Analysis of Murine Embryonic Cardiovascular Phenotype

  • Kimimasa Tobita
  • Joseph P. Tinney
  • Bradley B. Keller
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 238)


This chapter provides basic details regarding the morphologic and physiologic phenotyping of mouse embryos. Critical attention must be paid to gestational timing and morphologic staging based on existing standards. Despite widely available resources for generating targeted genetic models in mice, the resources for CV phenotyping are limited at present. The technical challenges of generating reproducible data across a range of experimental models and techniques may justify the development of regional centers equipped to perform these studies on a subcontract or service basis. Obviously, greater details are always available in print, by phone, or by email or


Right Ventricle Mouse Embryo Embryonic Heart Cardiovascular Physiology Murine Embryo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Keller BB: Embryonic Cardiovascular Function, Coupling, and Maturation: A Species View. In Development of Cardiovascular Systems: Molecules to Organisms. (eds) Burggren W and Keller BB. Cambridge Univ Press, New York, 1997; 65–87.Google Scholar
  2. 2.
    Pexieder T, Christen Y, Vuillemin M and Patterson DF. Comparative morphometric analysis of cardiac organogenesis in chick, mouse, and dog embryos. In: Nora JJ, Takao A, eds. Congenital Heart Disease: Causes and Processes. Mt. Kisco, NY: Futura Publishing Co. 1984; 423–438.Google Scholar
  3. 3.
    Vuillemin M and Pexieder T. Normal stages of cardiac organogenesis in the mouse, I: development of the external shape of the heart. Am J Anat 1989;184: 101113.Google Scholar
  4. 4.
    Vuillemin M and Pexieder T. Normal stages of cardiac organogenesis in the mouse, II: development of the internal relief of the heart. Am J Anat 1989;184: 114128.Google Scholar
  5. 5.
    Hamburger V and Hamilton HL. A series of normal stages in the development of the chick embryo. J Morphol 1951;88:49–92CrossRefGoogle Scholar
  6. 6.
    Sissman NJ. Developmental landmarks in cardiac morphogenesis: comparative chronology. Am J Cardiol 1970;25:141–148.PubMedCrossRefGoogle Scholar
  7. 7.
    Pexieder T and Janecek P. Organogenesis of the human embryonic and early fetal heart as studied by microdissection and SEM. In: Nora JJ, Takao A, eds. Congenital Heart Disease: Causes and Processes. Mt. Kisco, NY: Futura Publishing Co.,1984;401–421Google Scholar
  8. 8.
    Hu N and Clark EB. Hemodynamics of the stage 12 to stage 29 chick embryo. Circ Res 1989; 65:1665–1670PubMedCrossRefGoogle Scholar
  9. 9.
    Faber JJ, Green TJ, and Thornburg KL. Embryonic Stroke Volume and Cardiac Output in the Chick. Dev Biol 1974;41:14–21PubMedCrossRefGoogle Scholar
  10. 10.
    Keller BB, Hu N, Serrino PJ, and Clark EB. Ventricular pressure-area loop characteristics in the stage 16 to 24 chick embryo. Circ Res 1991;68:226–231PubMedCrossRefGoogle Scholar
  11. 11.
    Tanaka N, Mao L, Delano FA, Sentianin EM, Chien KR, Schmid-Schonbein GW, and Ross JJr. Left ventricular volumes and function in the embryonic heart. Am J Physiol 1997;273:H1368–H1376PubMedGoogle Scholar
  12. 12.
    Field LJ. Transgenic mice in cardiovascular research. Ann Rev Physiol 1993;55: 97–114.CrossRefGoogle Scholar
  13. 13.
    Rossant J. Mouse mutants and cardiac development: new molecular insights into cardiogenesis. Circ Res 1996;78: 349–353.PubMedCrossRefGoogle Scholar
  14. 14.
    Chen JN and Fishman MC. Genetic dissection of heart development. In Development of Cardiovascular Systems: Molecules to Organisms. (eds) Burggren W and Keller BB. Cambridge Univ Press, New York, 1997; 7–17.Google Scholar
  15. 15.
    Murphy AM. Contractile protein phenotypic variation during development. Cardiovasc Res 1996;31:E25–33.PubMedGoogle Scholar
  16. 16.
    Franco D, Lamers WH and Moorman AF. Patterns of expression in the developing myocardium: towards a morphologically integrated transcriptional model. Cardiovasc Res 1998;38:25–53.PubMedCrossRefGoogle Scholar
  17. 17.
    Robbins J. Remodeling the cardiac sarcomere using transgenesis. Ann Rev Physiol. 2000;62:261–87.CrossRefGoogle Scholar
  18. 18.
    Keller BB, MacLennan MJ, Tinney JP and Yoshigi M. In vivo assessment of embryonic cardiovascular dimensions and function in day 10.5 to 14.5 mouse embryos. Circ Res 1996;79(2): 247–255.PubMedCrossRefGoogle Scholar
  19. 19.
    Gruber PJ, Kubalak SW, Pexieder T, Sucov HM, Evans RM and Chien KR. RXR alpha deficiency confers genetic susceptibility for aortic sac, conotruncal, atrioventricular cushion, and ventricular muscle defects in mice. J Clin Invest 1996;98(6): 1332–1343.PubMedCrossRefGoogle Scholar
  20. 20.
    Smith BR, Linney E, Huff DS, and Johnson GA. Magnetic resonance microscopy of embryos. Comp Med Imaging and Graphics 1996;20(6):486–490.Google Scholar
  21. 21.
    Hogers B, Gross D, Lehmann V, Zick K, De Groot HJ, Gittenberger-De Groot AC, and Poelmann RE. Magnetic resonance microscopy of mouse embryos in utero. Anat Rec 2000;260:373–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Turnbull DH, Bloomfield TS, Baldwin HS, Fosters FS and Joyner AL. Ultrasound backscatter microscope analysis of early mouse embryonic brain development. Proc Natl Acad Sci USA 1995;92:2239–2243.PubMedCrossRefGoogle Scholar
  23. 23.
    Phoon CK, Aristizabal O, and Turnbull DH. 40 MHz Doppler characterization of umbilical and dorsal aortic blood flow in the early mouse embryo. Ultrasound Med Biol 2000 Oct;26(8):1275–83.PubMedCrossRefGoogle Scholar
  24. 24.
    Icardo JM, Arrechedera H and Colvee E. Atrioventricular endocardial cushions in the pathogenesis of common atrioventricular canal: morphological study in the iv/iv mouse. In: Clark EB, Markwald RR and Takao A, eds. Developmental Mechanisms of Heart Disease. Armonk, NY: Futura Publishing Co. 1995;529–544.Google Scholar
  25. 25.
    Seo JW and Kim YH. Morphology of the embryonic atrial chambers in the mouse with iv/iv mutation. In: Clark EB, Markwald RR and Takao A, eds. Developmental Mechanisms of Heart Disease. Futura Publishing Co. 1995;545–553.Google Scholar
  26. 26.
    Pexieder T, Blanc O. Pelouch V, Ostadalova I, Milerova M, and Ostadal B. Late fetal development of retinoic acid-induced transposition of the great arteries: morphology, physiology, and biochemistry. In: Clark EB, Markwald RR and Takao A, eds. Developmental Mechanisms of Heart Disease. Armonk, NY: Futura Publishing Co. 1995;297–307.Google Scholar
  27. 27.
    Yasui H, Nakazawa M, Morishima M, Miyagawa-Tomita S and Momma K (1995). Morphological observations on the pathogenetic process of transposition of the great arteries induced my retinoic acid in mice. Circ 91(9): 2478–2486.CrossRefGoogle Scholar
  28. 28.
    Reaume AG, de Sousa PA, Kulkarni S, Langille BL, Zhu D, Davies TC, Juneja AC, Kidder GM, and Rossant J. Cardiac malformation in neonatal mice lacking Connexin43. Science 1995;267:1831–1834.PubMedCrossRefGoogle Scholar
  29. 29.
    Lyons GE, Schiaffino S, Sassoon D, Barton P and Buckingham M (1990). Developmental regulation of myosin gene expression in mouse cardiac muscle. J Cell Biol 111: 2427–2436.PubMedCrossRefGoogle Scholar
  30. 30.
    Dyson E, Sucov HM, Kubalak SW, Schmid-Schonbein GW, Delano F, Evans RM, Ross J Jr. and Chien KR (1995). Atrial-like phenotype is associated with embryonic ventricular failure in retinoid X receptor I -/- mice. Proc Natl Acad Sci USA 92: 7386–7390.PubMedCrossRefGoogle Scholar
  31. 31.
    Conway SJ, Godt RE, Hatcher CJ, Leatherbury L, Zolotouchnikov VV, Brotto MAP, Copp AJ, Kirby ML, and Creazzo TL. Neural crest is involved in development of abnormal myocardial function. J Mol Cell Cardiol 1997;29:2675–2685.PubMedCrossRefGoogle Scholar
  32. 32.
    Miyabara S, Gropp A, and Winking H. Trisomy 16 in the mouse fetus associated with generalized edema and cardiovascular and urinary tract anomalies. Teratology 1982;25:369–380.PubMedCrossRefGoogle Scholar
  33. 33.
    Miyabara S. Cardiovascular malformations of mouse trisomy 16: pathogenetic evaluation as an animal model for human trisomy 21. In: Clark EB and Takao A, eds. Developmental Cardiology: Morphogenesis and Function. Mt. Kisco, NY: Futura Publishing Co., 1990; 409–430.Google Scholar
  34. 34.
    Hiltgen GG, Markwald RR, and Litke LL. Morphogenetic alterations during endocardial cushion development in the trisomy 16 (Down syndrome) mouse. Pediatr Cardiol 1996;17:21–30.PubMedCrossRefGoogle Scholar
  35. 35.
    Vuillemin M, Pexieder T, and Winking H. Pathogenesis of various forms of double outlet right ventricle in mouse fetal trisomy 13. Internat J Cardiol 1991;33:281–304CrossRefGoogle Scholar
  36. 36.
    Sanford PL, Ormsby I, Gittenberger de-Groot AC, Sariola H, Friedman R, Boivin GP, Cardell EL, and Doetschman T. TGFß2 knockout mice have multiple developmental defects that are non-overlapping with other TGFß2 knockout phenotypes. Development 1997;124:2659–2670.PubMedGoogle Scholar
  37. 37.
    Furukawa S, MacLennan MJ, and Keller BB: Hemodynamic response to anesthesia in pregnant and nonpregnant ICR mice. Lab Animal Sci 1998;48:357–363.Google Scholar
  38. 38.
    Huang GY, Linask KK. Doppler echocardiographic analysis of effects of tribromoethanol anesthesia on cardiac function in the mouse embryo: a comparison with pentobarbital. Lab Animal Sci 1998;48:206–9.Google Scholar
  39. 39.
    Gui YH, Linask KK, Khowsathit P, and Huhta JC. Doppler echocardiography of normal and abnormal embryonic mouse heart. Pediatr Res 1996;40:633–642.PubMedCrossRefGoogle Scholar
  40. 40.
    Gardner DJ, Davis JA, Weina PJ, and Theune B. Comparison of tribromoethanol, ketamine/acetylpromazine, telazol/xylazine, pentobarbital, and methoxyflurane anesthesia in HSD:ICR mice. Lab Animal Sci 1995;45:199–204.Google Scholar
  41. 41.
    Nakazawa M, Miyagawa S, Ohno T, Miura S, and Takao A. Developmental hemodynamic changes in rat embryos at 11 to 15 days of gestation: normal data of blood pressure and the effect of caffeine compared to data from chick embryo. Pediatr Res 1988;23:200–205.PubMedCrossRefGoogle Scholar
  42. 42.
    Hofman PL, Hiatt K, Yoder MC, and Rivkees SA. Al adenosine receptors potently regulate heart rate in mammalian embryos. Am J Physiol 1997;273:R1374–R1380.PubMedGoogle Scholar
  43. 43.
    Miller CE, Vanni MA, and Keller BB: Characterization of passive embryonic myocardium by quasi-linear viscoelasticity theory. J Biomech 1997;30:985–988.PubMedCrossRefGoogle Scholar
  44. 44.
    Casillas CB, Tinney JP, and Keller BB: Influence of acute alterations in cycle length on ventricular function in the chick embryo. Am J Physiol 1994;267:H905–H911.PubMedGoogle Scholar
  45. 45.
    Wladimiroff JW, Huisman TWA, Stewart PA, Stijnen T. Normal fetal Doppler inferior vena cava, trans tricuspid and umbilical artery flow velocity waveforms between 11 and 16 weeks of gestation. Am J Obstet Gynecol 1992;3:921–924.Google Scholar
  46. 46.
    MacLennan MJ and Keller BB: Murine embryonic umbilical arterial velocity during development and following acutely increased heart rate. Ultrasound Med Biol 1999;25:361–370.PubMedCrossRefGoogle Scholar
  47. 47.
    Davies MP, An RH, Doevendans P, Kubalak S, Chien KR, and Kass RS. Developmental changes in ionic channel activity in the embryonic murine heart. Circ Res 1996;78(1):15–25.PubMedCrossRefGoogle Scholar
  48. 48.
    An RH, Heath RM, Higgins JP, Koch WJ, Lefkowitz RJ, and Kass RS. Beta2adrenergic receptor overexpression in the developing mouse heart: evidence for targeted modulation of ion channels. J Physiol 1999;516;19–30.PubMedCrossRefGoogle Scholar
  49. 49.
    Gryshchenko O, Fischer IR, Dittrich M, Viatchenko-Karpinski S, Soest J, BohmPinger MM, Igelmund P, Fleischmann BK, and Hescheler J. Role of ATP-dependent K(+) channels in the electrical excitability of early embryonic stem cell-derived cardiomyocytes. J Cell Sci 1999;112:2903–2912PubMedGoogle Scholar
  50. 50.
    Cribbs LL, Schroder EA, Keller BB, Delisle BP, and Satin J. Identification of the CaV3.1d gene product in developing mouse heart: A contributor to embryonic contractility. Circ Res 2001 (in press).Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Kimimasa Tobita
    • 1
  • Joseph P. Tinney
    • 1
  • Bradley B. Keller
    • 1
  1. 1.Cardiovascular Development Research ProgramUniversity of KentuckyLexingtonUSA

Personalised recommendations