Tissue Microdissection and Processing

  • Anirban Maitra
  • Adi F. Gazdar
Part of the Cancer Treatment and Research book series (CTAR, volume 106)


The accurate analysis of molecular changes associated with tumors and their precursor lesions requires the precise isolation of the specific cell types from a heterogeneous background of non-neoplastic elements such as normal epithelium, desmoplastic stroma, inflammatory cells and blood vessels(1).In the absence of a prior cell enrichment technique, the results of molecular analysis are undoubtedly confounded by genetic material not derived from cancer cells alone(2).The need for obtaining pure samples of tumor tissue has resulted in the genesis of several methods of cell enrichment including xenograft enrichment,tumor cell lines, cell sorting and microdissection. Xenograft enrichment involves the serial passage of tissues through immunodeficient rodents such asnu/nuor SCID mice to obtain human tumor cell populations whose non-malignant cells are of rodent origin(3, 4, 5).Despite their potential for being an unlimited self-replicating source of high quality genetic material, the ability to propagate xenografts requires considerable expertise, a reasonable animal facility,and time for establishment (between 2 to 6 months)(5).Moreover,there is a possibility that additional genetic changes may be introduced in the tumor cells during serial passage, or a subset of tumor cells with a selective growth advantage may propagate, which may not necessarily be representative of the primary lesion(4,6).Further, the presence of large numbers of stromal cells of rodent origin may complicate molecular analyses. On a similar note, tumor cell lines have been used for a long time to study genetic changes in neoplasia, and are an excellent source of unlimited reagents for this purpose(7,8).Like xenografts however,the establishment of a human tumor cell culture facility requires time,considerable expertise and resources;in addition, the introduction of additional genetic alterations or subset selection are always possibilities(9). Moreover, both cell lines and xenografts are virtually limited to the study of tumor cells only,and preneoplastic lesions have rarely been cultured (10).Cell sorting techniques have also been used at times as a means of cell enrichment, using density gradients, fluoroscence-activated cell sorting or antibody-labeled immunobead selection(11, 12, 13).Cell sorting can be easily applied to tumors amenable to formation of suspensions,such as hematolymphoid malignancies.However,cell sorting techniques are rarely applicable in solid tissue where intercellular adhesion generally prevents the disaggregation of cells,which is a prerequisite for the formation of a cell suspension.


Comparative Genomic Hybridization Laser Capture Microdissection Prostatic Intraepithelial Neoplasia Whole Genome Amplification Cancer Chemoprevention 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dean-Clower, E., Vortmeyer, A. O., Bonner, R. F., Emmert-Buck, M., Zhuang, Z., and Liotta, L. A. Microdissection-based genetic discovery and analysis applied to cancer progression, Cancer J Sci Am. 3: 259–65, 1997.PubMedGoogle Scholar
  2. 2.
    Zhuang, Z. and Vortmeyer, A. O. Applications of tissue microdissection in cancer genetics, Cell Vis.5: 43–8, 1998.PubMedGoogle Scholar
  3. 3.
    Hahn, S. A., Seymour, A. B., Hogue, A. T., Schutte, M., da Costa, L. T., Redston, M. S., Caldas, C., Weinstein, C. L., Fischer, A., Yeo, C. J., and et al. Allelotype of pancreatic adenocarcinoma using xenograft enrichment, Cancer Res.55: 4670–5, 1995.PubMedGoogle Scholar
  4. 4.
    Reyes, G., Villanueva, A., Garcia, C., Sancho, F. J., Piulats, J., Lluis, F., and Capella, G. Orthotopic xenografts of human pancreatic carcinomas acquire genetic aberrations during dissemination in nude mice, Cancer Res.56.5713–9, 1996.PubMedGoogle Scholar
  5. 5.
    Thiagalingam, S., Lisitsyn, N. A., Hamaguchi, M., Wigler, M. H., Willson, J. K., Markowitz, S. D., Leach, F. S., Kinzler, K. W., and Vogelstein, B. Evaluation of the FHIT gene in colorectal cancers, Cancer Res.56: 2936–9, 1996.PubMedGoogle Scholar
  6. 6.
    Foster, H. M., Tay, D. L., and Whitehead, R. H. Changes in the DNA ploidy patterns of human colorectal carcinomas, subsequent to culture or xenografting, J Surg Oncol.45: 4–9, 1990.PubMedGoogle Scholar
  7. 7.
    Gazdar, A. F. and Minna, J. D. NCI series of cell lines: an historical perspective, J Cell Biochem Suppl.24: 1–11, 1996.PubMedGoogle Scholar
  8. 8.
    Wistuba, I. I., Behrens, C., Milchgrub, S., Syed, S., Ahmadian, M., Virmani, A.K., Kurvari, V., Cunningham, T.H., Ashfaq, R., Minna, J.D., Gazdar, A.F. Comparison of features of human breast cancer cell lines and their corresponding tumors, Clin Can Res. 4:2931–8.1998.Google Scholar
  9. 9.
    McQueen, H. A., Wyllie, A. H., Piris, J., Foster, E., and Bird, C. C. Stability of critical genetic lesions in human colorectal carcinoma xenografts, Br J Cancer.63: 94–6, 1991.PubMedGoogle Scholar
  10. 10.
    Bodnar, A. G., Ouellette, M., Frolkis, M., Holt, S. E., Chiu, C. P., Morin, G. B., Harley, C. B., Shay, J. W., Lichtsteiner, S., and Wright, W. E. Extension of life-span by introduction of telomerase into normal human cells, Science.279: 349–52, 1998.PubMedGoogle Scholar
  11. 11.
    Bar, J. K., Harlozinska, A., Sobanska, E., and Cislo, M. Cytomorphologic characterization of cell subsets isolated by density gradient centrifugation from tumor effusions of ovarian endometrioid carcinoma, Tumori.80: 290–4, 1994.PubMedGoogle Scholar
  12. 12.
    Eaton, M. C., Hardingham, J. E., Kotasek, D., and Dobrovic, A. Immunobead RT- PCR: a sensitive method for detection of circulating tumor cells, Biotechniques.22: 100–5, 1997.PubMedGoogle Scholar
  13. 13.
    Racila, E., Euhus, D., Weiss, A. J., Rao, C., McConnell, J., Terstappen, L. W., and Uhr, J. W. Detection and characterization of carcinoma cells in the blood, Proc Natl Acad Sci U S A.95: 4589–94, 1998.PubMedGoogle Scholar
  14. 14.
    Shibata, D. Extraction of DNA from paraffin-embedded tissue for analysis by polymerase chain reaction: new tricks from an old friend, Hum Pathol.25: 561–3, 1994.PubMedGoogle Scholar
  15. 15.
    Shibata, D., Hawes, D., Li, Z. H., Hernandez, A. M., Spruck, C. H., and Nichols, P. W. Specific genetic analysis of microscopic tissue after selective ultraviolet radiation fractionation and the polymerase chain reaction, Am J Pathol.141: 539–43, 1992.PubMedGoogle Scholar
  16. 16.
    Becker, I., Becker, K. F., Rohrl, M. H., Minkus, G., Schutze, K., and Hofler, H. Single-cell mutation analysis of tumors from stained histologic slides, Lab Invest.75: 801–7, 1996.PubMedGoogle Scholar
  17. 17.
    Becker, I., Becker, K. F., Rohrl, M. H., and Hofler, H. Laser-assisted preparation of single cells from stained histological slides for gene analysis, Histochem Cell Biol.108: 447–51, 1997.PubMedGoogle Scholar
  18. 18.
    Goetz, S. E., Hamilton, S. R., and Vogelstein, B. Purification of DNA from formaldehyde fixed and paraffin embedded human tissue, Biochem Biophys Res Commun.130:118–26, 1985.Google Scholar
  19. 19.
    Going, J. J. and Lamb, R. F. Practical histological microdissection for PCR analysis, J Pathol.179: 121–4, 1996.PubMedGoogle Scholar
  20. 20.
    Lee, J. Y., Dong, S. M., Kim, S. Y., Yoo, N. J., Lee, S. H., and Park, W. S. A simple, precise and economical microdissection technique for analysis of genomic DNA from archival tissue sections, Virchows Arch.433: 305–9, 1998.PubMedGoogle Scholar
  21. 21.
    Zhuang, Z., Bertheau, P., Emmert-Buck, M. R., Liotta, L. A., Gnarra, J., Linehan, W. M., and Lubensky, I. A. A microdissection technique for archival DNA analysis of specific cell populations in lesions < 1 mm in size, Am J Pathol.146: 620–5, 1995.PubMedGoogle Scholar
  22. 22.
    Moskaluk, C. A. and Kern, S. E. Microdissection and polymerase chain reaction amplification of genomic DNA from histological tissue sections, Am J Pathol.150: 1547–52, 1997.PubMedGoogle Scholar
  23. 23.
    Gupta, S. K., Douglas-Jones, A. G., and Morgan, J. M. Microdissection of stained archival tissue, Mol Pathol.50: 218–20, 1997.PubMedGoogle Scholar
  24. 24.
    Wistuba, II, Sugio, K., Hung, J., Kishimoto, Y., Virmani, A. K., Roa, I., Albores- Saavedra, J., and Gazdar, A. F. Allele-specific mutations involved in the pathogenesis of endemic gallbladder carcinoma in Chile, Cancer Res.55: 2511–5, 1995.PubMedGoogle Scholar
  25. 25.
    Wistuba, II, Lam, S., Behrens, C., Virmani, A. K., Fong, K. M., LeRiche, J., Samet, J. M., Srivastava, S., Minna, J. D., and Gazdar, A. F. Molecular damage in the bronchial epithelium of current and former smokers, J Natl Cancer Inst.89: 1366–73, 1997.PubMedGoogle Scholar
  26. 26.
    Wistuba, II, Behrens, C., Milchgrub, S., Bryant, D., Hung, J., Minna, J. D., and Gazdar, A. F. Sequential molecular abnormalities are involved in the multistage development of squamous cell lung carcinoma, Oncogene.18: 643–50, 1999.PubMedGoogle Scholar
  27. 27.
    Meier-Ruge, W., Bielser, W., Remy, E., Hillenkamp, F., Nitsche, R., and Unsold, R. The laser in the Lowry technique for microdissection of freeze-dried tissue slices, Histochem J.8: 387–401, 1976.PubMedGoogle Scholar
  28. 28.
    Schermelleh, L., Thalhammer, S., Heckl, W., Posl, H., Cremer, T., Schutze, K., and Cremer, M. Laser microdissection and laser pressure catapulting for the generation of chromosome-specific paint probes, Biotechniques.27: 362–7, 1999.PubMedGoogle Scholar
  29. 29.
    Bohm, M., Wieland, I., Schutze, K., and Rubben, H. Mier beam MOMeNT: non-contact laser microdissection of membrane-mounted native tissue, Am J Pathol.151: 63–7, 1997.PubMedGoogle Scholar
  30. 30.
    Schutze, K. and Lahr, G. Identification of expressed genes by laser-mediated manipulation of single cells, Nat Biotechnol.16: 737–42, 1998.PubMedGoogle Scholar
  31. 31.
    Schutze, K., Posl, H., and Lahr, G. Laser micromanipulation systems as universal tools in cellular and molecular biology and in medicine, Cell Mol Biol.44: 735–46, 1998.PubMedGoogle Scholar
  32. 32.
    Bonner, R. F., Emmert-Buck, M., Cole, K., Pohida, T., Chuaqui, R., Goldstein, S., and Liotta, L. A. Laser capture microdissection: molecular analysis of tissue, Science.278: 1481,1483, 1997.Google Scholar
  33. 33.
    Simone, N. L., Gillespie, J., Pallante, M.A., Brown, M., Emmert-Buck, M.R., Liotta, L.A. Laser capture microdissection: applications in early cancer molecular research. In: S. Srivastava, Henson, D.E., Gazdar, A.F. (ed.) Molecular Pathology of Early Cancer, pp. 447–58. Amsterdam: IOS Press, 1999.Google Scholar
  34. 34.
    Simone, N. L., Bonner, R. F., Gillespie, J. W., Emmert-Buck, M. R., and Liotta, L. A. Laser-capture microdissection: opening the microscopic frontier to molecular analysis, Trends Genet.14: 272–6, 1998.PubMedGoogle Scholar
  35. 35.
    Suarez-Quian, C. A., Goldstein, S. R., Pohida, T., Smith, P. D., Peterson, J. I., Wellner, E., Ghany, M., and Bonner, R. F. Laser capture microdissection of single cells from complex tissues, Biotechniques.26: 328–35, 1999.PubMedGoogle Scholar
  36. 36.
    Hindman, W. N. Molecular cytogenetic evidence for multistep tumorigenesis: implications for risk assessment and early detection. In: S. Srivastava, Henson, D.E., Gazdar, A.F. (ed.) Molecular Pathology of Early Cancer, pp. 385–404. Amsterdam: IOS Press, 1999.Google Scholar
  37. 37.
    Wistuba, II, Montellano, F. D., Milchgrub, S., Virmani, A. K., Behrens, C., Chen, H., Ahmadian, M., Nowak, J. A., Muller, C., Minna, J. D., and Gazdar, A. F. Deletions of chromosome 3p are frequent and early events in the pathogenesis of uterine cervical carcinoma, Cancer Res.57: 3154–8, 1997.PubMedGoogle Scholar
  38. 38.
    Knudson, A. G., Jr. Hereditary cancer, oncogenes, and antioncogenes, Cancer Res. 45: 1437–43, 1985.PubMedGoogle Scholar
  39. 39.
    Latif, F., Tory, K., Gnarra, J., Yao, M., Duh, F. M., Orcutt, M. L., Stackhouse, T., Kuzmin, I., Modi, W., Geil, L., and et al. Identification of the von Hippel-Lindau disease tumor suppressor gene, Science.260: 1317–20, 1993.PubMedGoogle Scholar
  40. 40.
    Emmert-Buck, M. R., Lubensky, I. A., Dong, Q., Manickam, P., Guru, S. C., Kester, M. B., Olufemi, S. E., Agarwal, S., Burns, A. L., Spiegel, A. M., Collins, F. S., Marx, S. J., Zhuang, Z., Liotta, L. A., Chandrasekharappa, S. C., and Debelenko, L. V. Localization of the multiple endocrine neoplasia type I (MENI) gene based on tumor loss of heterozygosity analysis, Cancer Res.57: 1855–8, 1997.PubMedGoogle Scholar
  41. 41.
    Li, J., Yen, C., Liaw, D., Podsypanina, K., Bose, S., Wang, S. I., Puc, J., Miliaresis, C., Rodgers, L., McCombie, R., Bigner, S. H., Giovanella, B. C., Ittmann, M., Tycko, B., Hibshoosh, H., Wigler, M. H., and Parsons, R. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancers, Science.275: 1943–7, 1997.PubMedGoogle Scholar
  42. 42.
    Fearon, E. R. and Vogelstein, B. A genetic model for colorectal tumorigenesis, Cell.61: 759–67, 1990.PubMedGoogle Scholar
  43. 43.
    Cairns, P., Okami, K., Halachmi, S., Halachmi, N., Esteller, M., Herman, J. G., Jen, J., Isaacs, W. B., Bova, G. S., and Sidransky, D. Frequent inactivation of PTEN/MMAC1 in primary prostate cancer, Cancer Res.57: 4997–5000, 1997.PubMedGoogle Scholar
  44. 44.
    Wistuba, II, Behrens, C., Virmani, A. K., Milchgrub, S., Syed, S., Lam, S., Mackay, B., Minna, J. D., and Gazdar, A. F. Allelic losses at chromosome 8p21–23 are early and frequent events in the pathogenesis of lung cancer, Cancer Res.59: 1973–9, 1999.PubMedGoogle Scholar
  45. 45.
    Nayar, R., Zhuang, Z., Merino, M. J., and Silverberg, S. G. Loss of heterozygosity on chromosome 11 q13 in lobular lesions of the breast using tissue microdissection and polymerase chain reaction, Hum Pathol.28: 277–82, 1997.PubMedGoogle Scholar
  46. 46.
    Ahmadian, M., Wistuba, II, Fong, K. M., Behrens, C., Kodagoda, D. R., Saboorian, M. H., Shay, J., Tomlinson, G. E., Blum, J., Minna, J. D., and Gazdar, A. F. Analysis of the FHIT gene and FRA3B region in sporadic breast cancer, preneoplastic lesions, and familial breast cancer probands, Cancer Res.57: 3664–8, 1997.PubMedGoogle Scholar
  47. 47.
    Seymour, A. B., Hruban, R. H., Redston, M., Caldas, C., Powell, S. M., Kinzler, K. W., Yeo, C. J., and Kern, S. E. Allelotype of pancreatic adenocarcinoma, Cancer Res.54: 2761–4, 1994.PubMedGoogle Scholar
  48. 48.
    Fujii, H., Zhou, W., and Gabrielson, E. Detection of frequent allelic loss of 6q23- q25.2 in microdissected human breast cancer tissues, Genes Chromosomes Cancer.16: 35–9, 1996.PubMedGoogle Scholar
  49. 49.
    Berthon, P., Dimitrov, T., Stower, M., Cussenot, 0., and Maitland, N. J. A microdissection approach to detect molecular markers during progression of prostate cancer, Br J Cancer.72: 946–51, 1995.PubMedGoogle Scholar
  50. 50.
    Kuczyk, M., Serth, J., Bokemeyer, C., Machtens, S., Schwede, J., Herrmann, R., Paeslack, U., Truss, M. C., Knuchel, R., and Jonas, U. The need for microdissectional tumor cell preparation during the molecular genetic analysis of prostate cancer, World J Urol.17: 115–22, 1999.PubMedGoogle Scholar
  51. 51.
    Giercksky, H. E., Thorstensen, L., Qvist, H., Nesland, J. M., and Lothe, R. A. Comparison of genetic changes in frozen biopsies and microdissected archival material from the same colorectal liver metastases, Diagn Mol Pathol. 6: 318–25, 1997.PubMedGoogle Scholar
  52. 52.
    Fujii, H., Marsh, C., Cairns, P., Sidransky, D., and Gabrielson, E. Genetic divergence in the clonal evolution of breast cancer, Cancer Res.56: 1493–7, 1996.PubMedGoogle Scholar
  53. 53.
    Macintosh, C. A., Stower, M., Reid, N., and Maitland, N. J. Precise microdissection of human prostate cancers reveals genotypic heterogeneity, Cancer Res.58: 23–8, 1998.PubMedGoogle Scholar
  54. 54.
    Aubele, M., Mattis, A., Zitzelsberger, H., Walch, A., Kremer, M., Hutzler, P., Hofler, H., and Werner, M. Intratumoral heterogeneity in breast carcinoma revealed by lasermicrodissection and comparative genomic hybridization, Cancer Genet Cytogenet.110: 94–102, 1999.PubMedGoogle Scholar
  55. 55.
    Jung, V., Romeike, B. F., Henn, W., Feiden, W., Moringlane, J. R., Zang, K. D., and Urbschat, S. Evidence of focal genetic microheterogeneity in glioblastoma multiforme by area-specific CGH on microdissected tumor cells, J Neuropathol Exp Neurol.58: 993–9, 1999.PubMedGoogle Scholar
  56. 56.
    Vogelstein, B., Fearon, E. R., Hamilton, S. R., Kern, S. E., Preisinger, A. C., Leppert, M., Nakamura, Y., White, R., Smits, A. M., and Bos, J. L. Genetic alterations during colorectal-tumor development, N Engl J Med.319: 525–32, 1988.PubMedGoogle Scholar
  57. 57.
    Kallakury, B. V., Jennings, T. A., Ross, J. S., Breese, K., Figge, H. L., Fisher, H. A., and Figge, J. Alteration of the p53 locus in benign hyperplastic prostatic epithelium associated with high-grade prostatic adenocarcinoma, Diagn Mol Pathol. 3: 227–32, 1994.PubMedGoogle Scholar
  58. 58.
    Thiberville, L., Payne, P., Vielkinds, J., LeRiche, J., Horsman, D., Nouvet, G., Palcic, B., and Lam, S. Evidence of cumulative gene losses with progression of premalignant epithelial lesions to carcinoma of the bronchus, Cancer Res.55: 5133–9, 1995.PubMedGoogle Scholar
  59. 59.
    Kubo, Y., Klimek, F., Kikuchi, Y., Bannasch, P., and Hino, O. Early detection of Knudson’s two-hits in preneoplastic renal cells of the Eker rat model by the laser microdissection procedure, Cancer Res.55: 989–90, 1995.PubMedGoogle Scholar
  60. 60.
    Zhuang, Z., Vortmeyer, A. O., Mark, E. J., Odze, R., Emmert-Buck, M. R., Merino, M. J., Moon, H., Liotta, L. A., and Duray, P. H. Barrett’s esophagus: metaplastic cells with loss of heterozygosity at the APC gene locus are clonal precursors to invasive adenocarcinoma, Cancer Res.56: 1961–4, 1996.PubMedGoogle Scholar
  61. 61.
    Park, W. S., Pham, T., Wang, C., Pack, S., Mueller, E., Mueller, J., Vortmeyer, A., Zhuang, Z., and Fogt, F. Loss of heterozygosity and microsatellite instability in non-neoplastic mucosa from patients with chronic ulcerative colitis, Int J Mol Med.2: 221–224, 1998.PubMedGoogle Scholar
  62. 62.
    O’Connell, P., Pekkel, V., Fuqua, S. A., Osborne, C. K., Clark, G. M., and Allred, D. C. Analysis of loss of heterozygosity in 399 premalignant breast lesions at 15 genetic loci, J Natl Cancer Inst.90: 697–703, 1998.PubMedGoogle Scholar
  63. 63.
    Malamou-Mitsi, V. D., Krikoni, O. C., and Agnantis, N. J. Clonal analysis by PCR and RFLP in breast cancer and precancerous lesions. Preliminary data, Anticancer Res. 16. 3943–8, 1996.Google Scholar
  64. 64.
    Wu, C. D., Wickert, R. S., Williamson, J. E., Sun, N. C., Brynes, R. K., and Chan, W. C. Using fluorescence-based human androgen receptor gene assay to analyze the clonality of microdissected dendritic cell tumors, Am J Clin Pathol. 111: 105–10, 1999.PubMedGoogle Scholar
  65. 65.
    Niho, S., Suzuki, K., Yokose, T., Kodama, T., Nishiwaki, Y., and Esumi, H. Monoclonality of both pale cells and cuboidal cells of sclerosing hemangioma of the lung, Am J Pathol.152: 1065–9, 1998.PubMedGoogle Scholar
  66. 66.
    Ramnani, D. M., Wistuba, II, Behrens, C., Gazdar, A. F., Sobin, L. H., and Albores- Saavedra, J. K-ras and p53 mutations in the pathogenesis of classical and goblet cell carcinoids of the appendix, Cancer.86: 14–21, 1999.PubMedGoogle Scholar
  67. 67.
    Wistuba, II, Miguel, J. F., Gazdar, A. F., and Albores-Saavedra, J. Gallbladder adenomas have molecular abnormalities different from those present in gallbladder carcinomas, Hum Pathol.30: 21–5, 1999.PubMedGoogle Scholar
  68. 68.
    Sugio, K., Molberg, K., Albores-Saavedra, J., Virmani, A. K., Kishimoto, Y., and Gazdar, A. F. K-ras mutations and allelic loss at 5q and 18q in the development of human pancreatic cancers, Int J Pancreatol.21: 205–17, 1997.PubMedGoogle Scholar
  69. 69.
    Sugio, K., Kishimoto, Y., Virmani, A. K., Hung, J. Y., and Gazdar, A. F. K-ras mutations are a relatively late event in the pathogenesis of lung carcinomas, Cancer Res.54: 5811–5, 1994.PubMedGoogle Scholar
  70. 70.
    Wistuba, II, Bryant, D., Behrens, C., Milchgrub, S., Virmani, A. K., Ashfaq, R., Minna, J. D., and Gazdar, A. F. Comparison of features of human lung cancer cell lines and their corresponding tumors, Clin Cancer Res. 5: 991–1000, 1999.PubMedGoogle Scholar
  71. 71.
    Herman, J. G., Graff, J. R., Myohanen, S., Nelkin, B. D., and Baylin, S. B. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands, Proc Natl Acad Sci U S A.93: 9821–6, 1996.PubMedGoogle Scholar
  72. 72.
    Belinsky, S. A., Nikula, K. J., Palmisano, W. A., Michels, R., Saccomanno, G., Gabrielson, E., Baylin, S. B., and Herman, J. G. Aberrant methylation of p16(INK4a) is an early event in lung cancer and a potential biomarker for early diagnosis, Proc Natl Acad Sci U S A.95: 11891–6, 1998.PubMedGoogle Scholar
  73. 73.
    Klump, B., Hsieh, C. J., Holzmann, K., Gregor, M., and Porschen, R. Hypermethylation of the CDKN2/p16 promoter during neoplastic progression in Barrett’s esophagus, Gastroenterology.115: 1381–6, 1998.PubMedGoogle Scholar
  74. 74.
    Herman, J. G. Hypermethylation of tumor suppressor genes in cancer, Semin Cancer Biol.9: 359–67, 1999.PubMedGoogle Scholar
  75. 75.
    Maitra, A., Wistuba, II, Virmani, A. K., Sakaguchi, M., Park, I., Stucky, A., Milchgrub, S., Gibbons, D., Minna, J. D., and Gazdar, A. F. Enrichment of epithelial cells for molecular studies, Nat Med. 5: 459–63, 1999.PubMedGoogle Scholar
  76. 76.
    Barrett, M. T., Galipeau, P. C., Sanchez, C. A., Emond, M. J., and Reid, B. J. Determination of the frequency of loss of heterozygosity in esophageal adenocarcinoma by cell sorting, whole genome amplification and microsatellite polymorphisms, Oncogene.12: 1873–8, 1996.PubMedGoogle Scholar
  77. 77.
    Dietmaier, W., Hartmann, A., Wallinger, S., Heinmoller, E., Kerner, T., Endl, E., Jauch, K. W., Hofstadter, F., and Ruschoff, J. Multiple mutation analyses in single tumor cells with improved whole genome amplification, Am J Pathol.154: 83–95, 1999.PubMedGoogle Scholar
  78. 78.
    Zitzelsberger, H., Kulka, U., Lehmann, L., Walch, A., Smida, J., Aubele, M., Lorch, T., Hofler, H., Bauchinger, M., and Werner, M. Genetic heterogeneity in a prostatic carcinoma and associated prostatic intraepithelial neoplasia as demonstrated by combined use of lasermicrodissection, degenerate oligonucleotide primed PCR and comparative genomic hybridization, Virchows Arch.433: 297–304, 1998.PubMedGoogle Scholar
  79. 79.
    Weber, R. G., Scheer, M., Born, I. A., Joos, S., Cobbers, J. M., Hofele, C., Reifenberger, G., Zoller, J. E., and Lichter, P. Recurrent chromosomal imbalances detected in biopsy material from oral premalignant and malignant lesions by combined tissue microdissection, universal DNA amplification, and comparative genomic hybridization, Am J Pathol.153: 295–303, 1998.Google Scholar
  80. 80.
    Aubele, M., Zitzelsberger, H., Schenck, U., Walch, A., Hofler, H., and Werner, M. Distinct cytogenetic alterations in squamous intraepithelial lesions of the cervix revealed by laser-assisted microdissection and comparative genomic hybridization, Cancer.84: 375–9, 1998.PubMedGoogle Scholar
  81. 81.
    Aubele, M. M., Cummings, M. C., Mattis, A. E., Zitzelsberger, H. F., Walch, A. K., Kremer, M., Hofler, H., and Werner, M. Accumulation of chromosomal imbalances from intraductal proliferative lesions to adjacent in situ and invasive ductal breast cancer [In Process Citation], Diagn Mol Pathol.9 .14–9, 2000.PubMedGoogle Scholar
  82. 82.
    Walch, A. K., Zitzelsberger, H. F., Bruch, J., Keller, G., Angermeier, D., Aubele, M. M., Mueller, J., Stein, H., Braselmann, H., Siewert, J. R., Hofler, H., and Werner, M. Chromosomal imbalances in Barrett’s adenocarcinoma and the metaplasia-dysplasia-carcinoma sequence, Am J Pathol.156: 555–66, 2000.PubMedGoogle Scholar
  83. 83.
    Liang, P. and Pardee, A. B. Recent advances in differential display, Curr Opin Immunol.7: 274–80, 1995.PubMedGoogle Scholar
  84. 84.
    Liang, P. and Pardee, A. B. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction [see comments], Science.257: 967–71, 1992.PubMedGoogle Scholar
  85. 85.
    Lisitsyn, N. and Wigler, M. Cloning the differences between two complex genomes, Science.259: 946–51, 1993.PubMedGoogle Scholar
  86. 86.
    Zhang, L., Zhou, W., Velculescu, V. E., Kern, S. E., Hruban, R. H., Hamilton, S. R., Vogelstein, B., and Kinzler, K. W. Gene expression profiles in normal and cancer cells, Science.276: 1268–72, 1997.PubMedGoogle Scholar
  87. 87.
    Velculescu, V. E., Zhang, L., Vogelstein, B., and Kinzler, K. W. Serial analysis of gene expression, Science.270: 484–7, 1995.PubMedGoogle Scholar
  88. 88.
    Schena, M., Shalon, D., Davis, R. W., and Brown, P. 0. Quantitative monitoring of gene expression patterns with a complementary DNA microarray, Science.270: 467–70, 1995.PubMedGoogle Scholar
  89. 89.
    Villaret, D. B., Wang, T., Dillon, D., Xu, J., Sivam, D., Cheever, M. A, and Reed, S. G. Identification of genes overexpressed in head and neck squamous cell carcinoma using a combination of complementary DNA subtraction and microarray analysis, Laryngoscope.110.374–81, 2000.PubMedGoogle Scholar
  90. 90.
    Sgroi, D. C., Teng, S., Robinson, G., LeVangie, R., Hudson, J. R., Jr., and Elkahloun, A. G. In vivo gene expression profile analysis of human breast cancer progression, Cancer Res.59: 5656–61, 1999.PubMedGoogle Scholar
  91. 91.
    Schram], P., Kononen, J., Bubendorf, L., Moch, H., Bissig, H., Nocito, A., Mihatsch, M. J., Kallioniemi, O. P., and Sauter, G. Tissue microarrays for gene amplification surveys in many different tumor types, Clin Cancer Res. 5: 1966–75, 1999.Google Scholar
  92. 92.
    Khan, J., Saal, L. H., Bittner, M. L., Chen, Y., Trent, J. M., and Meltzer, P. S. Expression profiling in cancer using cDNA microarrays, Electrophoresis.20: 223–9, 1999.PubMedGoogle Scholar
  93. 93.
    Pappalardo, P. A., Bonner, R., Krizman, D. B., Emmert-Buck, M. R., and Liotta, L. A. Microdissection, microchip arrays, and molecular analysis of tumor cells (primary and metastases), Semin Radiat Oncol.8: 217–23, 1998.PubMedGoogle Scholar
  94. 94.
    Jin, L., Thompson, C. A., Qian, X., Kuecker, S. J., Kulig, E., and Lloyd, R. V. Analysis of anterior pituitary hormone mRNA expression in immunophenotypically characterized single cells after laser capture microdissection, Lab Invest.79: 511–2, 1999.PubMedGoogle Scholar
  95. 95.
    Hiller, T., Snell, L., and Watson, P. H. Microdissection RT-PCR analysis of gene expression in pathologically defined frozen tissue sections, Biotechniques.21: 38–40, 42, 44, 1996.PubMedGoogle Scholar
  96. 96.
    Chuaqui, R. F., Englert, C. R., Strup, S. E., Vocke, C. D., Zhuang, Z., Duray, P. H., Bostwick, D. G., Linehan, W. M., Liotta, L. A., and Emmert-Buck, M. R. Identification of a novel transcript up-regulated in a clinically aggressive prostate carcinoma, Urology.50: 302–7, 1997.PubMedGoogle Scholar
  97. 97.
    To, M. D., Done, S. J., Redston, M., and Andrulis, I. L. Analysis of mRNA from microdissected frozen tissue sections without RNA isolation, Am J Pathol.153: 47–51, 1998.PubMedGoogle Scholar
  98. 98.
    Chuaqui, R., Cole, K., Cuello, M., Silva, M., Quintana, M. E., and Emmert-Buck, M. R. Analysis of mRNA quality in freshly prepared and archival Papanicolaou samples, Acta Cytol.43: 831–6, 1999.Google Scholar
  99. 99.
    Goldsworthy, S. M., Stockton, P. S., Trempus, C. S., Foley, J. F., and Maronpot, R. R. Effects of fixation on RNA extraction and amplification from laser capture microdissected tissue, Mol Carcinog.25: 86–91, 1999.PubMedGoogle Scholar
  100. 100.
    Fend, F., Emmert-Buck, M. R., Chuaqui, R., Cole, K., Lee, J., Liotta, L. A., and Raffeld, M. Immuno-LCM: laser capture microdissection of immunostained frozen sections for mRNA analysis, Am J Pathol.154: 61–6, 1999.PubMedGoogle Scholar
  101. 101.
    Murase, T., Inagaki, H., and Eimoto, T. Influence of histochemical and immunohistochemical stains on polymerase chain reaction, Mod Pathol.13: 147–51, 2000.PubMedGoogle Scholar
  102. 102.
    Krizman, D. B., Chuaqui, R. F., Meltzer, P. S., Trent, J. M., Duray, P. H., Linehan, W. M., Liotta, L. A., and Emmert-Buck, M. R. Construction of a representative cDNA library from prostatic intraepithelial neoplasia, Cancer Res.56: 5380–3, 1996.PubMedGoogle Scholar
  103. 103.
    Peterson, L. A., Brown, M. R., Carlisle, A. J., Kohn, E. C., Liotta, L. A., Emmert-Buck, M. R., and Krizman, D. B. An improved method for construction of directionally cloned cDNA libraries from microdissected cells, Cancer Res.58: 5326–8, 1998.PubMedGoogle Scholar
  104. 104.
    Sirivatanauksom, Y., Drury, R., Cmogorac-Jurcevic, T., Sirivatanauksom, V., and Lemoine, N. R. Laser-assisted microdissection: applications in molecular pathology, J Pathol.189: 150–154, 1999.Google Scholar
  105. 105.
    O’Farrell, P. H. High resolution two-dimensional electrophoresis of proteins, J Biol Chem.250: 4007–21, 1975.PubMedGoogle Scholar
  106. 106.
    Emmert-Buck, M. R., Roth, M. J., Zhuang, Z., Campo, E., Rozhin, J., Sloane, B. F., Liotta, L. A., and Stetler-Stevenson, W. G. Increased gelatinase A (MMP-2) and cathepsin B activity in invasive tumor regions of human colon cancer samples, Am J Pathol.145: 1285–90, 1994.PubMedGoogle Scholar
  107. 107.
    Banks, R. E., Dunn, M. J., Forbes, M. A., Stanley, A., Pappin, D., Naven, T., Gough, M., Harnden, P., and Selby, P. J. The potential use of laser capture microdissection to selectively obtain distinct populations of cells for proteomic analysis-- preliminary findings, Electrophoresis.20: 689–700, 1999.PubMedGoogle Scholar
  108. 108.
    Ornstein, D. K., Englert, C., Gillespie, J. W., Paweletz, C. P., Linehan, W. M., Emmert-Buck, M. R., and Petricoin, E. F., 3rd Characterization of intracellular prostate-specific antigen from laser capture microdissected benign and malignant prostatic epithelium, Clin Cancer Res.6: 353–6, 2000.PubMedGoogle Scholar
  109. 109.
    Simone, N. L., Remaley, A. T., Charboneau, L., Petricoin, E. F., 3rd, Glickman, J. W., Emmert-Buck, M. R., Fleisher, T. A., and Liotta, L. A. Sensitive immunoassay of tissue cell proteins procured by laser capture microdissection, Am J Pathol.156: 445–52, 2000.PubMedGoogle Scholar
  110. 110.
    Emmert-Buck, M. R., Gillespie, J. W., Paweletz, C. P., Ornstein, D. K., Basrur, V., Appella, E., Wang, Q. H., Huang, J., Hu, N., Taylor, P., and Petricoin, E. F., 3rd An approach to proteomic analysis of human tumors, Mol Carcinog.27: 158–165, 2000.PubMedGoogle Scholar
  111. 111.
    Kelloff, G. J., Lieberman, R., Steele, V. E., Boone, C. W., Lubet, R. A., Kopelovitch, L., Malone, W. A., Crowell, J. A., and Sigman, C. C. Chemoprevention of prostate cancer: concepts and strategies, Eur Urol. 35: 342–50, 1999.PubMedGoogle Scholar
  112. 112.
    Lieberman, R., Crowell, J. A., Hawk, E. T., Boone, C. W., Sigman, C. C., and Kelloff, G. J. Development of new cancer chemoprevention agents: role of pharmacokinetic/pharmacodynamic and intermediate endpoint biomarker monitoring, Clin Chem. 44: 420–7, 1998.PubMedGoogle Scholar
  113. 113.
    Krishnan, K., Ruffin, M. T., and Brenner, D. E. Colon cancer chemoprevention: clinical development of aspirin as a chemopreventive agent, J Cell Biochem Suppl.28: 148–58, 1997.PubMedGoogle Scholar
  114. 114.
    Ruffin, M. T. t., Ogaily, M. S., Johnston, C. M., Gregoire, L., Lancaster, W. D., and Brenner, D. E. Surrogate endpoint biomarkers for cervical cancer chemopreventive trials, J Cell Biochem Suppl.23: 113–24, 1995.PubMedGoogle Scholar
  115. 115.
    Mao, L., El-Naggar, A. K., Papadimitrakopoulou, V., Shin, D. M., Shin, H. C., Fan, Y., Zhou, X., Clayman, G., Lee, J. J., Lee, J. S., Hittelman, W. N., Lippman, S. M., and Hong, W. K. Phenotype and genotype of advanced premalignant head and neck lesions after chemopreventive therapy, J Nati Cancer Inst.90: 1545–51, 1998.Google Scholar
  116. 116.
    Thiberville, L., Payne, P., Metayer, J., Vielkinds, J., LeRiche, J., Palcic, B., and Lam, S. Molecular follow-up of a preinvasive bronchial lesion treated by 13-cis-retinoic acid, Hum Pathol.28: 108–10, 1997.PubMedGoogle Scholar
  117. 117.
    Kishimoto, Y., Sugio, K., Hung, J. Y., Virmani, A. K., McIntire, D. D., Minna, J. D., and Gazdar, A. F. Allele-specific loss in chromosome 9p loci in preneoplastic lesions accompanying non-small-cell lung cancers, J Natl Cancer Inst.87: 1224–9, 1995.PubMedGoogle Scholar
  118. 118.
    Hong, W. K., Endicott, J., Itri, L. M., Doos, W., Batsakis, J. G., Bell, R., Fofonoff, S., Byers, R., Atkinson, E. N., Vaughan, C., and et al. 13-cis-retinoic acid in the treatment of oral leukoplakia, N Engl J Med.315: 1501–5, 1986.PubMedGoogle Scholar
  119. 119.
    Mao, L., Lee, J. S., Kurie, J. M., Fan, Y. H., Lippman, S. M., Lee, J. J., Ro, J. Y., Broxson, A., Yu, R., Morice, R. C., Kemp, B. L., Khuri, F. R., Walsh, G. L., Hittelman, W. N., and Hong, W. K. Clonal genetic alterations in the lungs of current and former smokers, J Natl Cancer Inst.89: 857–62, 1997.PubMedGoogle Scholar
  120. 120.
    Lam, S., MacAulay, C., Hung, J., LeRiche, J., Profio, A. E., and Palcic, B. Detection of dysplasia and carcinoma in situ with a lung imaging fluorescence endoscope device, J Thorac Cardiovasc Surg.105: 1035–40, 1993.PubMedGoogle Scholar
  121. 121.
    Hung, J., Lam, S., LeRiche, J. C., and Palcic, B. Autofluorescence of normal and malignant bronchial tissue, Lasers Surg Med.11: 99–105, 1991.PubMedGoogle Scholar
  122. 122.
    Park, I. W., Wistuba, II, Maitra, A., Milchgrub, S., Virmani, A. K., Minna, J. D., and Gazdar, A. F. Multiple Clonal Abnormalities in the Bronchial Epithelium of Patients With Lung Cancer, J Natl Cancer Inst. 91: 1863–1868, 1999.PubMedGoogle Scholar
  123. 123.
    Franklin, W. A., Gazdar, A. F., Haney, J., Wistuba, II, La Rosa, F. G., Kennedy, T., Ritchey, D. M., and Miller, Y. E. Widely dispersed p53 mutation in respiratory epithelium. A novel mechanism for field carcinogenesis, J Clin Invest.100.2133–7, 1997.PubMedGoogle Scholar
  124. 124.
    Euhus, D. M., Maitra, A., Wistuba, II, Ashfaq, R., Alberts, A., Gibbons, D., and Gazdar, A. F. Use of archival fine-needle aspirates for the allelotyping of tumors, Cancer.87: 372–379, 1999.PubMedGoogle Scholar
  125. 125.
    Smith, L. J., Braylan, R. C., Nutkis, J. E., Edmundson, K. B., Downing, J. R., and Wakeland, E. K. Extraction of cellular DNA from human cells and tissues fixed in ethanol, Anal Biochem.160: 135–8, 1987.PubMedGoogle Scholar
  126. 126.
    Dimulescu, I., Unger, E. R., Lee, D. R., Reeves, W. C., and Vernon, S. D. Characterization of RNA in Cytologic Samples Preserved in a Methanol- Based Collection Solution, Mol Diagn. 3: 67–71, 1998.PubMedGoogle Scholar
  127. 127.
    Ben-Ezra, J., Johnson, D. A., Rossi, J., Cook, N., and Wu, A. Effect of fixation on the amplification of nucleic acids from paraffin-embedded material by the polymerase chain reaction, J Histochem Cytochem.39: 351–4, 1991.PubMedGoogle Scholar
  128. 128.
    Wright, D., Manos, M. Sample preparation from paraffin embedded tissues. In: I. MA (ed.) PCR Protocols: A guide to Methods and Applications, pp. Ch 19. San Diego: Academic Press, 1990.Google Scholar
  129. 129.
    Hung, J., Kishimoto, Y., Sugio, K., Virmani, A., McIntire, D. D., Minna, J. D., and Gazdar, A. F. Allele-specific chromosome 3p deletions occur at an early stage in the pathogenesis of lung carcinoma, Jama.273: 558–63, 1995.PubMedGoogle Scholar
  130. 130.
    Wistuba, II, Behrens, C., Milchgrub, S., Virmani, A. K., Jagirdar, J., Thomas, B., loachim, H. L., Litzky, L. A., Brambilla, E. M., Minna, J. D., and Gazdar, A. F. Comparison of molecular changes in lung cancers in HIV-positive and HIV- indeterminate subjects, Jama.279: 1554–9, 1998.PubMedGoogle Scholar
  131. 131.
    Maitra, A., Tavassoli, F. A., Albores-Saavedra, J., Behrens, C., Wistuba, II, Bryant, D., Weinberg, A. G., Rogers, B. B., Saboorian, M. H., and Gazdar, A. F. Molecular abnormalities associated with secretory carcinomas of the breast, Hum Pathol.30: 1435–40, 1999.PubMedGoogle Scholar
  132. 132.
    Houze, T. A. and Gustaysson, B. Sonification as a means of enhancing the detection of gene expression levels from formalin-fixed, paraffin-embedded biopsies, Biotechniques.21. 1074–8, 1080, 1082, 1996.PubMedGoogle Scholar
  133. 133.
    Stanta, G. and Schneider, C. RNA extracted from paraffin-embedded human tissues is amenable to analysis by PCR amplification, Biotechniques.11: 304, 306, 308, 1991.PubMedGoogle Scholar
  134. 134.
    Biagini, P., Monges, G., Cantaloube, J. F., Parriaux, D., Hassoun, J., and Chicheportiche, C. Detection of gastrin mRNA in paraffin-embedded samples of normal antral mucosae using polymerase chain reaction technique, Apmis.102: 526–32, 1994.PubMedGoogle Scholar
  135. 135.
    Mies, C. A simple, rapid method for isolating RNA from paraffin-embedded tissues for reverse transcription-polymerase chain reaction (RT-PCR), J Histochem Cytochem.42: 811–3, 1994.PubMedGoogle Scholar
  136. 136.
    Weiss, L. M. and Chen, Y. Y. Effects of different fixatives on detection of nucleic acids from paraffin-embedded tissues by in situ hybridization using oligonucleotide probes, J Histochem Cytochem.39: 1237–42, 1991.PubMedGoogle Scholar
  137. 137.
    Greer, C. E., Peterson, S. L., Kiviat, N. B., and Manos, M. M. PCR amplification from paraffin-embedded tissues. Effects of fixative and fixation time, Am J Clin Pathol.95: 117–24, 1991.PubMedGoogle Scholar
  138. 138.
    Greer, C. E., Lund, J. K., and Manos, M. M. PCR amplification from paraffin-embedded tissues: recommendations on fixatives for long-term storage and prospective studies, PCR Methods Appl.1: 46–50, 1991.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Anirban Maitra
  • Adi F. Gazdar

There are no affiliations available

Personalised recommendations