Skip to main content

Gene Therapy Strategies to Augment Contractile Function in Heart Failure

  • Chapter
Book cover Gene Therapy for Acute and Acquired Diseases

Abstract

Congestive heart failure (CHF) represents a leading cause for hospitalization in the United States and other developed nations. Despite vast improvements in the management of coronary artery disease over the past decades, an effective treatment of CHF remains elusive. Heart failure itself represents a final common endpoint for several disease entities, including hypertension, coronary artery disease, and cardiomyopathy. Several biochemical features, however, remain common to the failing myocardium. These include, but are not limited to, adrenergic desensitization and changes in calcium homeostasis. These molecular alterations may, in turn, offer potential therapeutic targets for genetic manipulation. In this chapter, we will review the changes in adrenergic signaling and calcium handling that occur in CHF. We will then examine the specific approaches to augment biochemical and physiologic function that address these alterations. Finally, we will review cardiac gene transfer vectors as well as technical approaches to myocardial gene delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Leimbach WN, Wallin BG, Victor RG, Aylward PE, Sundlof G, Mark AL. Direct evidence from intraneural recordings for increased central sympathetic outflow in patients with heart failure.Circulation.1986;73:913–9.

    Article  PubMed  Google Scholar 

  2. Bristow MR, Ginsburg R, Minobe W, Cubicciotti R, Sageman WS, Lurie K, Billingham ME, Harrison DC, Stinson EM: Decreased catecholamine sensitivity and p-adrenergic receptor density in failing human hearts.New Engl J Med.1982;307:205–11.

    Article  PubMed  CAS  Google Scholar 

  3. Dohlman HG, Thorner J, Caron MG, Lefkowitz RJ. Model systems for the study of seven-transmembrane segement recetpors.Annu Rev Biochem.60:653–88.

    Google Scholar 

  4. Hartzell HC. Regulation of cardiac ion channels by catecholamines, acetylcholine, and second messenger systems.Prog Biophys Mol Biol.1988;53:165–257

    Article  Google Scholar 

  5. Clapham DE, Neer EJ. New roles for G-protein beta gamma-dimers in transmembrane signaling.Nature.1993;30:403–6.

    Article  Google Scholar 

  6. Benovic JL, DeBlasi A, Stone WC, Caron MG, Lefkowitz RJ. β-adrenergic receptor kinase: Primary structure delineates a multigene family.Science.1989;246:235–40.

    Article  PubMed  CAS  Google Scholar 

  7. Inglese J, Freedman NJ, Koch WJ, Lefkowitz RJ. Structure and mechanism of the G protein-coupled receptor kinases.J Biol Chem.1993;268:23723–8.

    Google Scholar 

  8. Lohse MJ, Benovic JL, Codina J, Caron MG, Lefkowitz RJ. β-arrestin: A protein that regulates β-adrenergic receptor function. Science 1990;248:1547–50.

    Article  PubMed  CAS  Google Scholar 

  9. Pitcher JA, Inglese J, Higgins JB, Arriza JL, Casey PJ, Kim C, Benovic JL, Kwatra MM, Caron MG, Lefkowitz RJ. Role of βγ-subunits of G proteins in targeting the β-adrenergic receptor kinase to membrane-bound receptors.Science.1992;257:1264–67.

    Article  PubMed  CAS  Google Scholar 

  10. Ungerer M, Bohm M, Elce JS, Erdmann E, Lohse ML. Altered expression of β-adrenergic receptor kinase and β1-adrenergic receptors in the failing heart.Circulation.1993;87:454–63.

    Article  PubMed  CAS  Google Scholar 

  11. Koch WJ, Rockman HA, Samama P, Hamilton RA, Bond RA, Milano CA, Lefkowitz RJ. Cardiac Function in mice overexpressing the β-adrenergic receptor kinase or a βARK inhibitor.Science.1995;268:1350–3.

    Article  PubMed  CAS  Google Scholar 

  12. Packer M. The development of positive inotropic agents for chronic heart failure: How have we gone astray?J Am Coll Cardiol.1993;22(supp A):119A–126A.

    Article  PubMed  CAS  Google Scholar 

  13. Lefkowitz RJ, Rockman HA, Koch WJ. Catecholamines, Cardiac beta-Adrenergic Receptors, and Heart Failure.Circulation.2000;101:1634–7.

    Article  PubMed  CAS  Google Scholar 

  14. Engelhardt S, Hein L, Wiesmann F, Lohse MJ. Progressive hypertrophy and heart failure in β-1 adrenergic receptor transgenic mice.Proc Natl Acad Sci USA.1999;96:7059–64.

    Article  PubMed  CAS  Google Scholar 

  15. Milano CA, Allen LF, Rockman HA, Dolber PC, McMinn TR, Chien KR, Johnson TD, Bond RA, Lefkowitz RJ. Enhanced myocardial function in mice overexpressing the β2-adrenergic receptor. Science 1994;264:582–6.

    Article  PubMed  CAS  Google Scholar 

  16. Communal C, Singh K, Sawyer DB, Colucci WS. Opposing effects of beta(l)- and beta(2)-adrenergic receptors on cardiac myocyte apoptosis: role of a pertussis toxin-sensitive G protein.Circulation.1999;100:2210–2.

    Article  PubMed  CAS  Google Scholar 

  17. Ping P, Gelzer-Bell R, Roth DA, Kiel D, Insel PA, Hammond HK. Reduced beta-adrenergic receptor activation decreased G-protein expression and beta-adrenergic receptor kinase activity in porcine heart.J Clin Invest.1995;95:1271–80.

    Article  PubMed  CAS  Google Scholar 

  18. Iaccarino G, Tomhave ED, Lefkowitz RJ, Koch WJ. Reciprocal in vivo regulation of myocardial G protein-coupled receptor stimulation and blockade.Circulation.1998;98:1783–9.

    Article  PubMed  CAS  Google Scholar 

  19. Barry WH, Bridge JHB. Intracellular calcium homeostasis in cardiac myocytes.Circulation.1993;87:1806–15.

    Article  PubMed  CAS  Google Scholar 

  20. Lindenmayer GE, Sordahl LA, Harigaya S, Allen JC, Besch HR Jr, Schwartz A. Some biochemical studies on subcellular systems isolated from fresh recipient human cardiac tissue obtained during transplantation.Am J Cardiol.1971;27:277–83.

    Article  PubMed  CAS  Google Scholar 

  21. Schmidt U, Hajjar RJ, Helm PA, Kim CS, Doye AA, Gwathmey JK. Contribution of abnormal of abnormal sarcoplasmic reticulum ATPase activity to systolic and diastolic dysfunction in human heart failure.J Mol Cell Cardiol.1998;30:1929–37.

    Article  PubMed  CAS  Google Scholar 

  22. Hasenfuss G. Alterations of calcium-regulatory proteins in heart Mhxre.Cardiovasc Res.1998;37:279–89.

    Article  PubMed  CAS  Google Scholar 

  23. Kadambi VJ, Ponniah S, Harrer JM, Hoit BD, Dom GW 2nd, Walsh RA, Kranias EG. Cardiac-specific overexpression of phospholamban alters calcium kinetics and resultant carduimyocyte mechanisms in transgenic mice.J Clin Invest.1996;97:533–9.

    Article  PubMed  CAS  Google Scholar 

  24. Meyer M, Bluhm WF, He H, Post SR, Giordano FJ, Lew WY, Dillmann WH. Phospholamban-to-SERCA2 ratio controls the force-frequency relationship.Am J Physiol.1999;276:H779–85.

    PubMed  CAS  Google Scholar 

  25. Koch WJ, Lefkowitz RJ, Rockman HA. Functional consequences of altering myocardial adrenergic receptor signaling.Annu Rev Physiol.2000;62:237–60.

    Article  PubMed  CAS  Google Scholar 

  26. Akhter SA, Skaer CA, Kypson AP, McDonald PH, Peppel KC, Glower DD, Lefkowitz RJ, Koch WJ. Restoration of β-adrenergic signaling in failing cardiac ventricular myocytes via adenoviral-mediated gene transfer.Proc Natl Acad Sci USA.1997;94:12100–5.

    Article  PubMed  CAS  Google Scholar 

  27. Maurice, J. P., Hata, J. A., Shah, A. S., White, D. C, McDonald, P. H., Dolber, P. C, Wilson, K. H., Lefkowitz, R. J., Glower, D. D., Koch, W. J. Enhancement of cardiac function after in vivo intracoronary β-adrenergic receptor gene delivery.J Clin Invest.1999; 104: 21–29.

    Article  PubMed  CAS  Google Scholar 

  28. Koch WJ, Inglese J, Stone WC, Lefkowitz RJ: The binding site for the βγ subunits of heterotrimeric G proteins on the β-adrenergic receptor kinase.J Biol Chem.1993;268:8256–60.

    PubMed  CAS  Google Scholar 

  29. Rockman HA, Chien KR, Choi DJ, Iaccarino G, Hunter JJ, Ross J Jr, Lefkowitz RJ, Koch WJ. Expression of a β-adrenergic receptor kinase 1 inhibitor prevents the development of myocardial failure in gene-targeted mice.Proc Natl Acad Sci USA.1998;95:7000–5.

    Article  PubMed  CAS  Google Scholar 

  30. Maurice JP, Shah AS, Kypson AP, Hata JA, White DC, Glower DD, Koch WJ. Molecular beta-adrenergic signaling abnormalities in failing rabbit hearts after infarction.Am J Physiol.1999;276:H 1853–60.

    CAS  Google Scholar 

  31. White DC, Hata JA, Shah AS, Glower DD, Lefkowitz RJ, Koch WJ. Preservation of β-adrenergic signaling delys the development of heart failure following myocardial infarction.Proc Natl Acad Sci USA, in press.

    Google Scholar 

  32. Luo W, Grupp IL, Harrer J, Ponniah S, Grupp G, Duffy JJ, Doetschman T, Kranias EG. Targeted gene ablation of the phospholamban gene is associated with markedly enhanced contractility and loss of beta-agonist stimulation.Circ Res.1994;75:401–9.

    Article  PubMed  CAS  Google Scholar 

  33. Hajjar RJ, Kang JX, Gwathmey JK, Rosenzweig A. Physiologic effects of adenoviral gene transfer of sarcoplasmic reticulum calcium ATPase in isolated rat myocytes.Circulation.1997;95:423–9.

    Article  PubMed  CAS  Google Scholar 

  34. Miyamoto MI, del Monte F, Schmidt U, DiSalvo TS, Kang ZB, Matsui T, Guerrero JL, Gwathmey JK, Rosenweig A, Hajjar RJ. Adenoviral gene transfer of SERCA2a improves left-ventricular function in aortic-banded rats in transition to heart failure.Proc Natl Acad Sci USA.2000;97;793–8.

    Article  PubMed  CAS  Google Scholar 

  35. del Monte F, Harding SE, Schmidt U, Matsui T, Kang ZB, Dec GW, Gwathmey JK, Rosenweig A, Hajjar RJ. Restoration of contractile function in isolated cardiomyocytes from failing human hearts by gene transfer of SERCA2a.Circulation.1999;100:2308–11.

    Article  CAS  Google Scholar 

  36. Minamisawa S, Hoshijima M, Chu G, Ward CA, Frank K, Gu Y, Martone ME, Wang Y, Ross J Jr, Kranias EG, Giles WR, Chien KR. Chronic phospholamban-sarcoplasmic reticulum calcium ATPase interaction is the critical calcium cycling defect in dilated cardiomyopathy.Cell1999;99:313–22.

    Article  PubMed  CAS  Google Scholar 

  37. Mann DL, Kent RL, Parsons B, Cooper G 4th. Adrenergic effects on the biology of the adult mammalian cardiocyte.Circulation.1992;85:790–804.

    Article  PubMed  CAS  Google Scholar 

  38. Soonpaa MH, Koh GY, Klug MG, Field LJ. Formation of nascent intercalated disks between grafted fetal cardiomyocytes and host myocardium.Science1994;264:98–101.

    Article  PubMed  CAS  Google Scholar 

  39. Olson EN. MyoD family: A paradigm for development?Genes Dev.1990;4:1454–61.

    Article  PubMed  CAS  Google Scholar 

  40. Weintraub H, Tapscott SJ, Davis RL, Thayer MJ, Adam MA, Lassar AB, Miller AD. Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD.Proc Natl Acad Sci USA.1989;86:5434–8.

    Article  PubMed  CAS  Google Scholar 

  41. Tarn SKC, Gu W, Nadal-Ginard B. Molecular cardiomyoplasty: Potential cardiac gene therapy for chronic heart failure.J Thorac Cardiovasc Surg.1995;109:918–24.

    Article  Google Scholar 

  42. Leor J, Prentice H, Sartorelli V, Quinones Patterson MJ, Kedes MLK, Kloner RA. Gene transfer and cell transplant: An experimental approach to repair a broken heart.Cardiovasc Res.1997;35:431–41.

    Article  PubMed  CAS  Google Scholar 

  43. Wang CK, Zuo XJ, Carpenter D, Jordan S, Nicolaidou E, Toyoda M, Czer LS, Wang H, Trento A. Prolongation of cardiac allograft survival with intracoronary viral interleukin-10 gene transfer.Transplant Proc.1999;31:951–2.

    Article  PubMed  CAS  Google Scholar 

  44. Brauner R, Nonoyama M, Laks H, Drinkwater DC Jr, McCaffery S, Drake T, Berk AJ, Sen L, Wu L. Intracoronary adenovirus-mediated transfer of immunosuppressive cytokine genes prolongs allograft survival.J Thorac Cardiovasc Surg.1997;114:923–33.

    Article  PubMed  CAS  Google Scholar 

  45. Lin H, Parmacek MS, Morle G, Boiling S, Leiden JM. Expression of recombinant genes in myocardium in vivo after direct injection of DNA.Circulation.1990;82:2217–21.

    Article  PubMed  CAS  Google Scholar 

  46. Buttrick PM, Kass A, Kitsis RN, Kaplan ML, Leinwald LA. Behavior of genes directly injected into rat heartin vivo. Circ Res 1992;70:193–8.

    Article  PubMed  CAS  Google Scholar 

  47. Acsadi G, Jiao S, Jani A, Duke D. Direct gene transfer and expression into rat heart in vivo.New Biol.1991;3:71–81.

    PubMed  CAS  Google Scholar 

  48. Miller DG, Adam MA, Miller AD. Gene Transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection.Mol Cell Biol.1990;10;4239–42.

    PubMed  CAS  Google Scholar 

  49. Kass-Eisler A, Falck-Pederson E, Alvira M, Rivera J, Buttrick PM, Wittenberg BA, Cipriani L, Leinwald LA. Quantitative determination of adenovirus-mediated gene delivery to rat cardiac myocytes in vitro and in vivo.Proc Natl Acad Sci USA1993;90:11498–502.

    Article  PubMed  CAS  Google Scholar 

  50. Franz WM, Rothmann T, Frey N, Katus HA. Analysis of tissue-specific gene delivery by recombinant adenoviruses containing cardiac-specific promoters.Cardiovasc Res1997;35:560–566.

    Article  PubMed  CAS  Google Scholar 

  51. Yang Y, Nunes FA, Berensci K, Furth EE, Gonczol E, Wilson JM. Cellular immunity to viral antigens limits El-deleted adenoviruses for gene therapy.Proc Natl Acad Sci USA1994;91:4407–11.

    Article  PubMed  CAS  Google Scholar 

  52. Amalfitano A, Hauser M, Hu H, Serra D, Begy CR Chamberlain JS. Production and characterization of improved adenovirus vectors with the El, E2b, and E3 genes deleted.J Virol1998;72:926–33.

    PubMed  CAS  Google Scholar 

  53. Hu H, Serra D, Amalfitano A. Persistence of an (E1-, polymerase-) adenovirus vector despite transduction of a neoantigen into immune-competent mice.Hum Gene Ther.1999;10:355–64.

    Article  PubMed  CAS  Google Scholar 

  54. Podsakoff G, Wong KK Jr, Chatteijee S. Efficient gene transfer into nondividing cells by adeno-associated virus-based vectors.J Virol.1994;68:5656–66.

    PubMed  CAS  Google Scholar 

  55. Svensson EC, Marshall DJ, Woodard K, Lin H, Jiang F, Chu L, Leiden JM. Efficient and stable transduction of cardiomyocytes after intramyocardial injection or intracoronary perfusion with recombinant adeno-associated virus vectors.Circulation.1999;99:201–5.

    Article  PubMed  CAS  Google Scholar 

  56. Kypson AP, Peppel K, Akhter SA, Lilly RE, Glower DD, Lefkowitz RJ, Koch WJ. Ex vivo adenovirus-mediated gene transfer to the adult rat heart.J Thorac Cardiovasc Surg.1998;115:623–30.

    Article  PubMed  CAS  Google Scholar 

  57. Shah AS, White DC, Tai O, Hata JA, Pippen A, Kypson AP, Glower DD, Lefkowitz RJ, Koch WJ. Adenoviral-mediated genetic manipulation of the myocardial β-adrenergic signaling system in transplanted hearts.J Thorac Cardiovasc Surg, in press.

    Google Scholar 

  58. Donahue JK, Kikkawa K, Thomas AD, Marban E, Lawrence JH. Acceleration of widespread adenoviral gene transfer to intact rabbit hearts by coronary perfusion with low calcium and serotonin.Gene Ther.1998;5:630–4.

    Article  PubMed  CAS  Google Scholar 

  59. Fromes Y, Salmon A, Wang X, Collin H, Rouche A, Hagege A, Schwartz K, Fiszman MY. Gene delivery to the myocardium by intrapericardial injection.Gene Ther.1999;6:683–8.

    Article  PubMed  CAS  Google Scholar 

  60. Barr E, Carroll J, Kalynych AM, Tripathy SK, Korzarsky K, Wilson JM, Leiden JM. Efficient catheter-mediated gene transfer into the heart using replication-deficient adenovirus.Gene Ther.1994;1:51–8.

    PubMed  CAS  Google Scholar 

  61. Shah AS, Lilly RE, Kypson AP, Tai O, Hata JA, Pippen A, Silvestry SC, Lefkowitz RJ, Glower DD, Koch WJ. Intracoronary adenovirus-mediated delivery and overexpression of the the β2-adrenergic receptor in the heart: Prospects for molecular ventricular assistance.Circulation.2000;101:408–14.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Davidson, M.J., Koch, W.J. (2001). Gene Therapy Strategies to Augment Contractile Function in Heart Failure. In: Factor, P. (eds) Gene Therapy for Acute and Acquired Diseases. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1667-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1667-5_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5668-4

  • Online ISBN: 978-1-4615-1667-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics