Immunobiology of Chronic Cardiac Allograft Rejection

  • Petri Koskinen
  • Jussi Tikkanen
  • Roope Sihvola
  • Pekka Häyry
  • Karl Lemström


Cardiac transplantation is currently the only method available to return patients with end-stage heart disease to normal life. The success of intrathoracic organ transplantation has increased constantly over the past decade as a result of new surgical techniques, immunosuppressive protocols, and innovations in managing acute rejection and infection, particularly cytomegalovirus (CMV) infection. Despite the substantial improvement in early survival, the long-term survival rate has not increased during the past decade.


Smooth Muscle Cell Acute Rejection Chronic Rejection Cytomegalovirus Infection Cardiac Allograft 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hosenpud JD, Bennett LE, Keck BM, Fiol B, Novick RJ. The Registry of the International Society for Heart and Lung Transplantation: fourteenth official report–1997. J Heart Lung Transplant 1997;16:691–712.PubMedGoogle Scholar
  2. 2.
    Billingham ME. Cardiac transplant atherosclerosis. Transplant Proc 1987;19:19–25.PubMedGoogle Scholar
  3. 3.
    Billingham ME. The pathologic changes in long-term heart and lung transplant survivors. J Heart Lung Transplant 1992; 11:252–257.Google Scholar
  4. 4.
    Gao SZ, Alderman EL, Schroeder JS, Silverman JF, Hunt SA. Accelerated coronary vascular disease in the heart transplant patient: coronary arteriographic findings. J Am Coll Cardiol 1988;12 334–340.PubMedCrossRefGoogle Scholar
  5. 5.
    Hruban RH, Beschorner WE, Baumgartner WA, Augustine SM, Ren H, Reitz BA, Hutchins GM Accelerated arteriosclerosis in heart transplant recipients is associated with a T-lymphocytes mediated endothelialitis. Am J Pathol 1990;137:871–882.PubMedGoogle Scholar
  6. 6.
    Olivari MT, Homans DC, Wilson RF, Kubo SH, Ring WS. Coronary artery disease in cardiac transplant patients receiving triple-drug immunosuppressive therapy. Circulation 1989;80:111–115.Google Scholar
  7. 7.
    Stovin PG, Sharpies L, Hurler JA, Wallwork J, English TA. Some prognostic factors for the development of transplant-related coronary artery disease in human cardiac allografts. J Heart Lung Transplant 1991;10:38–44.PubMedGoogle Scholar
  8. 8.
    Costanzo-Nordin MR. Cardiac allograft vasculopathy: relationship with acute cellular rejection an histocompatibility. J Heart Lung Transplant 1992;11:90–103.Google Scholar
  9. 9.
    Uretsky BF, Murali S, Reddy PS, Rabin B, Lee A, Griffith BP, Hardesty RL, Trento A, Bahnso HT. Development of coronary artery disease in cardiac transplant patients receiving immunosuppressive therapy with cyclosporine and prednisone. Circulation 1987;76:827–834.PubMedCrossRefGoogle Scholar
  10. 10.
    Narrod J, Kormos R, Armitage J, Hardesty R, Ladowski J, Griffith B. Acute rejection and coronary artery disease in long-term survivors of heart transplantation. J Heart Lung Transplant 1989; 8:418–421.Google Scholar
  11. 11.
    Radovancevic B, Poindexter S, Birovljev S, Velebit VI, McAllister HA, Duncan JM, Vega D, Lonquist J, Burnett CM, Frazier OH. Risk factors for development of accelerated coronary artery disease in cardiac transplant recipients. Eur J Cardio-Thorac Surg 1990;4:309–313.CrossRefGoogle Scholar
  12. 12.
    Young JB, Windsor NT, Kleiman NS, Lowry R, Cocanougher B, Lawrence EC. The relationship of soluble interleukin-2 receptor levels to allograft arteriopathy after heart transplantation. J Heart Lung Transplant 1992; 11:79–82.Google Scholar
  13. 13.
    Deng MC, Bell S, Huie P, Pinto F, Hunt SA, Stinson EB, Sibley R, Hall BM, Valantine HA. Cardiac allograft vascular disease. Relationship to microvascular cell surface markers and inflammatory cell phenotypes on endomyocardial biopsy. Circulation 1995;91:1647–654.PubMedCrossRefGoogle Scholar
  14. 14.
    Hammond EH, Yowell RL, Nunoda S, Menlove RL, Renlund DG, Bristow MR, Gay WA Jr, Jones KW, O’Connell JB. Vascular (humoral) rejection in heart transplantation: pathologic observations and clinical implications. J Heart Lung Transplant 1989;8:430–443.Google Scholar
  15. 15.
    Heroux AL, O’Sullivan EJ, Liao Y, Kao W, Johnson M, Mullen M, Pifarre R, Constanzo-Nordin MR. Early and late cardiac allogrfat arteriopathy: are they different entities? J Am Coll Cardiol 1992;19:174A.CrossRefGoogle Scholar
  16. 16.
    Hess ML, Hastillo A, Mohanakumar T, Cowley MJ, Vetrovac G, Szentpetery S, Wolfgang TC, Lower RR. Accelerated atherosclerosis in cardiac transplantation: role of cytotoxic B-cell antibodies and hyperlipidemia. Circulation 1983;68:94–101.Google Scholar
  17. 17.
    Gao SZ, Schroeder JS, Hunt S, Stinson EB. Retransplantation for severe accelerated coronary artery disease in heart transplant recipients. Am J Cardiol 1988;62:876–881.PubMedCrossRefGoogle Scholar
  18. 18.
    Winters GL, Kendall TJ, Radio SJ, Wilson JE, Costanzo-Nordin MR, Switzer BL, Remmenga JA, McManus BM. Posttransplant obesity and hyperlipidemia: major predictors of severity of coronary arteriopathy in failed human heart allografts. J Heart Transp 1990;9:364–371.Google Scholar
  19. 19.
    Eich D, Thompson JA, Ko DJ, Hastillo A, Lower R, Katz S, Katz M, Hess ML. Hypercholesterolemia in long-term survivors of heart transplantation: an early marker of accelerated coronary artery disease. J Heart Lung Transplant 1991; 10:45–49.PubMedGoogle Scholar
  20. 20.
    Sharpies LD, Caine N, Mullins P, Scott JP, Solis E, English TA, Large SR, Schofield PM, Wallwork J. Risk factor analysis for the major hazards following heart transplantation–rejection, infection, and coronary occlusive disease. Transplantation 1991;52:244–252.CrossRefGoogle Scholar
  21. 21.
    Grattan MT, Moreno-Cabral CE, Starnes VA, Oyer PE, Stinson EB, Shumway NE. Cytomegalovirus infection is associated with cardiac allograft rejection and atherosclerosis. JAMA 1989;261: 3561–3566.PubMedCrossRefGoogle Scholar
  22. 22.
    McDonald K, Rector TS, Braulin EA, Kubo SH, Olivari MT. Association of coronary artery disease in cardiac transplant recipients with cytomegalovirus infection Am J Card 1989;64:359–362.PubMedCrossRefGoogle Scholar
  23. 23.
    Loebe M, Schuler S, Zais O, Warnecke H, Fleck E, Hetzer R. Role of cytomegalovirus infection in the development of coronary artery disease in the transplanted heart. J Heart Transp 1990;9:707–711.Google Scholar
  24. 24.
    Everett JP, Hershberger RE, Norman DJ, Chou S, Ratkovec RM, Cobanoglu A, Ott GY, Hosenpud JD. Prolonged cytomegalovirus infection with viremia is associated with development of cardiac allograft vasculopathy. J Heart Lung Transplant 1992;11:133–137.Google Scholar
  25. 25.
    Koskinen PK, Krogerus LA, Nieminen MS, Mattila SP, Häyry PJ, Lautenschlager IT. Quantitation of cytomegalovirus infection associated histoligal findings in endomyocardial biopsies of heart allografts. J Heart Lung Transplant 1993;12:343–354.PubMedGoogle Scholar
  26. 26.
    Rubin RH. Impact of cytomegalovirus infection on organ transplant recipients. Rev Inf Dis 1990;12:754–766.CrossRefGoogle Scholar
  27. 27.
    Cramer DV, Qian SQ, Harnaha J, Chapman FA, Estes LW, Starzl TE, Makowka L. Cardiac transplantation in the rat. I. The effect of histocompatibility differences on graft arteriosclerosis Transplantation 1989;47:414–419.PubMedCrossRefGoogle Scholar
  28. 28.
    Nakagawa T, Sukhova GK, Rabkin E, Winters GL, Schoen FJ, Libby P. Acute rejection accelerates graft coronary disease in transplanted rabbit hearts. Circulation 1995;92(4):987–993.PubMedCrossRefGoogle Scholar
  29. 29.
    Alonso DR, Starek PK, Minick CR. Studies on the pathogenesis of atheroarteriosclerosis induces in rabbit cardiac allografts by the synergy of graft rejection and hypercholesterolemia. Am J Patho 1977;87:415–442.Google Scholar
  30. 30.
    Mennander A, Tikkanen MJ, Räisänen-Sokolowski A, Paavonen T, Ustinov J, Häyry P. Chronic rejection in rat aortic allografts. IV Effect of hypercholesterolemia in allograft arteriosclerosis. J Heart Lung Transplant 1993;12:123–131.PubMedGoogle Scholar
  31. 31.
    Adams DH, Karnovsky MJ. Hypercholesterolemia does not exacerbate arterial intimal thickening in chronically rejecting rat cardiac allografts. Transplant Proc 1989;21:437–439.PubMedGoogle Scholar
  32. 32.
    Räisänen-Sokolowski A, Tilly-Kiesi M, Ustinov J, Mennander A, Paavonen T, Tikkanen MJ, Häyry P. Hyperlipidemia accelerates allograft arteriosclerosis (chronic rejection) in the rat. Arteriosclerosis & Thrombosis 1994;14:2032–2042.CrossRefGoogle Scholar
  33. 33.
    von Willebrand E, Petterson E, Ahonen J, Häyry P. CMV infection, class II antigen expression, and human kidney allograft rejection. Transplantation 1986;42:364–367.CrossRefGoogle Scholar
  34. 34.
    Fietze E, Prösch S, Reinke P, Stein J, Döcke W-D, Staffa G, Löning S, Devaux S, Emmrich F, von Baehr R, Krüger DH, Volk H-D. Cytomegalovirus infection in transplant recipients. The role of tumor necrosis factor. Transplantation 1994;58:675–680.PubMedGoogle Scholar
  35. 35.
    Speir E, Shibutani T, Yu ZX, Ferrans V, Epstein SE. Role of reactive oxygen intermediates in cytomegalovirus gene expression and in the response of human smooth muscle cells to viral infection. Circ Research 1996;79(6):1143–1152.CrossRefGoogle Scholar
  36. 36.
    Cherrington JM, Mocarski ES. Human cytomegalovirus ie 1 transactivates the alpha promoter-enhancer via an 18-base-pair repeat element. J Virol 1989;63:1435–1440.PubMedGoogle Scholar
  37. 37.
    Fujinami RS, Nelson JA, Walker L, Oldstone MBA. Sequence homology and immunologic crossreactivity of human cytomegalovirus with HLA-DR beta chain: a means for graft rejection and immunosuppression. J Virol 1988;62:100–105.PubMedGoogle Scholar
  38. 38.
    Beck S, Barrell BG. Human cytomegalovirus encodes a glycoprotein homologous to MHC class-I antigens. Nature 1988;331(6153):269–272.PubMedCrossRefGoogle Scholar
  39. 39.
    Hendrix MGR, Dormans PHJ, Kitslaar P, Bosman F, Bruggeman CA. The presence of cytomegalovirus nucleic acids in arterial walls of atherosclerotic and nonatherosclerotic patients. Am J Pathol 1989;134:1151–1157.PubMedGoogle Scholar
  40. 40.
    Melnick JL, Adam E, Debakey ME. Possible role of cytomegalovirus in atherogenesis. JAMA 1990;263:2204–2207.PubMedCrossRefGoogle Scholar
  41. 41.
    Koskinen PK, Krogerus LA, Nieminen MS, Mattila SP, Häyry PJ, Lautenschlager IT. Cytomegalovirus infection and accelerated cardiac allograft vasculopathy in human cardiac allografts. J Heart Lung Transplant 1993;12:343–354.PubMedGoogle Scholar
  42. 42.
    Koskinen PK, Nieminen MS, Krogerus LA, Lemström KB, Mattila SP, Häyry PJ, Lautenschlager IT. Cytomegalovirus infection accelerates cardiac allograft vasculopathy: correlation between angiographic and endomyocardial biopsy findings in heart transplant patients. Transplant Int 1993;6:341–347.CrossRefGoogle Scholar
  43. 43.
    Koskinen P, Lemström K, Bruggeman C, Lautenschlager I, Häyry P. Acute cytomegalovirus infection induces a subendothelial inflammation (endothelialitis) in the allograft vascular wall. A possible linkage with enhanced allograft arteriosclerosis. Am J Pathol 1994; 144(1):41–50.PubMedGoogle Scholar
  44. 44.
    Lemström KB, Aho PT, Bruggeman CA, Häyry PJ. Cytomegalovirus infection enhances mRNA expression of platelet-derived growth factor-BB and transforming growth factor-beta 1 in rat aortic allografts. Possible mechanism for cytomegalovirus-enhanced graft arteriosclerosis. Arterioscler Thromb 1994;14:2043–2052.PubMedCrossRefGoogle Scholar
  45. 45.
    Lemström KB, Bruning JH, Bruggeman CA, Lautenschlager IT, Häyry PJ. Triple drug immunosuppression significantly reduces immune activation and allograft arteriosclerosis in cytomegalovirus-infected rat aortic allografts and induces early latency of viral infection. Am J Pathol 1994;144:1334–1347.PubMedGoogle Scholar
  46. 46.
    Lemström KB, Bruning JH, Bruggeman CA, Koskinen PK, Aho PT, Yilmaz S, Lautenschlager IT, Häyry PJ. Cytomegalovirus infection-enhanced allograft arteriosclerosis is prevented by DHPG prophylaxis in the rat. Circulation 1994;90(4): 1969–1978.PubMedCrossRefGoogle Scholar
  47. 47.
    Neyts J, Snoeck R, Schols D, Balzarini J, De Clercq. Selective inhibition of human cytomegalovirus DNA synthesis by (S)-l-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine [(S)-HPMPC] and 9-(l,3-dihydroxy-2-propoxymethyl)guanine (DHPG). Virology 1990; 179(1):41–50.PubMedCrossRefGoogle Scholar
  48. 48.
    Speir E, Modali R, Huang ES, Leon MB, Shawl F, Finkel T, Epstein SE. Potential role of human cytomegalovirus and p53 interaction in coronary restenosis. Science 1994;265(5170):391–394.PubMedCrossRefGoogle Scholar
  49. 49.
    Koskinen PK, Lemström KB, Häyry PJ. How cyclosporine modifies histological and molecular events in the vascular wall during chronic rejection of rat cardiac allografts. Am J Pathol 1995;146:972–980.PubMedGoogle Scholar
  50. 50.
    Koskinen PK, Lemström KB. Adhesion molecule P-selectin and vascular cell adhesion molecule-1 in enhanced heart allograft arteriosclerosis in the rat. Circulation 1997;95:191–196.PubMedCrossRefGoogle Scholar
  51. 51.
    Tanaka H, Swanson SJ, Sukhova G, Schoen FJ, Libby P. Smooth muscle cells of the coronary arterial tunica media express tumor necrosis factor-alpha and proliferate during acute rejection of rabbit cardiac allografts. Am J Pathol 1995; 147(3):617–626.PubMedGoogle Scholar
  52. 52.
    Clausell N, Molossi S, Sett S, Rabinovitch M. In vivo blockade of tumor necrosis factor-alpha in cholesterol-fed rabbits after cardiac transplant inhibits acute coronary artery neointimal formation. Circulation 1994;89(6):2768–2779.PubMedCrossRefGoogle Scholar
  53. 53.
    Clausell N, Molossi S, Rabinovitch M. Increased interleukin-1ß and fibronectin expression are early features of the development of the postcardiac transplant coronary arteriopathy in piglets. Am J Pathol 1993;142:1772–1786.PubMedGoogle Scholar
  54. 54.
    Russell ME, Wallace AF, Hancock WW, Sayegh MH, Adams DH, Sibinga NE, Wyner LR, Karnovsky MJ. Upregulation of cytokines associated with macrophage activation in the Lewis-to-F344 rat transplantation model of chronic cardiac rejection. Transplantation 1995;59(4):572–578.PubMedGoogle Scholar
  55. 55.
    Russell ME, Adams DH, Wyner LR, Yamashita Y, Halnon NJ, Karnovsky MJ. Early and persistent induction of monocyte chemoattractant protein 1 in rat cardiac allografts. Proc Natl Acad Sci USA 1992;90:6086–6090.CrossRefGoogle Scholar
  56. 56.
    Russell ME, Wallace AF, Wyner LR, Newell JB, Karnovsky MJ. Upregulation and modulation of inducible nitric oxide synthase in rat cardiac allografts with chronic rejection and transplant arteriosclerosis. Circulation 1995;92(3):457–464.PubMedCrossRefGoogle Scholar
  57. 57.
    Utans U, Quist WC, McManus BM, Wilson JE, Arceci RJ, Wallace AF, Russell ME. Allograft inflammatory factor-1. A cytokine-responsive macrophage molecule expressed in transplanted human hearts. Transplantation 1996;61(9): 1387–1392.PubMedCrossRefGoogle Scholar
  58. 58.
    Russell ME, Utans U, Wallace AF, Liang P, Arceci RJ, Karnovsky MJ, Wyner LR, Yamashita Y, Tarn C. Identification and upregulation of galactose/N-acetylgalactosamine macrophage lectin in rat cardiac allografts with arteriosclerosis. J Clin Invest 1994;94(2):722–730.PubMedCrossRefGoogle Scholar
  59. 59.
    Watschinger B, Sayegh MH, Hancock WW, Russell ME. Upregulation of endothelin-1 mRNA and peptide expression in rat cardiac allografts with rejection and arteriosclerosis. Am J Pathol 1995;146(5):1065–1072.PubMedGoogle Scholar
  60. 60.
    Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 1993;362:801–809.PubMedCrossRefGoogle Scholar
  61. 61.
    Ross R, Raines EW, Bowen-Pope DF. The biology of platelet-derived growth factor. Cell 1986;46: 155–169.PubMedCrossRefGoogle Scholar
  62. 62.
    Heldin CH, Westermark B. Platelet-derived growth factor: three isoforms and two receptor types. Trends Genet 1989;5:108–111.PubMedCrossRefGoogle Scholar
  63. 63.
    Seifert RA, Hart CE, Phillips PE, Forstrom JW, Ross R, Murray MJ, Bowen-Pope DF. Two different subunits associate to create isoform-specific platelet-derived growth factor receptors. J Biol Chem 1989;264:8771–8778.PubMedGoogle Scholar
  64. 64.
    Williams LT. Signal transduction by the platelet-derived growth factor receptor. Science 1989;243: 1564–1570.PubMedCrossRefGoogle Scholar
  65. 65.
    Lemström KB, Koskinen PK. Expression and localization of platelet-derived growth factor ligand and receptor protein during acute and chronic rejection of rat cardiac allografts. Circulation 1997;96:1240–1249.PubMedCrossRefGoogle Scholar
  66. 66.
    Buchdunger E Zimmermann J, Mett H, Meyer T, Miiller M, Regenass U. Selective inhibition of the platelet-derived growth factor signal transduction pathway by a protein-tyrosine kinase inhibitor of the 2-phenylaminopyrimidine class. Proc Natl Acad Sci USA 1995;92:2558–2562.PubMedCrossRefGoogle Scholar
  67. 67.
    Bluestone JA. New perspectives of CD28-B7-mediated T cell costimulation. Immunity 1995; 2:555–559.PubMedCrossRefGoogle Scholar
  68. 68.
    Banchereau J, Bazan F, Blanchard D, Briere F, Galizzi JP, van Kooten C, Liu YJ, Rousset F, Saeland S. The CD40 antigen and its ligand. Ann Rev Immunol 1994;12:881–922.CrossRefGoogle Scholar
  69. 69.
    Jenkins MK, Taylor PS, Norton SD, Urdahl KB. CD28 delivers a costimulatory signal involved in antigen-specific IL-2 production by human T cells. J Immunol 1991;147:2461–2466.PubMedGoogle Scholar
  70. 70.
    Schwartz RH. Costimulation of T lymphocytes: the role of CD28, CTLA-4, and B7/BB1 in inter-leukin-2 production and immunotherapy. Cell 1992;71(7): 1065–1068.PubMedCrossRefGoogle Scholar
  71. 71.
    Boussiotis V, Freeman GJ, Gray G, Gribben J, Nadler LM. B7 but not intercellular adhesion molecule-1 costimulation prevents the induction of human alloantigen-specific tolerance. J Exp Mea 1993;178:1753–1763.CrossRefGoogle Scholar
  72. 72.
    Grewal IS, Xu J, Flavell RA. Impairment of antigen-specific T-cell priming in mice lacking CD40 ligand. Nature 1995;378:617–620.PubMedCrossRefGoogle Scholar
  73. 73.
    van Essen H, Ikutani H, Gray D. CD40 ligand-transduced co-stimulation of T cells in the development of helper function. Nature 1995;378:620–623.PubMedCrossRefGoogle Scholar
  74. 74.
    Hollenbaugh D, Mischel-Petty N, Edwards CP, Simon JC, Denfeld RW, Kiener PA, Aruffo A. Expresssion of functional CD40 by vascular endothelial cells. J Exp Med 1995;182:33–40.PubMedCrossRefGoogle Scholar
  75. 75.
    Armitage RJ, Fanslow WC, Strockbine L, Sato TA, Clifford KN, Macduff BM, Anderson DM Gimpel SD, Davis-Smith T, Maliszewski CR, et al. Molecular and biological characterization of a murine ligand for CD40. Nature 1992;357:80–82.PubMedCrossRefGoogle Scholar
  76. 76.
    Cayabyab M, Phillips JH, Lanier LL. CD40 preferentially costimulates activation of CD4+ T lymphocytes. J Immunol 1994;152:1523–1531.PubMedGoogle Scholar
  77. 77.
    Noelle RJ, Roy M, Shepherd DM, Stamenkovic I, Ledbetter JA, Aruffo A. A 39-kDa protein on activated helper T cells binds CD40 and transduces the signal for cognate activation of B cells. Proc Nat Acad Sci USA 1992;89:6550–6554.PubMedCrossRefGoogle Scholar
  78. 78.
    Alderson MR, Armitage RJ, Tough TW, Strockbine L, Fanslow WC, Spriggs MK. CD40 expression by human monocytes: regulation by cytokines and activation of monocytes by the ligand for CD40 J Exp Med 1993;178:669–674.PubMedCrossRefGoogle Scholar
  79. 79.
    Johnston RB Jr. Current concepts: immunology. Monocytes and macrophages. N Engl J Med 1988;318(12):747–752.PubMedCrossRefGoogle Scholar
  80. 80.
    Russell ME, Hancock WW, Akalin E, Wallace AF, Glysing-Jensen T, Willett TA, Sayegh MH. Chronic cardiac rejection in the LEW to F344 rat model. Blockade of CD28-B7 costimulation by CTLA4Ig modulates T cell and macrophage activation and attenuates arteriosclerosis. J Clin Invest 1996;97(3):833–838.PubMedCrossRefGoogle Scholar
  81. 81.
    Larsen CP, Elwood ET, Alexander DZ, Ritchie SC, Hendrix R, Tucker-Burden C, Cho HR, Aruffo A, Hollenbaugh D, Linsley PS, Winn KJ, Pearson TC. Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways. Nature 1996;381:434–438.PubMedCrossRefGoogle Scholar
  82. 82.
    Russell PS, Chase CM, Winn HJ, Colvin RB. Coronary atherosclerosis in transplanted mouse hearts. II. Importance of humoral immunity. J Immunol 1994;152(10):5135–5141.PubMedGoogle Scholar
  83. 83.
    Shi C, Lee WS, He Q, et al. Immunologic basis of transplant-associated arteriosclerosis. Proc Natl Acad Sci USA 1996;93(9):4051–4056.PubMedCrossRefGoogle Scholar
  84. 84.
    Räisänen-Sokolowski A, Mottram PL, Flysing-Jensen T, Satoskar A, Russell ME. Heart transplants in interferon-gamma, interleukin 4, and interleukin 10 knockout mice. Recipient environment alters graft rejection. J Clin Invest 1997;100(10):2449–2456.PubMedCrossRefGoogle Scholar
  85. 85.
    Thyberg J, Hedin U, Sjölund M, Palmberg L, and Bottger BA. Regulation of differentiated properties and proliferation of arterial smooth muscle cells. Arteriosclerosis 1990;10:966–990.PubMedCrossRefGoogle Scholar
  86. 86.
    Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 1993;362:801–809.PubMedCrossRefGoogle Scholar
  87. 87.
    MacDonald AS, Sabr K, MacAuley MA, McAlister VC, Bitter SH, Lee T. Effects of leflunomide and cyclosporine on aortic allograft chronic rejection in the rat. Transplant Proc 1994; 26(6):3244–3245.PubMedGoogle Scholar
  88. 88.
    Gregory CR, Huang X, Pratt RE, et al. Treatment with rapamycin and mycophenolic acid reduces arterial intimal thickening produced by mechanical injury and allows endothelial replacement. Transplantation 1995;59(5):655–661.PubMedCrossRefGoogle Scholar
  89. 89.
    Räisänen SA, Yilmaz S, Tufveson G, Häyry P. Partial inhibition of allograft arteriosclerosis (chronic rejection) by 15-deoxyspergualin. Transplantation 1994;57(12): 1772–1777.Google Scholar
  90. 90.
    Räisänen SA, Vuoristo P, Myllärniemi M, Yilmaz S, Kallio E, Häyry P. Mycophenolate mofetil (MMF, RS-61443) inhibits inflammation and smooth muscle cell proliferation in rat aortic allografts. Transpl Immunol 1995;3(4):342–3451.CrossRefGoogle Scholar
  91. 91.
    Russell ME, Hancock WW, Akalin E, et al. Chronic cardiac rejection in the LEW to F344 rat model Blockade of CD28-B7 costimulation by CTLA4Ig modulates T cell and macrophage activation and attenuates arteriosclerosis. J Clin Invest 1996;97(3):833–838.PubMedCrossRefGoogle Scholar
  92. 92.
    Kingma I, Chea R, Davidoff A, Benediktsson H, Paul LC. Glomerular capillary pressures in long surviving rat renal allografts. Transplantation 1993;56(1):53–60.PubMedCrossRefGoogle Scholar
  93. 93.
    Benediktsson H, Chea R, Davidoff A, Paul LC. Antihypertensive drug treatment in chronic renal allograft rejection in the rat. Effect on structure and function. Transplantation 1996;62(11):1634–1642.PubMedCrossRefGoogle Scholar
  94. 94.
    Akyurek LM, Funa K, Wanders A, Larsson E, Fellstrom BC. Inhibition of transplant arteriosclerosis in rat aortic grafts by low molecular weight heparin derivatives. Transplantation 1995;59(11):1517–1524.PubMedGoogle Scholar
  95. 95.
    Kobashigawa JA, Katznelson S, Laks H, et al. Effect of pravastatin on outcomes after cardiac transplantation. N Engl J Med 1995;333(10):621–627.PubMedCrossRefGoogle Scholar
  96. 96.
    Häyry P, Isoniemi H, Yilmaz S, Mennander A, Lemström K, Räisänen-Sokolowski A, Koskinen P Ustinov J, Lautenschlager I, Taskinen E, Krogerus L, Aho P, Paavonen T. Chronic allograft rejection. Immunol Rev 1993;134:33–81.PubMedCrossRefGoogle Scholar
  97. 97.
    Utans U, Liang P, Wyner LR, Karnovsky MJ, Russell ME. Chronic cardiac rejection: identification of five upregulated genes in transplanted hearts by differential mRNA display. Proc Natl Acad Sci USA 1994;91(14):6463–6467.PubMedCrossRefGoogle Scholar
  98. 98.
    Chen J, Myllärniemi M, Akyurek LM, Häyry P, Marsden PA, Paul LC. Identification of differentially expressed genes in rat aortic allograft vasculopathy. Am J Pathol 1996;149(2):597–611.PubMedGoogle Scholar
  99. 99.
    Basadonna GP, Matas AJ, Gillingham KJ, et al. Early versus late acute renal allograft rejection impact on chronic rejection. Transplantation 1993;55(5):993–995.PubMedCrossRefGoogle Scholar
  100. 100.
    van Saase JL, van der Woude FJ, Thorogood J, et al. The relation between acute vascular and interstitial renal allograft rejection and subsequent chronic rejection. Transplantation 199 59(9):1280–1285.Google Scholar
  101. 101.
    Delafontaine P, Lou H, Alexander RW. Regulation of insulin-like growth factor I messenger RN levels in vascular smooth muscle cells. Hypertension 1991; 18(6):742747.PubMedCrossRefGoogle Scholar
  102. 102.
    Foegh ML, Ramwell PW. Angiopeptin: experimental and clinical studies of inhibition of myointimal proliferation. Kidney Int Suppl 1995:S18–22.Google Scholar
  103. 103.
    Lundergan C, Foegh ML, Vargas R, et al. Inhibition of myointimal proliferation of the rat carotid artery by the peptides, angiopeptin and BIM 23034. Atherosclerosis 1989;80(l):49–55.PubMedCrossRefGoogle Scholar
  104. 104.
    Foegh ML, Asotra S, Conte JV, et al. Early inhibition of myointimal proliferation by angiopeptin after balloon catheter injury in the rabbit. J Vase Surg 1994; 19(6): 1084–1091.CrossRefGoogle Scholar
  105. 105.
    Häyry P, Räisänen A, Ustinov J, Mennander A, Paavonen T. Somatostatin analog lanreotide inhibits myocyte replication and several growth factors in allograft arteriosclerosis. Faseb J 1993;7(11): 1055–1060.PubMedGoogle Scholar
  106. 106.
    Häyry P, Myllämiemi M, Aavik E, et al. Stabile D-peptide analog of insulin-like growth factor-1 inhibits smooth muscle cell proliferation after carotid ballooning injury in the rat. Faseb J 1995;9(13): 1336–1344.PubMedGoogle Scholar
  107. 107.
    Zempo N, Koyama N, Kenagy RD, Lea HJ, Clowes AW. Regulation of vascular smooth muscle cell migration and proliferation in vitro and in injured rat arteries by a synthetic matrix metalloproteinase inhibitor. Arterioscler Thromb Vase Biol 1996;16(l):28–33.CrossRefGoogle Scholar
  108. 108.
    Bendeck MP, Irvin C, Reidy MA. Inhibition of matrix metalloproteinase activity inhibits smooth muscle cell migration but not neointimal thickening after arterial injury. Ore Res 1996;78(l):38–43.Google Scholar
  109. 109.
    Cowan B, Baron O, Crack J, Coulber C, Wilson GJ, Rabinovitch M. Elafin, a serine elastase inhibitor, attenuates post-cardiac transplant coronary arteriopathy and reduces myocardial necrosis in rabbits afer heterotopic cardiac transplantation. J Clin Invest 1996;97(11):2452–2468.PubMedCrossRefGoogle Scholar
  110. 110.
    Levitzki A. Targeting signal transduction for disease therapy. Curr Opin Cell Biol 1996;8(2): 239–244.PubMedCrossRefGoogle Scholar
  111. 111.
    Myllämiemi M, Calderon L, Lemström K, Buchdunger E, Häyry P. Inhibition of platelet-derived growth factor receptor tyrosine kinase inhibits vascular smooth muscle cell migration and proliferation. Faseb J 1997;11(13):1119–1126.Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Petri Koskinen
    • 1
  • Jussi Tikkanen
    • 1
  • Roope Sihvola
    • 1
  • Pekka Häyry
    • 1
  • Karl Lemström
    • 1
  1. 1.Transplantation Laboratory, Cardiopulmonary Research Group of Transplantation LaboratoryUniversity of Helsinki, and Helsinki University Central HospitalHelsinkiFinland

Personalised recommendations