Skip to main content

Histocompatibility Antigens and Transplant Rejection

  • Chapter
  • 89 Accesses

Abstract

The specific or adaptive immune system is characterized by the generation and activation of immune cells with an enormous repertoire for the recognition of foreign shapes and by the phenomenon of memory. This sophisticated system of host defense is not found in invertebrates, protochordates, or in some primitive jawless fish. The vertebrate immune system evolved about 450 million years ago in cartilaginous fish, ancestors of present day skates and sharks.1

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rast, JP, Anderson, MK, Strong, SJ, Luer, C, Litman, RT, and Litman, GW (1997). alpha, beta, gamma, and delta T cell antigen receptor genes arose early in vertebrate phylogeny. Immunity 6, 1–11.

    Article  PubMed  CAS  Google Scholar 

  2. Janeway, CAJ (1998). The road less travelled by: the role of innate immunity in the adaptive immune response. J. Immunol. 161, 539–544.

    PubMed  CAS  Google Scholar 

  3. Matis, LA (1990). The molecular basis of T cell specificity. Annu. Rev. Immunol 8, 65–82.

    Article  PubMed  CAS  Google Scholar 

  4. Davis, MM, Boniface, JJ, Reich, Z, Lyons, D, Hampl, J, Arden, B, and Chien, Y-h (1998). Ligand recognition by alpha-beta T cell receptors. Annu. Rev. Immunol. 16, 523–544.

    Article  PubMed  CAS  Google Scholar 

  5. Bjorkman, PJ, Saper, MA, Samraoui, B, Bennett, WS, Strominger, JL, and Wiley, DC (1987). Structure of the human class I histocompatibility antigen, HLA-A2. Nature 329, 506–512.

    Article  PubMed  CAS  Google Scholar 

  6. Stern, LJ, Brown, JH, Jardetzky, TS, Gorga, JC, Urban, RG, Strominger, JL, and Wiley, DC (1994). Crystal structure of the human class II MHC protein HLA DR1 complexed with an influenza virus peptide. Nature 368, 215–221.

    Article  PubMed  CAS  Google Scholar 

  7. Garcia, KC, Degano, M, Pease, LR, Huang, M, Peterson, PA, Teyton, L, and Wilson, IA (1998). Structural basis of plasticity in T cell receptor recognition of a self-peptide-MHC antigen. Science 279, 1166–1172.

    Article  PubMed  CAS  Google Scholar 

  8. Madden, D (1995). The three dimensional structure of peptide-MHC complexes. Annu. Rev. Immunol. 13, 587–622.

    Article  PubMed  CAS  Google Scholar 

  9. Germain, RH, and Margulies, DH (1993). The biochemistry and cell biology of antigen processing and presentation. Annu. Rev. Immunol. 11, 403–450.

    Article  PubMed  CAS  Google Scholar 

  10. Pamer, E, and Cresswell, P (1998). Mechanisms of MHC class I restricted antigen presentation. Annu. Rev. Immunol. 16, 323–358.

    Article  PubMed  CAS  Google Scholar 

  11. Brown, MG, Driscoll, J, and Monaco, JJ (1991). Structural and serological similarity of MHc linked LMP and proteasome (multicatalytic proteinase) complexes. Nature 353, 355–357.

    Article  PubMed  CAS  Google Scholar 

  12. Monaco, JJ, and Nandi, D (1995). The genetics of proteasomes and antigen processing. Annu. Rev. Genetics 29, 729–754.

    Article  CAS  Google Scholar 

  13. Wiertz, EJHJ, Tortorella, D, Bogyo, M, Yu, J, Mothes, W, Jones, TR, Rapoport, TA, and Ploegh, HL (1996). Sec61 -mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature 384, 432–438.

    Article  PubMed  CAS  Google Scholar 

  14. Ploegh, HL (1998). Viral strategies of immune evasion. Science 280, 248–253.

    Article  PubMed  CAS  Google Scholar 

  15. Denzin, LK, and Cresswell, P (1995). HLA-DM induces CLIP dissociation from MHC class II alpha beta dimers and facilitates peptide loading. Cell 82, 155–165.

    Article  PubMed  CAS  Google Scholar 

  16. Roche, PA (1995). HLA DM: An In vivo facilitator of MHC class II peptide loading. Immunity 3, 259–262.

    Article  PubMed  CAS  Google Scholar 

  17. Lanier, LL (1998). Follow the leader: NK cell receptors for classical and non-classical MHC class I. Cell 92, 705–707.

    Article  PubMed  CAS  Google Scholar 

  18. Braud, VM, Allan, DSJ, O’Callaghan, CA, Soderstrom, K, D’Andrea, A, Ogg, GS, Lazetic, S, Young, NT, Bell, JI, Philips, JH, Lanier, L, and McMichael, AJ (1998). HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature 391, 795–798.

    Article  PubMed  CAS  Google Scholar 

  19. Simpson, E, and Roopenian, D (1997). Minor histocompatibility antigens. Curr. Opin. in Immunol. 9, 655–661.

    Article  CAS  Google Scholar 

  20. Wilson, IA, and Bjorkman, PJ (1998). Unusual MHC-like molecules: CDl, Fc receptor, the hemochromatosis gene product and viral homologs. Curr. Opin. Immunol. 10, 61–73.

    Article  Google Scholar 

  21. Wucherpfennig, KW, and Strominger, JC (1995). Molecular mimicry in T cell mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell 80, 695–705.

    Article  PubMed  CAS  Google Scholar 

  22. Gilbert, SC, Plebanski, M, Gupta, S, Morris, J, Cox, M, Aidoo, M, Kwiatowski, D, Greenwood, BM, Whittle, HC, and Hill, AVS (1998). Association of malaria parasite population structure, HLA, and immunological antagonism. Science 279, 1173–1177.

    Article  PubMed  CAS  Google Scholar 

  23. Kimura, A, Sasazuki, T. Eleventh International Histocompatibility Workshop protocol for the HLA DNA typing technique. In: Tsuji K, Aizawa M, Sasazuki T eds. HLA 1991. Proceedings of the Eleventh International Histocompatibility Workshop and Conference. Volume 1. New York and Oxford; 1992:397–418.

    Google Scholar 

  24. van Rood, JJ, and Oudshoorn, M (1998). An HLA matched donor! An HLA matched donor? What do you mean by HLA matched donor. Bone Marrow Transplant 22, Suppl 1: S83.

    PubMed  Google Scholar 

  25. Sasazuki, T, Juji, T, and Morishima, Y et al. (1998). Effect of matching HLA class I alleles on clinical outcome after transplantation of hematopoietic stem cells from an unrelated donor. N. Eng. J. Med. 339, 1177–1185.

    Article  CAS  Google Scholar 

  26. Parham, P, Clayberger, C, Zom, SL, Ludwig, DS, Schoolnik, GK, and Krensky, AM (1987). Inhibition of alloreactive cytotoxic T cells by peptides from the a2 domain of HLA-A2. Nature 325, 625–628.

    Article  PubMed  Google Scholar 

  27. Chicz, RM, Urban, RG, Lane, WS, Gorga, JC, Stern, LJ, Vignali, DA, and Strominger, JL (1992). Predominant naturally processed peptides bound to HLA DR1 are derived from MHC related molecules and are heterogeneous in size. Nature 358, 764–768.

    Article  PubMed  CAS  Google Scholar 

  28. Shoskes, DA, and Wood, KJ (1994). Indirect presentation of MHC antigens in transplantation. Immunology Today 15, 32–38.

    Article  PubMed  CAS  Google Scholar 

  29. Sayegh, MH, Watschinger, B, and Carpenter, CB (1994). Mechanisms of T cell recognition of alloantigen. The role of peptides. Transplantation 57, 1295–1302.

    Article  PubMed  CAS  Google Scholar 

  30. Magee, CC, and Sayegh, MH (1997). Peptide-mediated immunosuppression. Curr. Opin. in Immunol. 9, 669–675.

    Article  CAS  Google Scholar 

  31. Liu, Z, Colovai, AI, Tugulea, S, Reed, EF, Fischer, PE, Mancini, D, Rose, EA, Cortesini, R, Michler, RE, and Suciu-Foca, N (1996). Indirect recognition of donor HLA-DR peptides in organ allograft rejection. J. Clin. Invest. 98, 1150–1157.

    Article  PubMed  CAS  Google Scholar 

  32. Opelz, G, and Wujciak, T (1994). The influence of HLA compatibility on graft survival after heart transplantation. N.Eng. J. Med. 330, 816–819.

    Article  CAS  Google Scholar 

  33. Jarcho, J, Naftel, DC, Shroyer TW et al. (1994). Influence of HLA mismatch on rejection after heart transplantation: a multiinstitutional study. J. Heart. Lung. Transplant. 13, 583–596.

    PubMed  CAS  Google Scholar 

  34. Hosenpud, JD, Edwards, EB, Lin, H-M, and Daily, P (1996). Influence of HLA matching on thoracic transplant outcomes. Ana analysis from the UNOS/ISHLT thoracic registry. Circulation 94,170–174.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pillai, S. (2001). Histocompatibility Antigens and Transplant Rejection. In: Dec, G.W., Narula, J., Ballester, M., Carrio, I. (eds) Cardiac Allograft Rejection. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1649-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1649-1_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5659-2

  • Online ISBN: 978-1-4615-1649-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics