Skip to main content

Part of the book series: Electronic Materials Series ((EMAT,volume 8))

  • 907 Accesses

Abstract

Infra-red photon detectors working at wavelengths longer than about 211m normally use semiconductor materials specifically developed for this purpose such as indium antimonide or mercury cadmium telluride (MCT), whose bandgaps match the photon energy of the radiation to be detected. The MCT alloy system is the most versatile such system and can be used in detectors with cut-off wavelengths varying between at least 20 µm and 2 µm. The special purpose materials systems give the highest available infra-red detector performance. However, MCT is virtually a single use material and is difficult to use because of its chemical and physical properties. The quantum well infra-red photoconductor (QWIP) is a device concept that allows general purpose electronic materials systems (e.g., GaAs/AIGaAs or Si/SiGe) to be used as infra-red detectors. These materials are highly developed for purposes such as transistors, lasers and integrated circuits and have much more attractive materials properties than MCT. The highly developed nature of the material technology used in QWIPs means that these devices have progressed rapidly from concept [1-6] to a first realization in 1987 [7] and the demonstration of arrays of -105devices [8,9] on a single chip for thermal imaging applications. The availability of large area substrates and uniform epitaxial crystal growth developed for other purposes have been particularly important in achieving this last goal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Esaki, L., Sai-Halasz, G.A. and Chang, L.L., U.S. Patent 4,205,331 1980.

    Google Scholar 

  2. Smith, J.S., Chiu, L.C., Margalit, S., Yariv, A. and Cho, A.Y. (1983) J. Vac. Sci. Technol. B,1, 376.

    Article  CAS  Google Scholar 

  3. Chiu, L., Smith, J., Margalit, S., Yariv, A. and Cho, A. (1983) Infrared Phys., 23, 93.

    Article  CAS  Google Scholar 

  4. Coon, D.D. and Karunasiri, R.P.G. (1984) Appl. Phys. Lett., 45, 649.

    Article  CAS  Google Scholar 

  5. Coon, D.D., Karunasiri, R.P.G. and Liu, L.Z. (1985)Appl. Phys. Lett., 47, 289.

    CAS  Google Scholar 

  6. Goossen, K.W and Lyon, S.A. (1985)Appl. Phys. Lett., 47, 1257.

    Article  CAS  Google Scholar 

  7. Levine, B.F., Choi, K.K., Bethea, C.G., Walker, J. and Malik, R.J. (1987) Appl. Phys. Lett., 50, 1092.

    Article  CAS  Google Scholar 

  8. Gunapala, S.D., Liu, J., Park, J. et al. (1997) IEEE Trans. Electron. Devices, 44, 51.

    Article  Google Scholar 

  9. Claiborne, L.T. (1997) Proc. SPIE, 2999, 94.

    Article  CAS  Google Scholar 

  10. Rose, A. Concepts in Photoconductivity and Allied Problems (Wiley: New York) 1963.

    Google Scholar 

  11. Sarusi, G., Levine, B.F., Pearton, S.J., Bandara, K.M.S. and Leibenguth, R.E. (1994) Appl. Phys. Lett., 64, 960.

    Article  CAS  Google Scholar 

  12. Carline, R.T., Nayar, V., Robbins, D.J. and Stanaway, M.B. (1998) IEEE Photonics Lett., 10, 1775.

    Article  Google Scholar 

  13. Levine, B.F. (1993)1 Appl. Phys., 74, RI.

    Google Scholar 

  14. Hasnain, G., Levine, B., Gunapala, S. and Chand, N. (1990) Appl. Phys. Lett., 57, 608.

    Article  CAS  Google Scholar 

  15. Gunapala, S.D., Levine, B., Pfeiffer, L. and West, K. (1991)1 Appl. Phys., 69, 6517.

    CAS  Google Scholar 

  16. Kane, M.J., Millidge, S., Emeny, M.T., Guy, D.R.P., Lee, D. and Whitehouse, C.R. (1993)1 Appl. Phys., 73, 7966.

    CAS  Google Scholar 

  17. Daniels, M.E., Bishop, P.J. and Ridley, B. (1997) Semicon. Sci Technol., 12, 375.

    Article  CAS  Google Scholar 

  18. Levine, B.F., Bethea, C.G., Hasnain, G. et al. (1990) Appl. Phys. Lett., 56, 851.

    Article  CAS  Google Scholar 

  19. Sze, S., Physics of Semiconductor Devices (2nd edition) (Wiley Interscience: New York) 1981.

    Google Scholar 

  20. Andrews, S.R. and Miller, B.A. (1991)1 Appl. Phys., 70, 993.

    CAS  Google Scholar 

  21. Feynman, R.P., Leighton, R.B. and Sands, M., Feynman Lectures on Physics Vol 1, Section 42–2 (Addison Wesley,: Reading Mass. USA) 1963.

    Google Scholar 

  22. Kane, M.J., Millidge, S., Emeny, M.T., Lee, D., Guy, D.R.P. and Whitehouse, C.R. (1992) Performance Trade Offs in the Quantum Well Infra-red Detector, pp. 31–43 in “Intersubband Transitions in Quantum Wells” E. Rosencher, B.F. Levine and B. Vinter (Plenum, New York) 1992.

    Google Scholar 

  23. Kane, M.J., Emeny, M.T., Lee, D. and Whitehouse, C.R. (1990) Inst. Phys. Conf. Ser., 112, 597.

    CAS  Google Scholar 

  24. Liu, H.C. (1992) Appl. Phys. Lett., 60, 1507.

    Article  CAS  Google Scholar 

  25. Beck, W.A. (1993) Appl. Phys. Lett.,63, 3589.

    Article  CAS  Google Scholar 

  26. Choi, K.K. (1993)1 Appl. Phys., 73, 5230.

    CAS  Google Scholar 

  27. Dicke, R.H. and Wittke, J.P. Introduction to Quantum Mechanics (Addison Wesley: London UK) 1960.

    Google Scholar 

  28. Gasiorowicz, S. Quantum Physics (John Wiley: New York) 1974.

    Google Scholar 

  29. Bastard, G. Wavemechanics Applied to Semiconductor Heterostructures (Les Editions de Physique: Paris) 1988.

    Google Scholar 

  30. West, L.C. and Eglash, S.J. (1985) Appl. Phys. Lett., 46, 1156.

    Article  CAS  Google Scholar 

  31. Kane, M.J. and Emeny, M.T. (1992) unpublished.

    Google Scholar 

  32. Levine, B.F., Zussman, A., Gunapala, S.D., Asom, M.T., Kuo, J.M. and Hobson, W.S. (1992) 1 Appl. Phys., 72, 4429.

    Google Scholar 

  33. Rosencher, E., Vinter, B., Luc, F., Thibadeau, L., Bois, P. and Nagle, J. (1994)IEEE Trans.Quantum Electron., 30, 2875

    Article  CAS  Google Scholar 

  34. Stradling, R.A. and Klipstein, P.C. (1990) “Magneto-transport” p.173 in “Semiconductor Characterisation” (Adam Hilger, Bristol) 1990.

    Google Scholar 

  35. Chamberlain, M.P. and Babiker, M. (1989) Semicond. Sci. and Technol., 4, 691

    Article  CAS  Google Scholar 

  36. Deveaud, B., Chomette, A., Clerot, F. and Regreny, A. (1992) Subpicosecond Luminescence Study of Carrier Capture and Intersubband Relaxation in Quantum Wells pp. 275–287 in “Intersubband Transitions in Quantum Wells” E. Rosencher, B.F. Levine and B. Vinter (Plenum:New York) 1992.

    Google Scholar 

  37. Kozlowski, L.J., Williams, G.M., Farley, G.J. et al. (1991) IEEE Trans. Electron. Devices, 38, 1124.

    Article  CAS  Google Scholar 

  38. Goosen, K.W., Lyon, S.A. and Alavi, K. (1988) Appl. Phys. Lett., 53, 1027.

    Article  Google Scholar 

  39. Andersson, J.Y., Lundqvist, S. and Paska, Z.F. (1991) Appl. Phys. Lett., 58, 2264

    Article  CAS  Google Scholar 

  40. Andersson, J.Y. and Lundqvist, L. (1991) Appl. Phys. Lett., 59, 857.

    Article  CAS  Google Scholar 

  41. Andersson, J.Y. and Lundqvist, L. (1992) J. Appl. Phys., 71, 3600.

    Article  CAS  Google Scholar 

  42. de-Jong, J., Levine, B.F., Glogovsky, K.G. and Leibenguth, R.E. (1993) unpublished work cited and reproduced in reference 13.

    Google Scholar 

  43. Hasnain, G., Levine, B.F., Beth’ea, C.G., Logan, R.A., Walker, J. and Malik, R J (1989) Appl. Phys. Lett., 54, 2515.

    Article  CAS  Google Scholar 

  44. Schimert, T.R., Barnes, S.L., Brouns, A.J., Case, F.C., Mitra, P and Claiborne, L.T. (1996) Appl. Phys. Lett., 68, 2846

    Article  CAS  Google Scholar 

  45. Levine, B.F., Bethea, C.G., Hasnain, G., Walker, J. and Malik, R.J. (1988) Appl. Phys. Lett., 53, 296.

    Article  CAS  Google Scholar 

  46. Bethea, C.G., Levine, B.F., Asom, M.T. et al. (1993) IEEE Trans. Electron. Devices, 40, 1957.

    Article  CAS  Google Scholar 

  47. Gunapala, S., Park, J., Sarusi, G. et al. (1997) IEEE Trans. Electron. Devices, 44, 45.

    Article  Google Scholar 

  48. Beck, W.A. and Faska, T.S. (1996) Proc. SPIE, 2744, 193.

    Article  CAS  Google Scholar 

  49. Webb, C., Norton, M. and Kindsfather, R. (1997) p. 317 in Proc. Infra-red Information Symposium (2nd Joint NATO-IRIS Symposium), London, June 1996.

    Google Scholar 

  50. Hasnain, G., Levine, B.F., Sivco, D.L. and Cho, A. (1990) Appl. Phys. Lett., 56, 770.

    Article  CAS  Google Scholar 

  51. Gunapala, S.D., Levine, B.F., Ritter, D., Hamm, R. and Panish, M.B. (1991) Appl. Phys. Lett., 58, 2024.

    Article  CAS  Google Scholar 

  52. Beinvogl, W. and Koch, J.F. (1977) Solid State Commun., 24, 687.

    Article  CAS  Google Scholar 

  53. Zaluzny, M. (1981) Thin Solid Films, 76, 307.

    Article  CAS  Google Scholar 

  54. Peng, L., Smet, J., Broekart, T. and Fonstad, C.G. (1992) Appl. Phys. Lett., 61, 2078.

    Article  CAS  Google Scholar 

  55. Karunasiri, G., Park, J.S., Chen, J., Shih, R., Scheihing, J.F. and Dodd, M.A. (1995) Appl. Phys. Lett., 67, 2600.

    Article  CAS  Google Scholar 

  56. Wang, S.Y. and Lee, C.P. (1997) Appl. Phys. Lett., 71, 119.

    Article  CAS  Google Scholar 

  57. Flatte, M., Young, P., Peng, L.-H. and Ehrenreich, H. (1996) Phys. Rev. B, 53, 1963.

    Article  CAS  Google Scholar 

  58. Levine, B.F.,Gunapala,S.D.,Kuo,J.M.,Pei,S.S.and Hui,S.(1991)App!.Phys.Lett.,59,1864

    Article  CAS  Google Scholar 

  59. Chang, Y.C. and James, R.B. (1989) Phys. Rev. B, 39, 12672.

    Article  Google Scholar 

  60. Man, P. and Pan, D.S. (1992) Appl. Phys. Lett., 61, 2799.

    Article  CAS  Google Scholar 

  61. Karunasiri, R.P.G., Park, J.S. and Wang, K.L. (1991) Appl. Phys. Lett., 59, 2588.

    Article  CAS  Google Scholar 

  62. People, R., Bean, J.C., Bethea, C.G., Sputz, S.K. and Peticolas, L.J. (1992) Appl. Phys. Lett., 61, 1122.

    Article  CAS  Google Scholar 

  63. Kruck, P., Helm, M., Fromherz, T., Bauer, G., Nutzel, J.F. and Abstreiter, G. (1996) Appl. Phys. Lett., 69, 33–72.

    Article  Google Scholar 

  64. Robbins, D.J., Glasper, J.L., Anthony, C.J. et al. (1999) Proc. SPIE, 3630, 90.

    Article  CAS  Google Scholar 

  65. Sarusi, G., Levine, B.F., Pearton, S.J., Leibenguth, R.E. and Andersson, J.Y. (1994) J. Appl. Phys., 76, 4989.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kane, M.J. (2001). Quantum Well Infra-Red Detectors. In: Capper, P., Elliott, C.T. (eds) Infrared Detectors and Emitters: Materials and Devices. Electronic Materials Series, vol 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1607-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1607-1_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-7206-6

  • Online ISBN: 978-1-4615-1607-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics