.PubMedGoogle Scholar
  47. 47.
    Springer TA. Adhesion receptors of the immune system. Nature. 1990;346:425–34.PubMedCrossRefGoogle Scholar
  48. 48.
    Isobe M, Yagita H, Okumura K, Ihara A. Specific acceptance of cardiac allograft after treatment with antibodies to ICAM-1 and LFA-1. Science. 1992;255:1125–7.PubMedCrossRefGoogle Scholar
  49. 49.
    Cosimi AB, Conti D, Delmonico FL, Preffer FI, Wee SL, Rothlein R, Faanes R, Colvin RB. In vivo effects of monoclonal antibody to ICAM-1 (CD54) in nonhuman primates with renal allografts. J Immunol. 1990;144:4604–12.PubMedGoogle Scholar
  50. 50.
    Kato Y, Yamataka A, Yagita H, Okumura K, Fujiwara T, Miyano T. Specific acceptance of fetal bowel allograft in mice after combined treatment with anti-intercellular adhesion molecule-1 and leukocyte function-associated antigen-1 antibodies. Ann Surg. 1996;223:94–100.PubMedCrossRefGoogle Scholar
  51. 51.
    Kaplon RJ, Hochman PS, Michler RE, Kwiatkowski PA, Edwards NM, Berger CL, Xu H, Meier W, Wallner BP, Chisholm P, Marboe CC. Short course single agent therapy with an LFA-3-IgGl fusion protein prolongs primate cardiac allograft survival. Transplantation. 1996;61:356–63.PubMedCrossRefGoogle Scholar
  52. 52.
    Sultan P, Schechner JS, McNiff JM, Hochman PS, Hughes CC, Lorber MI, Askenase PW, Pober JS. Blockade of CD2-LFA-3 interactions protects human skin allografts in immunodeficient mouse/human chimeras. Nat Biotechnol. 1997;15:759–62.PubMedCrossRefGoogle Scholar
  53. 53.
    Fanslow WC, Sims JE, Sassenfeld H, Morrissey PJ, Gillis S, Dower SK, Widmer MB. Regulation of alloreactivity in vivo by a soluble form of the interleukin-1 receptor. Science. 1990;248:739–42.PubMedCrossRefGoogle Scholar
  54. 54.
    Shiraishi M, Csete M, Yasunaga C, McDiarmid SV, Vannice JL, Busuttil RW, Shaked A. The inhibitor cytokine interleukin-1 receptor antagonist synergistically augments cyclosporine immunosuppression in a rat cardiac allograft model. J Surg Res. 1995;58:465–70.PubMedCrossRefGoogle Scholar
  55. 55.
    Qin L, Ding Y, Pahud DR, Robson ND, Shaked A, Bromberg JS. Adenovirus-mediated gene transfer of viral interleukin-10 inhibits the immune response to both alloantigen and adenoviral antigen. Hum Gene Ther. 1997;8:1365–74.PubMedCrossRefGoogle Scholar
  56. 56.
    Qin L, Chavin KD, Ding Y, Favaro JP, Woodward JE, Lin J, Tahara H, Robbins P, Shaked A, Ho DY, et al. Multiple vectors effectively achieve gene transfer in a murine cardiac transplantation model. Immunosuppression with TGF-beta 1 or vIL-10. Transplantation. 1995;59:809–16.PubMedGoogle Scholar
  57. 57.
    Drazan KE, Wu L, Olthoff KM, Jurim O, Busuttil RW, Shaked A. Transduction of hepatic allografts achieves local levels of viral IL-10 which suppress alloreactivity in vitro. J Surg Res. 1995;59:219–23.PubMedCrossRefGoogle Scholar
  58. 58.
    Drazan KE, Olthoff KM, Wu L, Shen XD, Gelman A, Shaked A. Adenovirus-mediated gene transfer in the transplant setting: early events after orthotopic transplantation of liver allografts expressing TGF-beta1. Transplantation. 1996;62:1080–4.PubMedCrossRefGoogle Scholar
  59. 59.
    Shinozaki K, Yahata H, Tanji H, Sakaguchi T, Ito H, Dohi K. Allograft transduction of IL-10 prolongs survival following orthotopic liver transplantation. Gene Ther. 1999;6:816–22.PubMedCrossRefGoogle Scholar
  60. 60.
    He XY, Chen J, Verma N, Plain K, Tran G, Hall BM. Treatment with interleukin-4 prolongs allogeneic neonatal heart graft survival by inducing T helper 2 responses. Transplantation. 1998;65:1145–52.PubMedCrossRefGoogle Scholar
  61. 61.
    Takeuchi T, Ueki T, Sunaga S, Ikuta K, Sasaki Y, Li B, Moriyama N, Miyazaki J, Kawabe K. Murine interleukin 4 transgenic heart allograft survival prolonged with down-regulation of the Th1 cytokine mRNA in grafts. Transplantation. 1997;64:152–7.PubMedCrossRefGoogle Scholar
  62. 62.
    Yasuda H, Nagata M, Arisawa K, Yoshida R, Fujihira K, Okamoto N, Moriyama H, Miki M, Saito I, Hamada H, Yokono K, Kasuga M. Local expression of immunoregulatory IL-12p40 gene prolonged syngeneic islet graft survival in diabetic NOD mice. J Clin Invest. 1998;102:1807–14.PubMedCrossRefGoogle Scholar
  63. 63.
    Wiznerowicz M, Fong AZ, Mackiewicz A, Hawley RG. Double-copy bicistronic retroviral vector platform for gene therapy and tissue engineering: application to melanoma vaccine development. Gene Ther. 1997;4:1061–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Hawley RG, Lieu FH, Fong AZ, Hawley TS. Versatile retroviral vectors for potential use in gene therapy. Gene Ther. 1994;1:136–8.PubMedGoogle Scholar
  65. 65.
    Larsen CP, Pearson TC. The CD40 pathway in allograft rejection, acceptance, and tolerance. Curr Opin Immunol. 1997;9:641–7.PubMedCrossRefGoogle Scholar
  66. 66.
    Sempowski GD, Rozenblit J, Smith TJ, Phipps RP. Human orbital fibroblasts are activated through CD40 to induce proinflammatory cytokine production. Am J Physiol. 1998;274:C707–14.PubMedGoogle Scholar
  67. 67.
    Dechanet J, Grosset C, Taupin JL, Merville P, Banchereau J, Ripoche J, Moreau JF. CD40 ligand stimulates proinflammatory cytokine production by human endothelial cells. J Immunol. 1997;159:5640–7.PubMedGoogle Scholar
  68. 68.
    Mach F, Schonbeck U, Sukhova GK, Bourcier T, Bonnefoy JY, Pober JS, Libby P. Functional CD40 ligand is expressed on human vascular endothelial cells, smooth muscle cells, and macrophages: implications for CD40-CD40 ligand signaling in atherosclerosis. Proc Natl Acad Sci USA. 1997;94:1931–6.PubMedCrossRefGoogle Scholar
  69. 69.
    Kiener PA, Moran-Davis P, Rankin BM, Wahl AF, Aruffo A, Hollenbaugh D. Stimulation of CD40 with purified soluble gp39 induces proinflammatory responses in human monocytes. J Immunol. 1995;155:4917–25.PubMedGoogle Scholar
  70. 70.
    Sartori A, Ma X, Gri G, Showe L, Benjamin D, Trinchieri G. Interleukin-12: an immunoregulatory cytokine produced by B cells and antigen-presenting cells. Methods. 1997; 11:116–27.PubMedCrossRefGoogle Scholar
  71. 71.
    Van Gool SW, Vandenberghe P, de Boer M, Ceuppens JL. CD80, CD86 and CD40 provide accessory signals in a multiple-step T-cell activation model. Immunol Rev. 1996;153:47–83.PubMedCrossRefGoogle Scholar
  72. 72.
    Lenschow DJ, Walunas TL, Bluestone JA. CD28/B7 system of T cell costimulation. Annu Rev Immunol. 1996;14:233–58.PubMedCrossRefGoogle Scholar
  73. 73.
    Schweitzer AN, Sharpe AH. The complexity of the B7-CD28/CTLA-4 costimulatory pathway. Agents Actions Suppl. 1998;49:33–43.PubMedGoogle Scholar
  74. 74.
    Kirk AD, Harlan DM, Armstrong NN, Davis TA, Dong Y, Gray GS, Hong X, Thomas D, Fechner JH, Jr., Knechtle SJ. CTLA4-Ig and anti-CD40 ligand prevent renal allograft rejection in primates. Proc Natl Acad Sci USA. 1997;94:8789–94.PubMedCrossRefGoogle Scholar
  75. 75.
    Larsen CP, Elwood ET, Alexander DZ, Ritchie SC, Hendrix R, Tucker-Burden C, Cho HR, Aruffo A, Hollenbaugh D, Linsley PS, Winn KJ, Pearson TC. Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways. Nature. 1996;381:434–8.PubMedCrossRefGoogle Scholar
  76. 76.
    Elwood ET, Larsen CP, Cho HR, Corbascio M, Ritchie SC, Alexander DZ, Tucker-Burden C, Linsley PS, Aruffo A, Hollenbaugh D, Winn KJ, Pearson TC. Prolonged acceptance of concordant and discordant xenografts with combined CD40 and CD28 pathway blockade. Transplantation. 1998;65:1422–8.PubMedCrossRefGoogle Scholar
  77. 77.
    Lenschow DJ, Zeng Y, Thistlethwaite JR, Montag A, Brady W, Gibson MG, Linsley PS, Bluestone JA. Long-term survival of xenogeneic pancreatic islet grafts induced by CTLA41g. Science. 1992;257:789–92.PubMedCrossRefGoogle Scholar
  78. 78.
    Van Gool SW, de Boer M, Ceuppens JL. The combination of anti-B7 monoclonal antibody and cyclosporin A induces alloantigen-specific anergy during a primary mixed lymphocyte reaction. J Exp Med. 1994;179:715–20.PubMedCrossRefGoogle Scholar
  79. 79.
    Chahine AA, Yu M, McKernan MM, Stoeckert C, Lau HT. Immunomodulation of pancreatic islet allografts in mice with CTLA4Ig secreting muscle cells. Transplantation. 1995;59:1313–8.PubMedGoogle Scholar
  80. 80.
    Chahine AA, Stoeckert C, Lau HT. Local immunomodulation to promote co-stimulatory blockade. Clin Transplant. 1995;9:215–8.PubMedGoogle Scholar
  81. 81.
    Steurer W, Nickerson PW, Steele AW, Steiger J, Zheng XX, Strom TB. Ex vivo coating of islet cell allografts with murine CTLA4/Fc promotes graft tolerance. J Immunol. 1995;155:1165–74.PubMedGoogle Scholar
  82. 82.
    Lenschow DJ, Zeng Y, Hathcock KS, Zuckerman LA, Freeman G, Thistlethwaite JR, Gray GS, Hodes RJ, Bluestone JA. Inhibition of transplant rejection following treatment with anti-B7–2 and anti-B7–l antibodies. Transplantation. 1995;60:1171–8.PubMedCrossRefGoogle Scholar
  83. 83.
    Levisetti MG, Padrid PA, Szot GL, Mittal N, Meehan SM, Wardrip CL, Gray GS, Bruce DS, Thistlethwaite JR, Jr., Bluestone JA. Immunosuppressive effects of human CTLA4Ig in a non-human primate model of allogeneic pancreatic islet transplantation. J Immunol. 1997;159:5187–91.PubMedGoogle Scholar
  84. 84.
    Gainer AL, Korbutt GS, Rajotte RV, Warnock GL, Elliott JF. Expression of CTLA4-Ig by biolistically transfected mouse islets promotes islet allograft survival. Transplantation. 1997;63:1017–21.PubMedCrossRefGoogle Scholar
  85. 85.
    Olthoff KM, Da Chen X, Gelman A, Turka L, Shaked A. Adenovirus-mediated gene transfer of CTLA4Ig to liver allografts results in prolonged survival and local T-cell anergy. Transplant Proc. 1997;29:1030–1.PubMedCrossRefGoogle Scholar
  86. 86.
    Olthoff KM, Judge TA, Gelman AE, da Shen X, Hancock WW, Turka LA, Shaked A. Adenovirus-mediated gene transfer into cold-preserved liver allografts: survival pattern and unresponsiveness following transduction with CTLA4Ig. Nat Med. 1998;4:194–200.PubMedCrossRefGoogle Scholar
  87. 87.
    Kita Y, Li XK, Ohba M, Funeshima N, Enosawa S, Tamura A, Suzuki K, Amemiya H, Hayashi S, Kazui T, Suzuki S. Prolonged cardiac allograft survival in rats systemically injected adenoviral vectors containing CTLA4Ig-gene. Transplantation. 1999;68:758–66.PubMedCrossRefGoogle Scholar
  88. 88.
    Yang Z, Rostami S, Koeberlein B, Barker CF, Naji A. Cardiac allograft tolerance induced by intra-arterial infusion of recombinant adenoviral CTLA4Ig. Transplantation. 1999;67:1517–23.PubMedCrossRefGoogle Scholar
  89. 89.
    Feng S, Quickel RR, Hollister-Lock J, McLeod M, Bonner-Weir S, Mulligan RC, Weir GC. Prolonged xenograft survival of islets infected with small doses of adenovirus expressing CTLA4Ig. Transplantation. 1999;67:1607–13.PubMedCrossRefGoogle Scholar
  90. 90.
    Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392:245–52.PubMedCrossRefGoogle Scholar
  91. 91.
    Steptoe RJ, Thomson AW. Dendritic cells and tolerance induction. Clin Exp Immunol. 1996;105:397–402.PubMedCrossRefGoogle Scholar
  92. 92.
    Thomson, A. W., and L. Lu. 1999. Dendritic cells as regulators of immune reactivity: implications for transplantation. Transplantation. 68:1–8.PubMedCrossRefGoogle Scholar
  93. 93.
    Lu L., W. C. Lee, A. Gambotto, C. Zhong, P. D. Robbins, S. Qian, J. J. Fung, and A. W. Thomson. 1999. Transduction of dendritic cells with adenoviral vectors encoding CTLA4-Ig markedly reduces theirallostimulatory activity. Transplant Proc. 31:79.CrossRefGoogle Scholar
  94. 94.
    Lee WC, et al. Phenotype, function and in vivo migration and survival of allogeneic dendritic cell progenitors genetically engineered to express TGFb. Transplantation. 1998; 66:1810–1817.PubMedCrossRefGoogle Scholar
  95. 95.
    Takayama T, Nishioka Y, Lu L, Lotze MT, Tahara H, Thomson AW. Retroviral delivery of viral interleukin-10 into myeloid dendritic cells markedly inhibits their allostimulatory activity and promotes the induction of T-cell hyporesponsiveness. Transplantation. 1998;66:1567–74.PubMedCrossRefGoogle Scholar
  96. 96.
    Zhang HG, Liu D, Heike Y, Yang P, Wang Z, Wang X, Curiel DT, Zhou T, Mountz JD. Induction of specific T-cell tolerance by adenovirus-transfected, Fas ligand-producing antigen presenting cells. Nat Biotechnol. 1998;16:1045–9.PubMedCrossRefGoogle Scholar
  97. 97.
    Zhang H, Su X, Liu D, Liu W, Yang P, Wang Z, Edwards CK, Bluethmann H, Mountz JD, Zhou T. Induction of Specific T Cell Tolerance by Fas Ligand- Expressing Antigen-Presenting Cells. J Immunol. 1999;162:1423–1430.PubMedGoogle Scholar
  98. 98.
    Wang J, Zheng L, Lobito A, Chan FK, Dale J, Sneller M, Yao X, Puck JM, Straus SE, Lenardo MJ. Inherited human Caspase 10 mutations underlie defective lymphocyte and dendritic cell apoptosis in autoimmune lymphoproliferative syndrome type II. Cell. 1999;98:47–58.PubMedCrossRefGoogle Scholar
  99. 99.
    Nagata S. Apoptosis mediated by the Fas system. Prog Mol Subcell Biol. 1996;16:87–103.PubMedCrossRefGoogle Scholar
  100. 100.
    Kabelitz D. Apoptosis, graft rejection, and transplantation tolerance. Transplantation. 1998;65:869–75.CrossRefGoogle Scholar
  101. 101.
    Ferguson TA, Griffith TS. A vision of cell death: insights into immune privilege. Immunol Rev. 1997;156:167–84.PubMedCrossRefGoogle Scholar
  102. 102.
    Lau HT, Yu M, Fontana A, Stoeckert CJ, Jr. Prevention of islet allograft rejection with engineered myoblasts expressing FasL in mice. Science. 1996;273:109–12.PubMedCrossRefGoogle Scholar
  103. 103.
    Kang SM, Schneider DB, Lin Z, Hanahan D, Dichek DA, Stock PG, Baekkeskov S. Fas ligand expression in islets of Langerhans does not confer immune privilege and instead targets them for rapid destruction. Nat Med. 1997;3:738–43.PubMedCrossRefGoogle Scholar
  104. 104.
    Stuart PM, Griffith TS, Usui N, Pepose J, Yu X, Ferguson TA. CD95 ligand (FasL)-induced apoptosis is necessary for corneal allograft survival. J Clin Invest. 1997;99:396–402.PubMedCrossRefGoogle Scholar
  105. 105.
    Fandrich F, Lin X, Zhu X, Kloppel G, Parwaresch R, Kremer B. CD95L confers immune priviledge to liver grafts which are spontaneously accepted. Transplant Proc. 1998;30:1057–8.PubMedCrossRefGoogle Scholar
  106. 106.
    Li XK, Okuyama T, Tamura A, Fujino M, Funeshima N, Kaneda Y, Kita Y, Enosawa S, Amemiya H, Suzuki S. Prolonged survival of recipient rats with Fas-ligand-transfected liver allografts by using HVJ-liposome. Transplant Proc. 1998;30:943.PubMedCrossRefGoogle Scholar
  107. 107.
    Suda T, Hashimoto H, Tanaka M, Ochi T, Nagata S. Membrane Fas ligand kills human peripheral blood T lymphocytes, and soluble Fas ligand blocks the killing. J Exp Med. 1997;186:2045–50.PubMedCrossRefGoogle Scholar
  108. 108.
    Gainer AL, Suarez-Pinzon WL, Min WP, Hancock-Friesen C, Korbutt GS, Rajotte RV, Rabinovitch A, Warnock GL, Elliott JF. Prolongation of allograft survival of transfected islets expressing human CTLA4-Ig, human soluble Fas ligand or a combination of the two. Transplant Proc. 1998;30:534.PubMedCrossRefGoogle Scholar
  109. 109.
    Swenson KM, Ke B, Wang T, Markowitz JS, Maggard MA, Spear GS, Imagawa DK, Goss JA, Busuttil RW, Seu P. Fas ligand gene transfer to renal allografts in rats: effects on allograft survival. Transplantation. 1998;65:155–60.PubMedCrossRefGoogle Scholar
  110. 110.
    De Valck D, Jin DY, Heyninck K, Van de Craen M, Contreras R, Fiers W, Jeang KT, Beyaert R. The zinc finger protein A20 interacts with a novel anti-apoptotic protein which is cleaved by specific caspases. Oncogene. 1999;18:4182–90.PubMedCrossRefGoogle Scholar
  111. 111.
    Grey ST, Arvelo MB, Hasenkamp WM, Bach FH, Ferran C. Adenovirus-mediated gene transfer of the anti-apoptotic protein A20 in rodent islets inhibits IL-1 beta-induced NO release. Transplant Proc. 1999;31:789.PubMedCrossRefGoogle Scholar
  112. 112.
    Kayagaki N, Yamaguchi N, Nakayama M, Takeda K, Akiba H, Tsutsui H, Okamura H, Nakanishi K, Okumura K, Yagita H. Expression and function of TNF-related apoptosis-inducing ligand on murine activated NK cells. J Immunol. 1999;163:1906–13.PubMedGoogle Scholar
  113. 113.
    Mariani SM, Krammer PH. Surface expression of TRAIL/Apo-2 ligand in activated mouse T and B cells. Eur J Immunol. 1998;28:1492–8.PubMedCrossRefGoogle Scholar
  114. 114.
    Schneider P, Thome M, Burns K, Bodmer JL, Hofmann K, Kataoka T, Holler N, Tschopp J. TRAIL receptors 1 (DR4) and 2 (DR5) signal FADD-dependent apoptosis and activate NF-kappaB. Immunity. 1997;7:831–6.PubMedCrossRefGoogle Scholar
  115. 115.
    Wajant H, Johannes FJ, Haas E, Siemienski K, Schwenzer R, Schubert G, Weiss T, Grell M, Scheurich P. Dominant-negative FADD inhibits TNFR60-, Fas/Apol- and TRAIL-R/Apo2- mediated cell death but not gene induction. Curr Biol. 1998;8:113–6.PubMedCrossRefGoogle Scholar
  116. 116.
    Hu S, Vincenz C, Ni J, Gentz R, Dixit VM. I-FLICE, a novel inhibitor of tumor necrosis factor receptor-1- and CD- 95-induced apoptosis. J Biol Chem. 1997;272:17255–7.PubMedCrossRefGoogle Scholar
  117. 117.
    Thome M, Schneider P, Hofmann K, Fickenscher H, Meinl E, Neipel F, Mattmann C, Burns K, Bodmer JL, Schroter M, Scaffidi C, Krammer PH, Peter ME, Tschopp J. Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature. 1997;386:517–21.PubMedCrossRefGoogle Scholar
  118. 118.
    Irmler M, Thome M, Hahne M, Schneider P, Hofmann K, Steiner V, Bodmer JL, Schroter M, Burns K, Mattmann C, Rimoldi D, French LE, Tschopp J. Inhibition of death receptor signals by cellular FLIP. Nature. 1997;388:190–5.PubMedCrossRefGoogle Scholar
  119. 119.
    Jaattela M, Wissing D. Heat-shock proteins protect cells from monocyte cytotoxicity: possible mechanism of self-protection. J Exp Med. 1993;177:231–6.PubMedCrossRefGoogle Scholar
  120. 120.
    Sandrin MS, Fodor WL, Mouhtouris E, Osman N, Cohney S, Rollins SA, Guilmette ER, Setter E, Squinto SP, McKenzie IF. Enzymatic remodelling of the carbohydrate surface of a xenogenic cell substantially reduces human antibody binding and complement-mediated cytolysis. Nat Med. 1995;1:1261–7.PubMedCrossRefGoogle Scholar
  121. 121.
    McKenzie IF, Osman N, Cohney S, Vaughan HA, Patton K, Mouhtouris E, Atkin JD, Elliott E, Fodor WL, Squinto SP, Burton D, Gallop MA, Oldenburg KR, Sandrin MS. Strategies to overcome the anti-Gal alpha (l-3)Gal reaction in xenotransplantation. Transplant Proc. 1996;28:537.PubMedGoogle Scholar
  122. 122.
    Leventhal JR, John R, Fryer JP, Witson JC, Derlich JM, Remiszewski J, Dalmasso AP, Matas AJ, Bolman RM, 3rd. Removal of baboon and human antiporcine IgG and IgM natural antibodies by immunoadsorption. Results of in vitro and in vivo studies. Transplantation. 1995;59:294–300.PubMedGoogle Scholar
  123. 123.
    Schmoeckel M, Bhatti FN, Zaidi A, Cozzi E, Waterworth PD, Tolan MJ, Goddard M, Warner RG, Langford GA, Dunning JJ, Wallwork J, White DJ. Orthotopic heart transplantation in a transgenic pig-to-primate model. Transplantation. 1998;65:1570–7.PubMedCrossRefGoogle Scholar
  124. 124.
    Byrne GW, McCurry KR, Martin MJ, McClellan SM, Piatt JL, Logan JS. Transgenic pigs expressing human CD59 and decay-accelerating factor produce an intrinsic barrier to complement-mediated damage. Transplantation. 1997;63:149–55.PubMedCrossRefGoogle Scholar
  125. 125.
    Pruitt SK, Baldwin WMd, Marsh HC, Jr., Lin SS, Yeh CG, Bollinger RR. The effect of soluble complement receptor type 1 on hyperacute xenograft rejection. Transplantation. 1991;52:868–73.PubMedCrossRefGoogle Scholar
  126. 126.
    Osman N, McKenzie IF, Ostenried K, Ioannou YA, Desnick RJ, Sandrin MS. Combined transgenic expression of alpha-galactosidase and alphal,2- fucosyltransferase leads to optimal reduction in the major xenoepitope Galalpha(l,3)Gal. Proc Natl Acad Sci USA. 1997;94:14677–82.PubMedCrossRefGoogle Scholar
  127. 127.
    Sandrin MS, Osman N, McKenzie IF. Transgenic approaches for the reduction of Galalpha(l,3)Gal for xenotransplantation. Front Biosci. 1997;2:e1–e11.PubMedGoogle Scholar
  128. 128.
    Bracy JL, Sachs DH, Iacomini J. Inhibition of xenoreactive natural antibody production by retroviral gene therapy. Science. 1998;281:1845–7.PubMedCrossRefGoogle Scholar
  129. 129.
    Itescu S, Kwiatkowski P, Artrip JH, Wang SF, Ankersmit J, Minanov OP, Michler RE. Role of natural killer cells, macrophages, and accessory molecule interactions in the rejection of pig-to-primate xenografts beyond the hyperacute period. Hum Immunol. 1998;59:275–86.PubMedCrossRefGoogle Scholar
  130. 130.
    Watier H, Guillaumin JM, Vallee I, Thibault G, Gruel Y, Lebranchu Y, Bardos P. Human NK cell-mediated direct and IgG-dependent cytotoxicity against xenogeneic porcine endothelial cells. Transpl Immunol. 1996;4:293–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Nick Giannoukakis
    • 1
  • Paul D. Robbins
    • 1
  1. 1.Department of Molecular Genetics and BiochemistryUniversity of Pittsburgh School of MedicinePittsburghUSA

Personalised recommendations