Quantum Well Infra-Red Detectors

  • M. J. Kane
Chapter
Part of the Electronic Materials Series book series (EMAT, volume 8)

Abstract

Infra-red photon detectors working at wavelengths longer than about 211m normally use semiconductor materials specifically developed for this purpose such as indium antimonide or mercury cadmium telluride (MCT), whose bandgaps match the photon energy of the radiation to be detected. The MCT alloy system is the most versatile such system and can be used in detectors with cut-off wavelengths varying between at least 20 µm and 2 µm. The special purpose materials systems give the highest available infra-red detector performance. However, MCT is virtually a single use material and is difficult to use because of its chemical and physical properties. The quantum well infra-red photoconductor (QWIP) is a device concept that allows general purpose electronic materials systems (e.g., GaAs/AIGaAs or Si/SiGe) to be used as infra-red detectors. These materials are highly developed for purposes such as transistors, lasers and integrated circuits and have much more attractive materials properties than MCT. The highly developed nature of the material technology used in QWIPs means that these devices have progressed rapidly from concept [1-6] to a first realization in 1987 [7] and the demonstration of arrays of -105devices [8,9] on a single chip for thermal imaging applications. The availability of large area substrates and uniform epitaxial crystal growth developed for other purposes have been particularly important in achieving this last goal.

Keywords

Mercury Cadmium Recombination GaAs Expense 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Esaki, L., Sai-Halasz, G.A. and Chang, L.L., U.S. Patent 4,205,331 1980.Google Scholar
  2. 2.
    Smith, J.S., Chiu, L.C., Margalit, S., Yariv, A. and Cho, A.Y. (1983) J. Vac. Sci. Technol. B,1, 376.CrossRefGoogle Scholar
  3. 3.
    Chiu, L., Smith, J., Margalit, S., Yariv, A. and Cho, A. (1983) Infrared Phys., 23, 93.CrossRefGoogle Scholar
  4. 4.
    Coon, D.D. and Karunasiri, R.P.G. (1984) Appl. Phys. Lett., 45, 649.CrossRefGoogle Scholar
  5. 5.
    Coon, D.D., Karunasiri, R.P.G. and Liu, L.Z. (1985)Appl. Phys. Lett., 47, 289.Google Scholar
  6. 6.
    Goossen, K.W and Lyon, S.A. (1985)Appl. Phys. Lett., 47, 1257.CrossRefGoogle Scholar
  7. 7.
    Levine, B.F., Choi, K.K., Bethea, C.G., Walker, J. and Malik, R.J. (1987) Appl. Phys. Lett., 50, 1092.CrossRefGoogle Scholar
  8. 8.
    Gunapala, S.D., Liu, J., Park, J. et al. (1997) IEEE Trans. Electron. Devices, 44, 51.CrossRefGoogle Scholar
  9. 9.
    Claiborne, L.T. (1997) Proc. SPIE, 2999, 94.CrossRefGoogle Scholar
  10. 10.
    Rose, A. Concepts in Photoconductivity and Allied Problems (Wiley: New York) 1963.Google Scholar
  11. 11.
    Sarusi, G., Levine, B.F., Pearton, S.J., Bandara, K.M.S. and Leibenguth, R.E. (1994) Appl. Phys. Lett., 64, 960.CrossRefGoogle Scholar
  12. 12.
    Carline, R.T., Nayar, V., Robbins, D.J. and Stanaway, M.B. (1998) IEEE Photonics Lett., 10, 1775.CrossRefGoogle Scholar
  13. 13.
    Levine, B.F. (1993)1 Appl. Phys., 74, RI.Google Scholar
  14. 14.
    Hasnain, G., Levine, B., Gunapala, S. and Chand, N. (1990) Appl. Phys. Lett., 57, 608.CrossRefGoogle Scholar
  15. 15.
    Gunapala, S.D., Levine, B., Pfeiffer, L. and West, K. (1991)1 Appl. Phys., 69, 6517.Google Scholar
  16. 16.
    Kane, M.J., Millidge, S., Emeny, M.T., Guy, D.R.P., Lee, D. and Whitehouse, C.R. (1993)1 Appl. Phys., 73, 7966.Google Scholar
  17. 17.
    Daniels, M.E., Bishop, P.J. and Ridley, B. (1997) Semicon. Sci Technol., 12, 375.CrossRefGoogle Scholar
  18. 18.
    Levine, B.F., Bethea, C.G., Hasnain, G. et al. (1990) Appl. Phys. Lett., 56, 851.CrossRefGoogle Scholar
  19. 19.
    Sze, S., Physics of Semiconductor Devices (2nd edition) (Wiley Interscience: New York) 1981.Google Scholar
  20. 20.
    Andrews, S.R. and Miller, B.A. (1991)1 Appl. Phys., 70, 993.Google Scholar
  21. 21.
    Feynman, R.P., Leighton, R.B. and Sands, M., Feynman Lectures on Physics Vol 1, Section 42–2 (Addison Wesley,: Reading Mass. USA) 1963.Google Scholar
  22. 22.
    Kane, M.J., Millidge, S., Emeny, M.T., Lee, D., Guy, D.R.P. and Whitehouse, C.R. (1992) Performance Trade Offs in the Quantum Well Infra-red Detector, pp. 31–43 in “Intersubband Transitions in Quantum Wells” E. Rosencher, B.F. Levine and B. Vinter (Plenum, New York) 1992.Google Scholar
  23. 23.
    Kane, M.J., Emeny, M.T., Lee, D. and Whitehouse, C.R. (1990) Inst. Phys. Conf. Ser., 112, 597.Google Scholar
  24. 24.
    Liu, H.C. (1992) Appl. Phys. Lett., 60, 1507.CrossRefGoogle Scholar
  25. 25.
    Beck, W.A. (1993) Appl. Phys. Lett.,63, 3589.CrossRefGoogle Scholar
  26. 26.
    Choi, K.K. (1993)1 Appl. Phys., 73, 5230.Google Scholar
  27. 27.
    Dicke, R.H. and Wittke, J.P. Introduction to Quantum Mechanics (Addison Wesley: London UK) 1960.Google Scholar
  28. 28.
    Gasiorowicz, S. Quantum Physics (John Wiley: New York) 1974.Google Scholar
  29. 29.
    Bastard, G. Wavemechanics Applied to Semiconductor Heterostructures (Les Editions de Physique: Paris) 1988.Google Scholar
  30. 30.
    West, L.C. and Eglash, S.J. (1985) Appl. Phys. Lett., 46, 1156.CrossRefGoogle Scholar
  31. 31.
    Kane, M.J. and Emeny, M.T. (1992) unpublished.Google Scholar
  32. 32.
    Levine, B.F., Zussman, A., Gunapala, S.D., Asom, M.T., Kuo, J.M. and Hobson, W.S. (1992) 1 Appl. Phys., 72, 4429.Google Scholar
  33. 33.
    Rosencher, E., Vinter, B., Luc, F., Thibadeau, L., Bois, P. and Nagle, J. (1994)IEEE Trans.Quantum Electron., 30, 2875CrossRefGoogle Scholar
  34. 34.
    Stradling, R.A. and Klipstein, P.C. (1990) “Magneto-transport” p.173 in “Semiconductor Characterisation” (Adam Hilger, Bristol) 1990.Google Scholar
  35. 35.
    Chamberlain, M.P. and Babiker, M. (1989) Semicond. Sci. and Technol., 4, 691CrossRefGoogle Scholar
  36. 36.
    Deveaud, B., Chomette, A., Clerot, F. and Regreny, A. (1992) Subpicosecond Luminescence Study of Carrier Capture and Intersubband Relaxation in Quantum Wells pp. 275–287 in “Intersubband Transitions in Quantum Wells” E. Rosencher, B.F. Levine and B. Vinter (Plenum:New York) 1992.Google Scholar
  37. 37.
    Kozlowski, L.J., Williams, G.M., Farley, G.J. et al. (1991) IEEE Trans. Electron. Devices, 38, 1124.CrossRefGoogle Scholar
  38. 38.
    Goosen, K.W., Lyon, S.A. and Alavi, K. (1988) Appl. Phys. Lett., 53, 1027.CrossRefGoogle Scholar
  39. 39.
    Andersson, J.Y., Lundqvist, S. and Paska, Z.F. (1991) Appl. Phys. Lett., 58, 2264CrossRefGoogle Scholar
  40. 40.
    Andersson, J.Y. and Lundqvist, L. (1991) Appl. Phys. Lett., 59, 857.CrossRefGoogle Scholar
  41. 41.
    Andersson, J.Y. and Lundqvist, L. (1992) J. Appl. Phys., 71, 3600.CrossRefGoogle Scholar
  42. 42.
    de-Jong, J., Levine, B.F., Glogovsky, K.G. and Leibenguth, R.E. (1993) unpublished work cited and reproduced in reference 13.Google Scholar
  43. 43.
    Hasnain, G., Levine, B.F., Beth’ea, C.G., Logan, R.A., Walker, J. and Malik, R J (1989) Appl. Phys. Lett., 54, 2515.CrossRefGoogle Scholar
  44. 44.
    Schimert, T.R., Barnes, S.L., Brouns, A.J., Case, F.C., Mitra, P and Claiborne, L.T. (1996) Appl. Phys. Lett., 68, 2846CrossRefGoogle Scholar
  45. 45.
    Levine, B.F., Bethea, C.G., Hasnain, G., Walker, J. and Malik, R.J. (1988) Appl. Phys. Lett., 53, 296.CrossRefGoogle Scholar
  46. 46.
    Bethea, C.G., Levine, B.F., Asom, M.T. et al. (1993) IEEE Trans. Electron. Devices, 40, 1957.CrossRefGoogle Scholar
  47. 47.
    Gunapala, S., Park, J., Sarusi, G. et al. (1997) IEEE Trans. Electron. Devices, 44, 45.CrossRefGoogle Scholar
  48. 48.
    Beck, W.A. and Faska, T.S. (1996) Proc. SPIE, 2744, 193.CrossRefGoogle Scholar
  49. 49.
    Webb, C., Norton, M. and Kindsfather, R. (1997) p. 317 in Proc. Infra-red Information Symposium (2nd Joint NATO-IRIS Symposium), London, June 1996.Google Scholar
  50. 50.
    Hasnain, G., Levine, B.F., Sivco, D.L. and Cho, A. (1990) Appl. Phys. Lett., 56, 770.CrossRefGoogle Scholar
  51. 51.
    Gunapala, S.D., Levine, B.F., Ritter, D., Hamm, R. and Panish, M.B. (1991) Appl. Phys. Lett., 58, 2024.CrossRefGoogle Scholar
  52. 52.
    Beinvogl, W. and Koch, J.F. (1977) Solid State Commun., 24, 687.CrossRefGoogle Scholar
  53. 53.
    Zaluzny, M. (1981) Thin Solid Films, 76, 307.CrossRefGoogle Scholar
  54. 54.
    Peng, L., Smet, J., Broekart, T. and Fonstad, C.G. (1992) Appl. Phys. Lett., 61, 2078.CrossRefGoogle Scholar
  55. 55.
    Karunasiri, G., Park, J.S., Chen, J., Shih, R., Scheihing, J.F. and Dodd, M.A. (1995) Appl. Phys. Lett., 67, 2600.CrossRefGoogle Scholar
  56. 56.
    Wang, S.Y. and Lee, C.P. (1997) Appl. Phys. Lett., 71, 119.CrossRefGoogle Scholar
  57. 57.
    Flatte, M., Young, P., Peng, L.-H. and Ehrenreich, H. (1996) Phys. Rev. B, 53, 1963.CrossRefGoogle Scholar
  58. 58.
    Levine, B.F.,Gunapala,S.D.,Kuo,J.M.,Pei,S.S.and Hui,S.(1991)App!.Phys.Lett.,59,1864CrossRefGoogle Scholar
  59. 59.
    Chang, Y.C. and James, R.B. (1989) Phys. Rev. B, 39, 12672.CrossRefGoogle Scholar
  60. 60.
    Man, P. and Pan, D.S. (1992) Appl. Phys. Lett., 61, 2799.CrossRefGoogle Scholar
  61. 61.
    Karunasiri, R.P.G., Park, J.S. and Wang, K.L. (1991) Appl. Phys. Lett., 59, 2588.CrossRefGoogle Scholar
  62. 62.
    People, R., Bean, J.C., Bethea, C.G., Sputz, S.K. and Peticolas, L.J. (1992) Appl. Phys. Lett., 61, 1122.CrossRefGoogle Scholar
  63. 63.
    Kruck, P., Helm, M., Fromherz, T., Bauer, G., Nutzel, J.F. and Abstreiter, G. (1996) Appl. Phys. Lett., 69, 33–72.CrossRefGoogle Scholar
  64. 64.
    Robbins, D.J., Glasper, J.L., Anthony, C.J. et al. (1999) Proc. SPIE, 3630, 90.CrossRefGoogle Scholar
  65. 65.
    Sarusi, G., Levine, B.F., Pearton, S.J., Leibenguth, R.E. and Andersson, J.Y. (1994) J. Appl. Phys., 76, 4989.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • M. J. Kane

There are no affiliations available

Personalised recommendations