Clinical Laboratory Analysis of the Genetically Manipulated Mouse

  • William Lewis
Chapter
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 238)

Abstract

The importance of analyzing routine chemistries in living genetically manipulated mice is increasingly clear. Analogous data bases of serum and/or plasma analytes exist for humans, are commonly used in screening human patients for the presence of health and disease, and serve as important clinical screening tools for the presence of cardiovascular diseases, their prognosis, and efficacy of therapy. These data are absent or incomplete for the mouse. In a correlative way, the availability of these data will amplify the ability scientists to screen for cardiovascular and other diseases in the genetically manipulated mouse.

Keywords

Cholesterol Dopamine Creatinine Angiotensin Norepinephrine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Breslow JL. Mouse models of atherosclerosis. Science 1996; 272(5262):685–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Thompson MW, Merrill DC, Yang G, et al. Transgenic animals in the study of blood pressure regulation and hypertension. Am J Physiol 1995; 269(5 Pt 1):E793–803.PubMedGoogle Scholar
  3. 3.
    Chien KR. Cardiac muscle diseases in genetically engineered mice: evolution of molecular physiology. Am J Physiol 1995; 269(3 Pt 2):H755–66.PubMedGoogle Scholar
  4. 4.
    Paigen K. A miracle enough: the power of mice. Nat Med 1995; 1(3):215–20.PubMedCrossRefGoogle Scholar
  5. 5.
    Mullins LJ, Mullins JJ. Transgenesis in the rat and larger mammals. J Clin Invest 1996; 97(7):1557–60.PubMedCrossRefGoogle Scholar
  6. 6.
    Kiatchoosakun S, Kirkpatrick D, Olszens K, et al. Naturally Occurring Variation in Inbred Mouse Strains: A Mouse Model of the Athlete’s Heart. Circulation 2000; 102 (18):II-194.Google Scholar
  7. 7.
    Grupp IL, Subramaniam A, Hewett TE, et al. Comparison of normal, hypodynamic, and hyperdynamic mouse hearts using isolated work-performing heart preparations. Am J Physiol 1993; 265(4 Pt 2):H1401–10.PubMedGoogle Scholar
  8. 8.
    Marusic A, Katavic V, Grcevic D, Lukic IK. Genetic variability of new bone induction in mice. Bone 1999; 25(1):25–32.PubMedCrossRefGoogle Scholar
  9. 9.
    Paigen B, Morrow A, Brandon C, et al. Variation in susceptibility to atherosclerosis among inbred strains of mice. Atherosclerosis 1985; 57(1):65–73.PubMedCrossRefGoogle Scholar
  10. 10.
    Spearow JL, Doemeny P, Sera R, et al. Genetic variation in susceptibility to endocrine disruption by estrogen in mice [see comments]. Science 1999; 285(5431):1259–61.PubMedCrossRefGoogle Scholar
  11. 11.
    Bristow MR. Tumor necrosis factor-alpha and cardiomyopathy [editorial; comment]. Circulation 1998; 97(14):1340–1.PubMedCrossRefGoogle Scholar
  12. 12.
    Mann DL, Kent RL, Parsons B, Cooper Gt. Adrenergic effects on the biology of the adult mammalian cardiocyte. Circulation 1992; 85(2):790–804.PubMedCrossRefGoogle Scholar
  13. 13.
    Wilbert-Lampen U, Seliger C, Zilker T, Arendt RM. Cocaine increases the endothelial release of immunoreactive endothelin and its concentrations in human plasma and urine: reversal by coincubation with sigma-receptor antagonists. Circulation 1998; 98(5):385–90.PubMedCrossRefGoogle Scholar
  14. 14.
    Rosenzweig A, Seidman CE. Atrial natriuretic factor and related peptide hormones. Annu Rev Biochem 1991; 60:229–55.PubMedCrossRefGoogle Scholar
  15. 15.
    Werdan K, Muller U, Reithman C. Negative inotropic cascades in cardiomyocytes triggered by substances relevant to sepsis.InSchlag G, Redl H, eds. Pathophysiology of Shock, Sepsis, and Organ Failure. Berlin: Springer-Verlag, 1995. pp. 787–834.Google Scholar
  16. 16.
    Pinsky DJ, Cai B, Yang X, et al. The lethal effects of cytokine-induced nitric oxide on cardiac myocytes are blocked by nitric oxide synthase antagonism or transforming growth factor beta. J Clin Invest 1995; 95(2):677–85.PubMedCrossRefGoogle Scholar
  17. 17.
    Levine B, Kalman J, Mayer L, et al. Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med 1990; 323(4):236–41.PubMedCrossRefGoogle Scholar
  18. 18.
    Barry WH. Mechanisms of immune-mediated myocyte injury. Circulation 1994; 89(5):2421–32.PubMedCrossRefGoogle Scholar
  19. 19.
    Lange LG, Schreiner GF. Immune mechanisms of cardiac disease. N Engl J Med 1994; 330(16):1129–35.PubMedCrossRefGoogle Scholar
  20. 20.
    Gulick T, Chung MK, Pieper SJ, et al. Interleukin 1 and tumor necrosis factor inhibit cardiac myocyte beta-adrenergic responsiveness. Proc Natl Acad Sci U S A 1989; 86(17):6753–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Pagani FD, Baker LS, Hsi C, et al. Left ventricular systolic and diastolic dysfunction after infusion of tumor necrosis factor-alpha in conscious dogs. J Clin Invest 1992; 90(2):389–98.PubMedCrossRefGoogle Scholar
  22. 22.
    Vincent JL, Bakker J, Marecaux G, et al. Administration of anti-TNF antibody improves left ventricular function in septic shock patients. Results of a pilot study. Chest 1992; 101(3):810–5.PubMedCrossRefGoogle Scholar
  23. 23.
    Pacher R, Stanek B, Hulsmann M, et al. Prognostic impact of big endothelin-1 plasma concentrations compared with invasive hemodynamic evaluation in severe heart failure. J Am Coll Cardiol 1996; 27(3):633–41.PubMedCrossRefGoogle Scholar
  24. 24.
    Cody RJ, Haas GJ, Binkley PF, et al. Plasma endothelin correlates with the extent of pulmonary hypertension in patients with chronic congestive heart failure [published erratum appears in Circulation 1993 Mar;87(3):1064]. Circulation 1992; 85(2):504–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Krum H, Goldsmith R, Wilshire-Clement M, et al. Role of endothelin in the exercise intolerance of chronic heart failure. Am J Cardiol 1995; 75(17):128–23.CrossRefGoogle Scholar
  26. 26.
    Wei CM, Lerman A, Rodeheffer RJ, et al. Endothelin in human congestive heart failure. Circulation 1994; 89(4):1580–6.PubMedCrossRefGoogle Scholar
  27. 27.
    Shubeita HE, McDonough PM, Harris AN, et al. Endothelin induction of inositol phospholipid hydrolysis, sarcomere assembly, and cardiac gene expression in ventricular myocytes. A paracrine mechanism for myocardial cell hypertrophy. J Biol Chem 1990; 265(33):20555–62.PubMedGoogle Scholar
  28. 28.
    Weber KT. Extracellular matrix remodeling in heart failure. A role for de novo angiotensin II generation. Circulation 1997; 96:4065–82.PubMedCrossRefGoogle Scholar
  29. 29.
    Colucci WS. Molecular and cellular mechanisms of myocardial failure. Am J Cardiol 1997; 80(11A):15L–25L.PubMedCrossRefGoogle Scholar
  30. 30.
    Boland DG, Abraham WT. Natriuretic peptides in heart failure. Congestive Heart Fail 1998; 4:23–33.Google Scholar
  31. 31.
    Saito Y, Nakao K, Arai H, et al. Atrial natriuretic polypeptide (ANP) in human ventricle. Increased gene expression of ANP in dilated cardiomyopathy. Biochem Biophys Res Commun 1987; 148(1):211–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Cody RJ, Atlas SA, Laragh JH, et al. Atrial natriuretic factor in normal subjects and heart failure patients. Plasma levels and renal, hormonal, and hemodynamic responses to peptide infusion. J Clin Invest 1986; 78 (5):1362–74.PubMedCrossRefGoogle Scholar
  33. 33.
    Drexler H, Hirth C, Stasch HP, et al. Vasodilatory action of endogenous atrial natriuretic factor in a rat model of chronic heart failure as determined by monoclonal ANF antibody. Circ Res 1990; 66(5):1371–80.PubMedCrossRefGoogle Scholar
  34. 34.
    Abraham WT, Port JD, Bristow MR. Neurohormonal receptors in the failing heart.InPoole-Wilson PA, Colucci WS, Massie BM, et al., eds. Heart Failure. New York, NY: Churchill Livingstone, 1997. pp. 127–41.Google Scholar
  35. 35.
    Francis GS, Benedict C, Johnstone DE, et al. Comparison of neuroendocrine activation in patients with left ventricular dysfunction with and without congestive heart failure. A substudy of the Studies of Left Ventricular Dysfunction (SOLVD). Circulation 1990; 82(5):1724–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Levine TB, Francis GS, Goldsmith SR, et al. Activity of the sympathetic nervous system and renin-angiotensin system assessed by plasma hormone levels and their relation to hemodynamic abnormalities in congestive heart failure. Am J Cardiol 1982; 49(7):1659–66.PubMedCrossRefGoogle Scholar
  37. 37.
    Passon PG, Peuler JD. A simplified radiometric assay for plasma norepinephrine and epinephrine. Anal Biochem 1973; 51(2):618–31.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • William Lewis
    • 1
  1. 1.Emory UniversityAtlantaUSA

Personalised recommendations