Advertisement

Immunopathogenesis of HIV and HTLV-1 Infection: Mechanisms for Lymphomagenesis

  • Alok A. Khorana
  • Joseph D. Rosenblatt
  • Faith M. Young
Part of the Cancer Treatment and Research book series (CTAR, volume 104)

Abstract

The immune system in humans is a complex and tightly regulated system that integrates the activity of many cell lineages, including lymphocytes. Lymphoid-lineage cells (B- and T-lymphocytes) are specialized subsets of cells capable of rapid expansion and wide dissemination to effect recognition and elimination of environmental pathogens (adaptive immunity) or abnormal cells (immune surveillance). The patterns of circulation, proliferative potential, and the exquisite sensitivity to regulatory signals that are prominent characteristics of normal lymphocytes can also contribute to significant morbidity in the individual who develops an aggressive B-lymphoid malignancy.

Keywords

Human Immunodeficiency Virus Type Germinal Center Latent Membrane Protein Serum Response Factor Primary Effusion Lymphoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kuppers R, Klein U, Hansmann M, et al: Cellular origin of human B-cell lymphomas. N. Engl. J. Med. 341:1520–1529, 1999PubMedCrossRefGoogle Scholar
  2. 2.
    Pileri SA, Ceccarelli, C., Sabattini, E., Santini, D., Leone, O., Damiani, S, Leoncini, L, and Falini, B.: Molecular findings and classification of malignant lymphomas. Acta Haematologica 95:181–187, 1996PubMedCrossRefGoogle Scholar
  3. 3.
    Armitage JO, Weisenburger, D. D.: New approach to classifying non-Hodgkin’s lymphomas: clinical features of the major histologic subtypes. Non-Hodgkin’s Lymphoma Classification Project. J. Clin. Oncol. 16:2780–2795, 1998PubMedGoogle Scholar
  4. 4.
    Aboulaflia D: Epidemiology and pathogenesis of AIDS-related lymphomas. Oncology 12:1068–1081; discussion 1081 passim, 1998Google Scholar
  5. 5.
    Diebold J, Raphael M, Prevot S, et al: Lymphomas associated with HIV infection. Cancer Surv. 30:263–293, 1997PubMedGoogle Scholar
  6. 6.
    Ambinder R, Lemas M, Moore S, et al: Diagnostic and Therapeutic Advances in Hematologic Malignancies, in Tallman M, Gordon L (eds): Epstein-Barr virus and lymphoma. Boston, MA, Kluwer Academic Publishers, 1999Google Scholar
  7. 7.
    Feigal EG: AIDS-associated malignancies: research perspectives. Biochem. Biophys. Acta 1423:C1–9, 1999Google Scholar
  8. 8.
    Knowles DM: Immunodeficiency-associated lymphoproliferative disorders. Mod. Pathol. 12:200–217, 1999Google Scholar
  9. 9.
    Mitsuyasu R: Oncological complications of human immunodeficiency virus disease and hematologic consequences of their treatment. Clin. Infect. Dis. 29:35–43, 1999Google Scholar
  10. 10.
    Volm MD, Von Roenn JH: AIDS-associated lymphoma. Cancer Treat. Res. 99:241–266,1999Google Scholar
  11. 11.
    Rolink A, Melchers F: Generation and regeneration of cells of the B-lymphocyte lineage. Curr. Opin. Immunol. 5:207–217, 1993PubMedCrossRefGoogle Scholar
  12. 12.
    Young F, Ardman B, Shinkai Y, et al: Influence of immunoglobulin heavy-and light-chain expression on B-cell differentiation. Genes Dev. 8:1043–1057, 1994PubMedCrossRefGoogle Scholar
  13. 13.
    Osmond D, Rolink A, Melchers F: Murine B lymphopoiesis: towards a unified model. Immunol. Today 19:65–68, 1998Google Scholar
  14. 14.
    Liu Y, Arpin C, deBouteiller O, et al: Sequential triggering of germinal center development. Sem. Immunol. 8:169–177, 1996Google Scholar
  15. 15.
    Yang K, Davila M, Kelsoe G: Do germinal centers have a role in the generation of lymphomas? Curr. Topics Micr. Immun. 246:53–60, 1999CrossRefGoogle Scholar
  16. 16.
    Tarlinton D: Germinal centers: form and function. Curr. Opin. Immunol. 10:245–251, 1998PubMedCrossRefGoogle Scholar
  17. 17.
    McHeyzer-Williams M, Ahmed R: B cell memory and the long-lived plasma cell. Curr. Opin. Immunol. 11:172–179, 1999PubMedCrossRefGoogle Scholar
  18. 18.
    Jacob J, Kelsoe G: In situ studies of the primary immune response to (4-hydroxy-3­nitrophenyl) acetyl. II. A common clonal origin for periarteriolar lymphoid sheath-associated foci and germinal centers. J. Exp. Med. 176:679–687, 1992PubMedCrossRefGoogle Scholar
  19. 19.
    Jacob J, Przylepa J, Miller C, et al: In situ studies of the primary immune response to (4­hydroxy-3-nitrophenyl)acetyl. III. The kinetics of V region mutation and selection in germinal center B cells. J. Exp. Med. 178:1293–1307, 1993PubMedCrossRefGoogle Scholar
  20. 20.
    Lam K, Kuhn R, Rajewsky K: In vivo ablation of surface immunoglobulin on mature B cells by inducible gene targeting results in rapid cell death. Cell 90:1073–1083, 1997PubMedCrossRefGoogle Scholar
  21. 21.
    Melchers F, Rolink A, Schmid C: The Role of Chemokines in Regulating Cell Migration during Humoral Immune Responses. Cell 99:351–354, 1999PubMedCrossRefGoogle Scholar
  22. 22.
    Noelle R, Snow E: Cognate interactions between helper T cells and B cells. Immunol. Today 11:361–368, 1990Google Scholar
  23. 23.
    Pals S, Taher T, Voort Rvd, et al: Regulation of adhesion and migration in the germinal center microenvironment. Cell Adhes. Commun. 6:111–116, 1998Google Scholar
  24. 24.
    Durie F, Foy T, Masters S, et al: The role of CD40 in the regulation of humoral and cell-mediated immunity. Immunol. Today 15:406–411, 1994Google Scholar
  25. 25.
    Kim C, Broxmeyer H: Chemokines: signal lamps for tracking of T and B cells for development and effector function. J. Leukoc. Biol. 65:6–15, 1999PubMedGoogle Scholar
  26. 26.
    Jung S, Littman D: Chemokine receptors in lymphoid organ homeostasis. Curr. Opin. Immunol. 11:319–325, 1999PubMedCrossRefGoogle Scholar
  27. 27.
    Rousset F, Garcia E, Banchereau J: Cytokine-induced Proliferation and Immunglobulin Production of Human B Lymphocytes Triggered through Their CD40 Antigen. J. Exp. Med. 173:705–710, 1991PubMedCrossRefGoogle Scholar
  28. 28.
    Gaidano G, Carbone A, Dalla-Favera R: Genetic basis of acquired immunodeficiency syndrome-related lymphomagenesis. J. Natl. Cancer Inst. Monogr. :95–100, 1998Google Scholar
  29. 29.
    Gutierrez MI, Bhatia K, Cherney B, et al: Intraclonal molecular heterogeneity suggests ahierarchy of pathogenetic events in Burkitt’s lymphoma. Ann. Oncol. 8:987–994, 1997PubMedCrossRefGoogle Scholar
  30. 30.
    Ward S, Bacon K, Westwick J: Chemokines and T Lymphocytes: More than an Attraction. Immunity 9:1–11, 1998PubMedCrossRefGoogle Scholar
  31. 31.
    Sallusto F, Lanzavecchia A, Mackay C: Chemokines and chemokine receptors in T-cellpriming and Thl/Th2-mediated responses. Immunol. Today 19:168–174, 1998Google Scholar
  32. 32.
    Li M, Lee H, Guo J, et al: Kaposi’s sarcoma-associated herpesvirus viral interferon regulatory factor. J. Virol. 72:5433–5440, 1998PubMedGoogle Scholar
  33. 33.
    Carbone A, Gaidano G, Gloghini A, et al: Differential expression of BCL-6, CD138/syndecan-1, and Epstein-Barr virus-encoded latent membrane protein-1 identifies distinct histogenetic subsets of acquired immunodeficiency syndrome-related non- Hodgkin’s lymphomas. Blood 91:747–755, 1998PubMedGoogle Scholar
  34. 34.
    Fais F, Gaidano G, Capello D, et al: Immunoglobulin V region gene use and structure suggest antigen selection in AIDS-related primary effusion lymphomas. Leukemia 13:1093–1099, 1999PubMedCrossRefGoogle Scholar
  35. 35.
    loachim HL, Dorsett B, Cronin W, et al: Acquired immunodeficiency syndrome-associated lymphomas: clinical, pathologic, immunologic, and viral characteristics of 111 cases. Hum. Pathol. 22:659–673, 1991Google Scholar
  36. 36.
    Larocca LM, Capello D, Rinelli A, et al: The molecular and phenotypic profile of primary central nervous system lymphoma identifies distinct categories of the disease and is consistent with histogenetic derivation from germinal center-related B cells. Blood 92:1011–1019, 1998PubMedGoogle Scholar
  37. 37.
    Davi F, Delecluse HJ, Guiet P, et al: Burkitt-like lymphomas in AIDS patients: characterization within a series of 103 human immunodeficiency virus-associated non-Hodgkin’s lymphomas. Burkitt’s Lymphoma Study Group. J. Clin. Oncol. 16:3788–3795, 1998PubMedGoogle Scholar
  38. 38.
    Yu GH, Montone KT, Frias-Hidvegi D, et al: Cytomorphology of primary CNS lymphoma: review of 23 cases and evidence for the role of EBV. Diagn. Cytopathol. 14:114–120, 1996CrossRefGoogle Scholar
  39. 39.
    Raphael M, Audouin J, Lamine M, et al: Immunophenotypic and genotypic analysis of acquired immunodeficiency syndrome-related non-Hodgkin’s lymphomas. Correlation with histologic features in 36 cases. French Study Group of Pathology for HIV-Associated Tumors. Am. J. Clin. Pathol. 101:773–782, 1994PubMedGoogle Scholar
  40. 40.
    Biggar RJ, Rosenberg PS, Cote T: Kaposi’s sarcoma and non-Hodgkin’s lymphoma following the diagnosis of AIDS, Multistate AIDS/Cancer Match Study Group. Int. J. Cancer 68:754–758, 1996PubMedCrossRefGoogle Scholar
  41. 41.
    Cote TR, Biggar, R. J., Rosenberg, P.S., Mueller, M. P., Dune, F. K.: Non-Hodgkin’s lymphoma among people with AIDS: Incidence, presentation, and public health burden. Int. J. Cancer 73:645–650, 1997PubMedCrossRefGoogle Scholar
  42. 42.
    Smith C, Lilly S, Mann KP, et al: AIDS-related malignancies. Ann. Med. 30:323–344, 1998PubMedCrossRefGoogle Scholar
  43. 43.
    DeMario MD, Liebowitz DN: Lymphomas in the immunocompromised patient. Semin. Oncol. 25:492–502, 1998Google Scholar
  44. 44.
    DeMario MD, Liebowitz DN: Lymphomas in the immunocompromised patient. Semin. OncolGoogle Scholar
  45. 45.
    Gaidano G, Carbone A, Pastore C, et al: Frequent mutation of the 5’ noncoding region of the BCL-6 gene in acquired immunodeficiency syndrome-related non-Hodgkin’s lymphomas. Blood 89:3755–3762, 1997PubMedGoogle Scholar
  46. 46.
    Carbone A, Gloghini A, Zanette I, et al: Demonstration of Epstein-Barr viral genomes by in situ hybridization in acquired immune deficiency syndrome-related high grade and anaplastic large cell CD30+ lymphomas. Am. J. Clin. Pathol. 99:289–297, 1993PubMedGoogle Scholar
  47. 47.
    Cesarman E, Nador R, Bai F, et al: Kaposi’s sarcoma-associated herpesvirus contains G protein-coupled receptor and cyclin D homologs which are expressed in Kaposi’s sarcoma and malignant lymphoma. J. Virol. 70:8218–8223, 1996PubMedGoogle Scholar
  48. 48.
    Gaidano G, Pastore C, Capello D, et al: Involvement of the bc1–6 gene in AIDS-related lymphomas. Ann. Oncol. 8 Suppl 2:105–108, 1997Google Scholar
  49. 49.
    Said W, Chien K, Takeuchi S, et al: Kaposi’s sarcoma-associated herpesvirus (KSHV or HHV8) in primary effusion lymphoma: ultrastructural demonstration of herpesvirus in lymphoma cells. Blood 87:4937–4943, 1996PubMedGoogle Scholar
  50. 50.
    Lyons SF, Liebowitz DN: The roles of human viruses in the pathogenesis of lymphoma. Semin. Oncol. 25:461–475, 1998Google Scholar
  51. 51.
    Drexler HG, Meyer C, Gaidano G, et al: Constitutive cytokine production by primary effusion (body cavity-based) lymphoma-derived cell lines. Leukemia 13:634–640, 1999PubMedCrossRefGoogle Scholar
  52. 52.
    Drexler H, Uphoff C, Gaidano G, et al: Lymphoma cell lines: in vitro models for the study of HHV-8+ primary effusion lymphomas (body cavity-based lymphomas). Leukemia 12:1507–1517, 1998PubMedCrossRefGoogle Scholar
  53. 53.
    Julien S, Radosavljevic M, Labouret N, et al: AIDS primary central nervous system lymphoma: molecular analysis of the expressed VH genes and possible implications for lymphomagenesis. J. Immunol. 162:1551–1558, 1999PubMedGoogle Scholar
  54. 54.
    Babcock GJ, Decker LL, Freeman RB, et al: Epstein-barr virus-infected resting memory B cells, not proliferating lymphoblasts, accumulate in the peripheral blood of immunosuppressed patients. J. Exp. Med. 190:567–576, 1999PubMedCrossRefGoogle Scholar
  55. 55.
    Carbone A, Gloghini A, Larocca LM, et al: Human immunodeficiency virus-associated Hodgkin’s disease derives from post-germinal center B cells. Blood 93:2319–2326, 1999PubMedGoogle Scholar
  56. 56.
    Kuppers R, Rajewsky K, Zhao M, et al: Hodgkin disease: Hodgkin and Reed-Sternberg cells picked from histological sections show clonal immunoglobulin gene rearrangements and appear to be derived from B cells at various stages of development. Proc. Natl. Acad. Sci. USA 91:10962–10966, 1994PubMedCrossRefGoogle Scholar
  57. 57.
    Tinguely M, Vonlanthen R, Muller E, et al: Hodgkin’s disease-like lymphoproliferative disorders in patients with different underlying immunodeficiency states. Mod. Pathol. 11:307–312, 1998Google Scholar
  58. 58.
    Rodriguez-Alfageme C, Chen Z, Sonoda G, et al: B cells malignantly transformed by human immunodeficiency virus are polyclonal. Virology 252:34–38, 1998PubMedCrossRefGoogle Scholar
  59. 59.
    Esser R, Glienke W, Briesen HV, et al: Differential regulation of proinflammatory and hematopoietic cytokines in human macrophages after infection with human immunodeficiency virus. Blood 88:3474–3481, 1996PubMedGoogle Scholar
  60. 60.
    Moses A, Nelson J, Bagby G: The Influence of Human Immunodeficiency Virus-1 on Hematopoiesis. Blood 91:1479–1495, 1998PubMedGoogle Scholar
  61. 61.
    Baiocchi RA, Caligiuri MA: Cytokines in the evolution and treatment of AIDS-lymphoma. Curr. Opin. Oncol. 11:516–521, 1999PubMedCrossRefGoogle Scholar
  62. 62.
    Sharma V, Walper D, Deckert R: Modulation of Macrophage Inflammatory Protein-la and Its Receptors in Human B-Cell Lines Derived from Patients with Acquired Immunodeficiency Syndrome and Burkitt’s Lymphoma. Biochem. Biophys. Res. Commun. 235:576–581, 1997Google Scholar
  63. 63.
    Pastore C, Gaidano G, Ghia P, et al: Patterns of cytokine expression in AIDS-related non-Hodgkin’s lymphoma. Br. J. Haematol. 103:143–149, 1998PubMedCrossRefGoogle Scholar
  64. 64.
    Ryan DH, Tang, J.: Regulation of Human B cell lymphopoiesis by adhesion molecules and cytokines. Leuk. Lymphoma 17:375–389, 1995CrossRefGoogle Scholar
  65. 65.
    Bradstock K, Makrynikola V, Bianchi A, et al: Analysis of the mechanism of adhesion of Precursor-B acute Lymphoblastic leukemia cells to bone marrow fibroblasts. Blood 82:3437–3444, 1993PubMedGoogle Scholar
  66. 66.
    Hemler ME: Integrin associated proteins. Curr. Opin. Cell Biol. 10:578–585, 1998 67 Giancotti FG: Integrin signaling: specificity and control of cell survival and cell cycle progression. Curr. Opin. Cell Biol. 9:691–700, 1997CrossRefGoogle Scholar
  67. 67.
    Giancotti FG: Integrin signaling: specificity and control of cell survival and cell cycle progression. Curro Opin. Cell BioI. 9:691–700, 1997CrossRefGoogle Scholar
  68. 68.
    Laurence J: Reservoirs of HIV infection or carriage: monocytic, dendritic, follicular dendritic, and B cells. Ann. N.Y. Acad. Sci. 693:52–64, 1993PubMedCrossRefGoogle Scholar
  69. 69.
    Moses A, Williams S, Strussenberg J, et al: HIV-1 induction of CD40 on endothelial cells promotes the outgrowth of AIDS-associated B cell lymphomas. Nat. Med. 3:1242–1249, 1997Google Scholar
  70. 70.
    Kawabe T, Naka T, Yoshida K, et al: The Immune Responses in CD40-Deficient Mice: Impaired Immunoglobulin Class Switching and Germinal Center Formation. Immunity 1:167–178, 1994PubMedCrossRefGoogle Scholar
  71. 71.
    Pinchuk L, Klaus S, Magaletti D, et al: Functional CD40 ligand expressed by human blood dendritic cells is up-regulated by CD40 ligation. J. Immunol. 157:4363–4370, 1996PubMedGoogle Scholar
  72. 72.
    Mach F, Schonbech U, Sukhova G, et al: Functional CD40 ligand is expressed on human vascular endothelial cells, smooth muscle cells, and macrophages: Implications for CD40–CD40 ligand signaling in atherosclerosis. Proc. Natl. Acad. Sci. USA 94:1931–1936, 1997PubMedCrossRefGoogle Scholar
  73. 73.
    Jarvis L, LeBien T: Stimulation of human bone marrow stromal cell tyrosine kinases andIL-6 production by contact with B lymphocytes. J. Immunol. 155:2359–2368, 1995PubMedGoogle Scholar
  74. 74.
    Jackson C, Puck J: Autoimmune lymphoproliferative syndrome, a disorder of apoptosis. Curr. Opin. Pediatr 11:521–527, 1999PubMedCrossRefGoogle Scholar
  75. 75.
    Younes A: The dynamics of life and death of malignant lymphocytes. Curr. Opin. Oncol. 11:364–369, 1999PubMedCrossRefGoogle Scholar
  76. 76.
    Uchida J, Yasui T, Takaoka-Schichijo Y, et al. Mimicry of CD40 signals by Epstein-Barr virus LMP1 in B lymphocyte responses. Science 286:300–303, 1999PubMedCrossRefGoogle Scholar
  77. 77.
    Busch L, Bishop G: The EBV Transforming Protein, Latent Membrane Protein-1, Mimics and Cooperates with CD40 Signaling in B Lymphocytes. J. Immunol. 162:2555–2561, 1999PubMedGoogle Scholar
  78. 78.
    Chen I, Koprowski H, Srinivasan A, et al: Transacting Functions of Human Retroviruses, Berlin, Springer-Verlag, 1995CrossRefGoogle Scholar
  79. 79.
    Kelly G, Ensoli B, Gunthel C, et al: Purified Tat induces inflammatory response genes in Kaposi’s sarcoma cells. AIDS 12:1753–1761, 1998PubMedCrossRefGoogle Scholar
  80. 80.
    Rabkin CS, Yang Q, Goedert JJ, et al: Chemokine and chemokine receptor gene variants and risk of non- Hodgkin’s lymphoma in human immunodeficiency virus-1-infected individuals. Blood 93:1838–1842, 1999PubMedGoogle Scholar
  81. 81.
    Lefevre E, Krzysiek R, Loret E, et al: Cutting Edge: HIV-1 Tat Protein Differentially Modulates the B Cell Response of Naive, Memory, and Germinal Center B Cells. J. Immunol. 163:1119–1122, 1999PubMedGoogle Scholar
  82. 82.
    Chirivi RG, Taraboletti G, Bani MR, et al: Human immunodeficiency virus-1 (HIV-1)­Tat protein promotes migration of acquired immunodeficiency syndrome-related lymphoma cells and enhances their adhesion to endothelial cells. Blood 94:1747–1754, 1999PubMedGoogle Scholar
  83. 83.
    Choi YS: Differentiation and apoptosis of human germinal center B-lymphocytes. Immunological Research 16:161–174, 1997CrossRefGoogle Scholar
  84. 84.
    Dolcetti R, Boiocchi, M.: Cellular and molecular bases of B-cell clonal expansions. Clin. Exp. Rheumatol. 14 Supp1:3–13, 1996Google Scholar
  85. 85.
    Hannig H, Matz-Rensing K, Kuhn EM, et al: Cytokine gene transcription in simian immunodeficiency virus and human immunodeficiency virus-associated non-Hodgkin lymphomas. AIDS Res. Hum. Retroviruses 13:1589–1596, 1997CrossRefGoogle Scholar
  86. 86.
    Ogata A, Chauhan D, Teoh G, et al: IL-6 triggers cell growth via the Ras-dependent mitogen-activated protein kinase cascade. J. Immunol. 159:2212–2221, 1997PubMedGoogle Scholar
  87. 87.
    Puthier D, Bataille R, Amiot M: IL-6 up-regulates mcl-1 in human myeloma cells through JAK/STAT rather than ras / MAP kinase pathway. Eur. J. Immunol. 29:3945–3950, 1999Google Scholar
  88. 88.
    Lundholm P, Lucht E, Svedmyr E, et al: Immunoglobulin G abnormalities in HIV-1 infected individuals with lymphoma Immunotechnology 4:29–36, 1998PubMedCrossRefGoogle Scholar
  89. 89.
    Luppi M, Barozzi P, Maiorana A, et al: Expression of cell-homologous genes of human herpesvirus-8 in human immunodeficiency virus-negative lymphoproliferative diseases [In Process Citation]. Blood 94:2931–2933, 1999PubMedGoogle Scholar
  90. 90.
    Osborne J, Moore P, Chang Y: KSHV-encoding viral IL-6 activates multiple human IL-6 signaling pathways. Hum. Immunol. 60:921–927, 1999Google Scholar
  91. 91.
    Cannon J, Nicholas J, Orenstein J, et al: Heterogeneity of viral IL-6 expression in HHV­8-associated diseases. J. Infect. Dis. 180:824–828, 1999PubMedCrossRefGoogle Scholar
  92. 92.
    Masood R, Zhang Y, Bond MW, et al: Interleukin-10 is an autocrine growth factor for acquired immunodeficiency syndrome-related B-cell lymphoma. Blood 85:3423–3430, 1995PubMedGoogle Scholar
  93. 93.
    Kacani L, Sprinzi G, Erdei A, et al: Interleukin-15 enhances HIV-1-driven polyclonal B-cell response in vitro. Exp. Clin. Immunogenet. 16:162–172, 1999CrossRefGoogle Scholar
  94. 94.
    Nagasawa T, Tachibana K, Kishimoto T: A novel CXC chemokine PBSF/SDF-1 and its receptor CXCR4: their functions in development, hematopoiesis and HIV infection. Sem. Immunol. 10:179–185, 1998Google Scholar
  95. 95.
    Dean M, Jacobson LP, McFarlane G, et al: Reduced risk of AIDS lymphoma in individuals heterozygous for the CCR5- delta32 mutation. Cancer Res. 59:3561–3564, 1999PubMedGoogle Scholar
  96. 96.
    Deng HK, Liu R, Ellmeier W, et al: Identification of a major co-receptor for primary isolates of HIV-1. Nature 381:661–668, 1996PubMedCrossRefGoogle Scholar
  97. 97.
    Endres MJ, Clapham PR, Marsh M, et al: CD4-independent infection by HIV-2 is mediated by fusin/CXCR4. Cell 87:745–756, 1996PubMedCrossRefGoogle Scholar
  98. 98.
    Nagira M, Sato A, Mild S, et al: Enhanced HIV-1 replication by chemokines constitutively expressed in secondary lymphoid tissues. Virology 264:422–426, 1999PubMedCrossRefGoogle Scholar
  99. 99.
    Dolcetti R, Gloghini A, DeVita S, et al: Characteristics of EBV-infected cells in HIV-related lymphadenopathy: implications for the pathogenesis of EBV-unrelated lymphomas of HIV-seropositive individuals. Int. J. Cancer 63:652–659, 1995PubMedCrossRefGoogle Scholar
  100. 100.
    Abrams D: The pre-AIDS syndromes. Asymptomatic carriers, thrombocytopenic purpura, persistent generalized lymphadenopathy, and AIDS-related complex. Infectious Disease Clinics of North America 2:343–351, 1988PubMedGoogle Scholar
  101. 101.
    Tao J, Valderrama E: Epstein-Barr virus-associated polymorphic B-cell lymphoproliferative disorders in the lungs of children with AIDS: a report of two cases. Am. J. Surg. Pathol. 23:560–566, 1999PubMedCrossRefGoogle Scholar
  102. 102.
    Berberien L, Goodglick, L., Kipps, T., Braun, J.: Immunglobulin VH3 gene products: natural ligands for HIV gp120. Science 261:1588–1591, 1993CrossRefGoogle Scholar
  103. 103.
    Monroe JG, Silberstein, L. E.: HIV-mediated B-lymphocyte activation and lymphomagenesis. Journal of Clinical Immunology 15:61–68, 1995PubMedCrossRefGoogle Scholar
  104. 104.
    Wang ZQ, Horowitz HW, Orlikowsky T, et al: Lymphocyte-reactive autoantibodies in human immunodeficiency virus type 1-infected persons facilitate the deletion of CD8 T cells by macrophages. J. Infect. Dis. 178:404–412, 1998PubMedCrossRefGoogle Scholar
  105. 105.
    Caporossi AP, Bruno G, Salemi S, et al: Autoimmune T-cell response to the CD4 molecule in HIV-infected patients. Viral Immunol. 11:9–17, 1998PubMedCrossRefGoogle Scholar
  106. 106.
    Riboldi P, Gaidano G, Schettino E, et al: Two acquired immunodeficiency syndrome associated Burkitt’s lymphomas produce specific anti-i IgM cold agglutinins using somatically mutated VH4–21 segments. Blood 83:2952–2961, 1994PubMedGoogle Scholar
  107. 107.
    Andris J, Johnson S, Zolla-Pazner S, et al: Molecular characterization of five human anti-human immunodeficiency virus type 1 antibody heavy chains reveals extensive somatic mutation typical of an antigen-driven immune response. Proc. Natl. Acad. Sci. USA 88:7783–7787, 1991PubMedCrossRefGoogle Scholar
  108. 108.
    David D, Goossens D, Desgranges C, et al: Molecular characterization of human monoclonal antibodies specific for several HIV proteins. analysis of the VH3 family expression. Immunol. Lett. 47:107–112, 1995Google Scholar
  109. 109.
    David D, Zouali M: Variable region light chain genes encoding human antibodies to HIV-1. Mol. Immunol 32:77–88, 1995Google Scholar
  110. 110.
    Moran M, Andris J, Matsumato Y-I, et al: Variable region genes of anti-HIV human monoclonal antibodies: non-restricted use of the V gene repertoire and extensive somatic mutation. Mol. Immunol. 30:1543–1551, 1993Google Scholar
  111. 111.
    Bleul C, Schultze J, Springer T: B Lymphocyte Chemotaxis Regulated in Association with Microanatomic Localization, Differentiation State, and B Cell Receptor Engagement. J. Exp. Med. 187:753–762, 1998PubMedCrossRefGoogle Scholar
  112. 112.
    Chen J, Cloyd M: The potential importance of HIV-induction of lymphocyte homing to lymph nodes. Int. Immunol. 11:1591–1594, 1999PubMedCrossRefGoogle Scholar
  113. 113.
    Wang L, Chen JJ, Gelman BB, et al: A novel mechanism of CD4 lymphocyte depletion involves effects of HIV on resting lymphocytes: induction of lymph node homing and apoptosis upon secondary signaling through homing receptors. J. Immunol. 162:268–276, 1999PubMedGoogle Scholar
  114. 114.
    Carbonari, Pesce A, Cibati M, et al: Death of bystander cells by a novel pathway involving early mitochondrial damage in human immunodeficiency virus-related lymphadenopathy. Blood 90:209–216, 1997Google Scholar
  115. 115.
    Kersten MJ, Van Gorp J, Pals ST, et al: Expression of Epstein-Barr virus latent genes and adhesion molecules in AIDS-related non-Hodgkin’s lymphomas: correlation with histology and CD4-cell number. Leuk. Lymphoma 30:515–524, 1998Google Scholar
  116. 116.
    Ruegg C, Engleman E: Impaired immunity in AIDS. The mechanisms responsible and their potential reversal by antiviral therapy. Ann. N.Y. Acad. Sci. 616:307–317, 1990PubMedCrossRefGoogle Scholar
  117. 117.
    Levine A, Sullivan-Halley J, Pike M, et al: Human immunodeficiency virus-related lymphoma. Prognostic factors predictive of survival. Cancer 68:2466–2472, 1991PubMedCrossRefGoogle Scholar
  118. 118.
    Pluda J, Venzon D, Tosato G, et al: Parameters affecting the development of non-Hodgkin’s lymphoma in patients with severe human immunodeficiency virus infection receiving antiretroviral therapy. J. Clin. Oncol. 11:1099–1107, 1993PubMedGoogle Scholar
  119. 119.
    Forsyth PA, DeAngelis, L. M.: Biology and management of AID-associated primary CNS lymphoma. Hematology-Oncology Clinics of North America 10:1125–1134, 1996CrossRefGoogle Scholar
  120. 120.
    Buchbinder SP, Holmberg SD, Scheer S, et al: Combination antiretroviral therapy and incidence of AIDS-related malignancies. J. Aquir. Immune Defic. Syndr. 21 Suppl 1:S23–26, 1999Google Scholar
  121. 121.
    Grulich AE: AIDS-associated non-Hodgkin’s lymphoma in the era of highly active antiretroviral therapy. J. Aquir. Immune Defic. Synch. 21 Suppl 1:S27–30, 1999Google Scholar
  122. 122.
    Jacobson LP, Yamashita TE, Detels R, et al: Impact of potent antiretroviral therapy on the incidence of Kaposi’s sarcoma and non-Hodgkin’s lymphomas among HIV-1­infected individuals. Multicenter AIDS Cohort Study. J. Aquir. Immune Defic. Syndr. 21 Suppl 1:S34–41, 1999Google Scholar
  123. 123.
    Jones J, Hanson D, Dworkin M, et al: Effect of antiretoviral therapy on recent trends in selected cancers among HIV-infected persons. Adult/Adolescent Spectrum of HIV Disease Project Group. J. Aquir. Immune Defic. Syndr. 1:S11–17, 1999Google Scholar
  124. 124.
    Ledergerber B, Telenti A, Egger M: Risk of HIV related Kaposi’s sarcoma and non-Hodgkin’s lymphoma with potent antiretroviral therapy: prospective cohort study. Swiss HIV Cohort Study. B. M. J. 319:23–24, 1999Google Scholar
  125. 125.
    Mocroft A, Sabin CA, Youle M, et al: Changes in AIDS-defining illnesses in a London Clinic, 1987–1998. J. Aquir. Immune Defic. Syndr. 21:401–407, 1999Google Scholar
  126. 126.
    Basgov N, Preiksaitis JK: Post-Transplant Lymphoproliferative Disorder. Infectious Disease Clinics of North America 9:901–923, 1995Google Scholar
  127. 127.
    Persing D, Prendergast F: Infection, Immunity, and Cancer. Arch. Pathol. Lab. Med. 123:1015–1022, 1999PubMedGoogle Scholar
  128. 128.
    Rooney C, Smith C, Heslop H: Control of virus-induced lymphoproliferation: Epstein-Barr virus-induced lymphoproliferation and host immunity. Mol. Med. Today 3:24–30, 1997Google Scholar
  129. 129.
    Goedert JJ, Cote, T. R., Virgo, P., Scoppa, S. M., Kingma, D. W., Gail, M. H., Jaffe, E. S., Biggar, R. J.: Spectrum of AIDS-associated malignant disorders. Lancet 351:1833–1839, 1998PubMedCrossRefGoogle Scholar
  130. 130.
    Dammacco F, Gatti P, Sansonno D: Hepatitis C virus infection, mixed cryoglobulinemia, and non-Hodgkin’s lymphoma: an emerging picture. Leuk. Lymphoma 31:463–476, 1998Google Scholar
  131. 131.
    Mariette X: Lymphomas in patients with Sjogren’s syndrome: review of the literature and physiopathologic hypothesis. Leuk. Lymphoma 33:93–99, 1999Google Scholar
  132. 132.
    Korholz D, Kunst D, Hempel L, et al: Humoral immunodeficiency in patients after bone marrow transplantation. Bone Marrow Transplant. 18:1123–1130, 1996PubMedGoogle Scholar
  133. 133.
    Rea D, Delecluse H, Hamilton-Dutoit S, et al: Epstein-Barr virus latent and replicative gene expression in post-transplant lymphoproliferative disorders and AIDS-related non-Hodgkin’s lymphomas. French Study Group of Pathology for HIV-associated Tumors. Ann. Oncol. 5 Supp1.1:113–116, 1994Google Scholar
  134. 134.
    Calzolari A, Papucci A, Baroni G, et al: Epstein-Barr virus infection and P53 expression in HIV-related oral large B cell lymphoma. Head Neck 21:454–460, 1999PubMedCrossRefGoogle Scholar
  135. 135.
    Callahan J, Pai S, Cotter M, et al: Distinct patterns of viral antigen expression in Epstein-Barr virus and Kaposi’s sarcoma-associated herpesvirus coinfected body-cavity-based lymphoma cell lines: potential switches in latent gene expression due to coinfection. Virology 262:18–30, 1999PubMedCrossRefGoogle Scholar
  136. 136.
    Chu PG, Chang KL, Chen WG, et al: Epstein-Barr virus (EBV) nuclear antigen (EBNA)-4 mutation in EBV- associated malignancies in three different populations. Am. J. Pathol. 155:941–947, 1999PubMedCrossRefGoogle Scholar
  137. 137.
    Cohen JI: The biology of Epstein-Barr virus: lessons learned from the virus and the host. Curr. Opin. Immunol. 11:365–370, 1999PubMedCrossRefGoogle Scholar
  138. 138.
    Corboy JR, Garl PJ, Kleinschmidt-DeMasters BK: Human herpesvirus 8 DNA in CNS lymphomas from patients with and without AIDS [see comments]. Neurology 50:335–340, 1998Google Scholar
  139. 139.
    Hayes D, Brink A, Vercoort M, et al: Expression of Epstein-Barr virus (EBV) transcripts encoding homologues to important human proteins in diverse EBV associated diseases. Mol. Pathol. 52:97–103, 1999Google Scholar
  140. 140.
    Horenstein MG, Nador, R. G., Chadburn, A., Hyjek, E. M., Inghirami, G., Knowles, D. M., Cesarman, E.: Epstein-Barr virus latent gene expression in primary effusion lymphomas containing Kaposi’s sarcoma-associated herpesvirus/human herpesvirus-8. Blood 90:1186–1191, 1997PubMedGoogle Scholar
  141. 141.
    MacMahon EME, Glass, J.D., Hayward, S. D., Mann, R B, Becker, P. S., Charache, P., MacArthur, J. C., Ambinder, R. F.: Epstein-Barr virus in AIDS-related primary central-nervous system lymphoma. Lancet 338:969–973, 1991Google Scholar
  142. 142.
    Oudejans J, Jiwa M, Brule Avd, et al: Detection of heterogeneous Epstein-Barr virus gene expression patterns within individual post-transplantation lymphoproliferative disorders. Am. J. Pathol. 147:923–933, 1995PubMedGoogle Scholar
  143. 143.
    Rea D, Fourcade C, Leblond V, et al: Patterns of Epstein-Barr virus latent and replicative gene expression in Epstein-Barr virus B cell lymphoproliferative disorders after organ transplantation. Transplantation 58:317–324, 1994PubMedGoogle Scholar
  144. 144.
    Shiramizu B, Herndier, B., Meeker, T., Kaplan, L., McGrath, M.: Molecular and immunophenotypic characterization of AIDS-associated, Epstein-Barr Virus negative, polyclonal lymphoma. J. Clin. Oncol. 10:383–389, 1992PubMedGoogle Scholar
  145. 145.
    Crabb Breen E, van der Meijden M, Cumberland W, et al: The development of AIDS-associated Burkitt’s/small noncleaved cell lymphoma is preceded by elevated serum levels of interleukin 6. Clin. Immunol 92:293–299, 1999Google Scholar
  146. 146.
    Starzl T, Nalesnik M, Porter K, et al: Reversibility of lymphomas and lymphoproliferative lesions developing under cyclosporin-steroid therapy. Lancet 1:583–587, 1984PubMedCrossRefGoogle Scholar
  147. 147.
    Shapiro R, Nalesnik, M., McCauley, J., Fedorek, S., Jordan, M. L., Scantlebury, V. P., Jain, A., Vivas, C., Ellis, D., Lombardozzi-Lane, S., Randhawa, P., Johnston, J., Hakala, T. R., Simmons, R. L., Fung, J. J., Starzl, T. E.: Posttransplant lymphoproliferative disorders in adult and pediatric renal transplant patients receiving tacrolimus-based immunosuppression. Transplantation 68:1851–1854, 1999PubMedCrossRefGoogle Scholar
  148. 148.
    Kingma DW, Shad, A., Tsokos, M., Fest, T., Otsuki, T., Frekko K., Werner, E., Werner, A., Magrath, I., Raffeld, M., Jaffe, E. S.: Epstein-Barr virus (EBV)-associated smooth-muscle tumor arising in a post-transplant patient treated successfully for two PT-EBV­associated large-cell lymphomas. Case report. Am. J. Surg. Pathol. 20:1511–1519, 1996PubMedCrossRefGoogle Scholar
  149. 149.
    DiGiuseppe JA, Wu, T. C., Zehnbauer, B. A., McDowell, P. R, Barletta, J. M., Ambinder, R. F., Mann, R B • Epstein-Barr virus and progression of non-Hodgkin’s lymphoma to Ki-1-positive, anaplastic large cell phenotype. Mod. Pathol. 8:553–559, 1995PubMedGoogle Scholar
  150. 150.
    Benninger-Doring G, Pepperl S, Deml L, et al: Frequency of CD8(+) T lymphocytes specific for lytic and latent antigens of Epstein-Barr virus in healthy virus carriers. J. Virol. 264:289–297, 1999CrossRefGoogle Scholar
  151. 151.
    Tan L, Gudgeon N, Annels N, et al: A re-evaluation of the frequency of CD8+ T cells specific for EBV in healthy virus carriers. J. Immunol. 162:1827–1835, 1999PubMedGoogle Scholar
  152. 152.
    Papadopoulos EB, Ladanyi, M., Emanuel, D., et al.: Infusions of donor leukocytes to treat Epstein-Barr virus-associated lymphoproliferative disorders after allogeneic bone marrow transplantation. N. Engl. J. Med. 33:1185–1191, 1994CrossRefGoogle Scholar
  153. 153.
    Lacerda J, Ladanyi M, Louie D, et al: Human Epstein-Barr virus (EBV)-specific cytotoxic T lymphocytes home preferentially to and induce selective regressions of autologous EBV-induced B cell lymphoproliferations in xenografted C.B-17 scid/sxid mice. J. Exp. Med. 183:1215–1228, 1996PubMedCrossRefGoogle Scholar
  154. 154.
    Khanna R, Bell, S., Sherritt, M., Galbraith, A., Burrows, S. R., Rafter, S., Clarke, B., Slaughter, R., Falk, M. C., Douglass, J., Williams, T., Elliott, S. L., Moss, D. J.: Activation and adoptive transfer of Epstein-Barr virus-specific cytotoxic T cells in solid organ transplant patients with posttransplant lymphoproliferative disease. Proc. Natl. Acad. Sci. USA 96:10391–10396, 1999PubMedCrossRefGoogle Scholar
  155. 155.
    O’Reilly R, Small T, Papadopoulos E, et al: Biology and adoptive cell therapy of Epstein-Barr virus-associated lymphoproliferative in recipients of marrow allografts. Immunol. Rev. 1997:195–216, 1997Google Scholar
  156. 156.
    Shibata D, Weiss L, Nathwani B, et al: Epstein-Barr virus in benign lymph node biopsies from individuals infected with the human immunodeficiency virus is associated with concurrent or subsequent development of non-Hodgkin’s lymphoma. Blood 77:1527–1533, 1991PubMedGoogle Scholar
  157. 157.
    Carroll M: CD21/CD35 in B cell activation. Sem. Immunol. 10:279–286, 1998Google Scholar
  158. 158.
    Babcock GJ, Decker LL, Volk M, et al: EBV persistence in memory B cells in vivo. Immunity 9:395–404, 1998PubMedCrossRefGoogle Scholar
  159. 159.
    Brink A, Dukers D, Brule Avd, et al: Presence of Epstein-Barr virus latency type III at the single cell level in post-transplantation lymphoproliferative disorders and AIDS related lymphomas. J. Clin. Pathol. 50:911–918, 1997PubMedCrossRefGoogle Scholar
  160. 160.
    Walter J, Schirrmacher V, Mosier D: Induction of CD44 expression by the Epstein-Barr virus latent membrane protein LMP1 is associated with lymphoma dissemination. Int. J. Cancer 61:363–369, 1995PubMedCrossRefGoogle Scholar
  161. 161.
    Berger C, van Baarle D, Kersten MJ, et al: Carboxy terminal variants of Epstein-Barr virus-encoded latent membrane protein 1 during long-term human immunodeficiency virus infection: reliable markers for individual strain virus infection: reliable markers for individual strain identification. J. Infect. Dis. 179:240–244, 1999PubMedCrossRefGoogle Scholar
  162. 162.
    Murphy WJ, Funakoshi S, Beckwith M, et al: Antibodies to CD40 prevent Epstein-Barr virus-mediated human B-cell lymphomagenesis in severe combined immune deficient mice given human peripheral blood lymphocytes. Blood 86:1946–1953, 1995PubMedGoogle Scholar
  163. 163.
    Koopman G, Keehan, R. M., Lindhout, E., Zhou, D.F., de Groot, C., Pals, S. T.: Germinal center B cells rescued from apoptosis by CD40 ligation or attachment to follicular dendritic cells, but not by engagement of surface immunoglobulin or adhesion receptors, become resistant to CD95-induced apoptosis. Eur. J. Immunol. 27:1–7, 1997PubMedCrossRefGoogle Scholar
  164. 164.
    Liebowitz D: Epstein-Barr virus and a cellular signaling pathway in lymphomas from immunosuppressed patients [see comments]. N. Engl. J. Med. 338:1413–1421, 1998PubMedCrossRefGoogle Scholar
  165. 165.
    Caldwell RG, Wilson JB, Anderson SJ, et al: Epstein-Barr virus LMP2A drives B cell development and survival in the absence of normal B cell receptor signals. Immunity 9:405–411, 1998PubMedCrossRefGoogle Scholar
  166. 166.
    Klein E, Teramoto N, Gogolak P, et al: LMP-1, the Epstein-Barr virus-encoded oncogene with a B cell activating mechanisms similar to CD40. Immunol. Lett. 68:147–154, 1999PubMedCrossRefGoogle Scholar
  167. 167.
    Roberts ML, Cooper NR: Activation of a ras-MAPK-dependent pathway by Epstein-Barr virus latent membrane protein 1 is essential for cellular transformation Virology 240:93–99, 1998CrossRefGoogle Scholar
  168. 168.
    Devergne O, McFarland E, Mosialos G, et al: Role of the TRAF binding site and NF­kappaB activation in Epstein-Barr virus latent membrane protein 1-induced cell gene expression. J. Virol. 72:7900–7908, 1998PubMedGoogle Scholar
  169. 169.
    Eliopoulos A, Blake S, Floettmann J, et al: Epstein-Barr Virus-Encoded Latent Membrane Protein 1 Activates the JNK Pathway through Its Extreme C Terminus via a Mechanism Involving TRADD and TRAF2. J. Virol. 73:1023–1035, 1999PubMedGoogle Scholar
  170. 170.
    Izumi KM, McFarland EC, Ting AT, et al: The Epstein-Barr virus oncoprotein latent membrane protein 1 engages the tumor necrosis factor receptor-associated proteins TRADD and receptor-interacting protein (RIP) but does not induce apoptosis or require RIP for NF-kappaB activation. Mol. Cell. Biol. 19:5759–5767, 1999Google Scholar
  171. 171.
    Li M, Maizels N: Activation and Targeting of Immunoglobulin Switch Recombination by Activities Induced by EBV Infection. J. Immunol. 163:6659–6664, 1999PubMedGoogle Scholar
  172. 172.
    Tanner J, Alfieri C: Epstein-Barr virus induces Fas (CD95) in T cells and Fas ligand in B cells leading to T-cell apoptosis. Blood 94:3439–3447, 1999PubMedGoogle Scholar
  173. 173.
    Hatzivassiliou E, Miller, W. E., Raab-Traub, N., Kief, E., Mosialos, G.: A fusion of the EBV latent membrane protein-1 (LMP-1) transmembrane domains to the CD40 cytoplasmic domain similar to LMP-1 in constitutive activation of epidermal growth factor, nuclear factor kB, and stress-activated protein kinase. J. Immunol. 60:1116–1121, 1998Google Scholar
  174. 174.
    Gires O, Kohlhuber F, Kilger E, et al: Latent membrane protein 1 of Epstein-Barr virus interacts with JAK3 and activates STAT proteins. EMBO J. 18:3064–3073, 1999PubMedCrossRefGoogle Scholar
  175. 175.
    Kulwichit W, Edwards RH, Davenport EM, et al: Expression of the Epstein-Barr virus latent membrane protein 1 induces B cell lymphoma in transgenic mice. Proc. Natl. Acad. Sci. USA 95:11963–11968, 1998PubMedCrossRefGoogle Scholar
  176. 176.
    Longnecker R, Miller CL: Regulation of Epstein-Barr virus latency by latent membrane protein 2. Trnds Microbiol. 4:38–42, 1996Google Scholar
  177. 177.
    Rochford R, Miller CL, Cannon MJ, et al: In vivo growth of Epstein-Barr virus transformed B cells with mutations in latent membrane protein 2 (LMP2). Arch. Virol. 142:707–720, 1997Google Scholar
  178. 178.
    Beaufils P, Choquet D, Mamoun R, et al: The (YXXL/1)2 signaling motif found in the cytoplasmic segments of the bovine leukaemia virus envelope protein and Epstein-Barr virus latent membrane protein 2A can elicit early and late lymphocyte activation events. EMBO J. 12:5105–5112, 1993PubMedGoogle Scholar
  179. 179.
    Brielmeier M, Mautner J, Laux G, et al: The latent membrane protein 2 gene of Epstein-Barr virus is important for efficient B cell immortalization. J. Gen. Virol. 77:2807–2818, 1996PubMedCrossRefGoogle Scholar
  180. 180.
    lsakov N: 1TAMs immunoregulatory scaffolds that link immunoreceptors to their intracellular signaling pathways. Receptors Channels 5:243–253, 1998Google Scholar
  181. 181.
    Fruehling S, Lee SK, Herrold R, et al: Identification of latent membrane protein 2A (LMP2A) domains essential for the LMP2A dominant-negative effect on B-lymphocyte surface immunoglobulin signal transduction. J. Virol. 70:6216–6226, 1996PubMedGoogle Scholar
  182. 182.
    Levitskaya J, Coran M, Levitsky V: Inhibition of antigen processing by the internal repeat region of the Epstein-Barr virus nuclear antigen-1. Nature 375:685–688, 1995PubMedCrossRefGoogle Scholar
  183. 183.
    Levitskaya J, Shapiro A, Leonchiks A, et al: Inhibition of ubiquitin/proteosome­dependent protein degradation by the Gly-Ala repeat domain of the Epstein-Barr virus nuclear antigen 1. Proc. Natl. Acad. Sci. USA 94:12616–12621, 1997PubMedCrossRefGoogle Scholar
  184. 184.
    Blake N, Lee S, Redchenko I, et al: Human CD8+ T cell responses to EBV EBNA1: HLA class I presentation of the (Gly-Ala)-containing protein requires exogenous processing. Immunity 7:791–802, 1997PubMedCrossRefGoogle Scholar
  185. 185.
    Grossman SR, Laimins LA: EBNA1 and E2: a new paradigm for origin-binding proteins? Trnds Microbiol. 4:87–89, 1996CrossRefGoogle Scholar
  186. 186.
    Johannsen E, Koh E, Mosialos G, et al: Epstein-Barr virus nuclear protein 2 transactivation of the latent membrane protein 1 promoter is mediated by J kappa and PU.1. J. Virol. 69:253–262, 1995Google Scholar
  187. 187.
    Laine A, Frappier L: Identification of Epstein-Barr virus nuclear antigen 1 protein domains that direct interactions at a distance between DNA-bound proteins. J. Biol. Chem. 270:30914–30918, 1995PubMedCrossRefGoogle Scholar
  188. 188.
    Wilson JB, Bell JL, Levine AJ: Expression of Epstein-Barr virus nuclear antigen-1 induces B cell neoplasia in transgenic mice. EMBO J. 15:3117–3126, 1996PubMedGoogle Scholar
  189. 189.
    Cortes J, Kurzrock R: Interleukin-10 in non-Hodgkin’s lymphoma. Leuk. Lymphoma 26:251–259, 1997Google Scholar
  190. 190.
    Kanno H, Naka N, Yasunaga Y, et al: Role of an immunosuppressive cytokine, interleukin-10, in the development of pyothorax-associated lymphoma. Leukemia 11:525–526, 1997PubMedGoogle Scholar
  191. 191.
    Suzuki T, Tahara H, Narula S, et al: Viral interleukin 10 (IL-10), the human herpes virus 4 cellular IL-10 homologue, induces local anergy to allogeneic and syngeneic tumors. J. Exp. Med. 182:477–486, 1995PubMedCrossRefGoogle Scholar
  192. 192.
    Zeidler R, Eissner G, Meissner P, et al: Downregulation of TAPI in B lymphocytes by cellular and Epstein-Barr virus-encoded interleukin-10. Blood 90:2390–2397, 1997PubMedGoogle Scholar
  193. 193.
    Liu Y, Malefy R, Briere F, et al: The EBV IL-10 homologue is a selective agonist withimpaired binding to the IL-10 receptor. J. Immunol. 158:604–613, 1997PubMedGoogle Scholar
  194. 194.
    Strockbine L, Cohen J, Farrah T, et al: The Epstein-Barr virus BARF1 gene encodes a novel soluble CSF-1 receptor. J. Virol. 72:4015–4021, 1998PubMedGoogle Scholar
  195. 195.
    Cohen J, Lekstrom K: Epstein-Barr virus BARF1 protein is dispensable for B-cell transformation and inhibits alpha interferon secretion from mononuclear cells. J. Virol. 73:7627–7632, 1999PubMedGoogle Scholar
  196. 196.
    Devergne O, Birkenback M, Kieff E: Epstein-Barr virus-induced gene 3 and the p35 subunit of interleukin 12 form a novel heterodimeric hematopoeitin. Proc. Natl. Acad. Sci. USA 94:12041–12046, 1997PubMedCrossRefGoogle Scholar
  197. 197.
    Cesarman E, Chang, Y., Moore, P., Said, J., Knowles, D.: Kaposi’s sarcoma-associated herpes virus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N. Engl. J. Med. 332:1186–1191, 1995PubMedCrossRefGoogle Scholar
  198. 198.
    Cesarman E, Knowles DM: The role of Kaposi’s sarcoma-associated herpesvirus (KSHV/HHV-8) in lymphoproliferative diseases. Sem. Cancer. Biol. 9:165–174, 1999Google Scholar
  199. 199.
    Mikala G, Xie J, Berencsi G, et al: Human herpesvirus 8 in hematologic diseases. Pathol. Oncol. Res. 5:73–79, 1999Google Scholar
  200. 200.
    Watanabe-Fukunaga R, Brannan C, Copeland N, et al: Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356:314–317, 1992PubMedCrossRefGoogle Scholar
  201. 201.
    Nicholas J, Zong, J. C., Alcendor, D. J., Cuifo, D. M., Poole, L. J., Sarisky, R. T., Chiou, C. J., Zhang, X., Wan, X., Guo, H. G., Reitz, M. S., Hayward, G. S.: Novel organizational features, captured cellular genes, and strain variability within the genome of KSHV/HHV8. J. Natl. Cancer Inst. Monogr. 23:79–88, 1998PubMedCrossRefGoogle Scholar
  202. 202.
    Glenn M, Rainbow L, Aurad F, et al: Identification of a spliced gene from Kaposi’s sarcoma-associated herpesvirus encoding protein with similarities to latent membrane proteins 1 and 2A of Epstein-Barr virus. J. Virol. 73:6953–6963, 1999PubMedGoogle Scholar
  203. 203.
    Bais C, Santomasso B, Coso O, et al: G-protein-coupled receptor of Kaposi’s sarcoma-associated herpesvirus is a viral oncogene and angiogenesis activator. Nature 391:86–89, 1998PubMedCrossRefGoogle Scholar
  204. 204.
    Lee H, Veazey R, Williams K, et al: Deregulation of cell growth by the K1 gene of Kaposi’s sarcoma-associated herpesvirus. Nat. Med. 4:435–440, 1998Google Scholar
  205. 205.
    Ellis M, Chew Y, Fallis L, et al: Degradation of p27(Kip) cdk inhibitor triggered by Kaposi’s sarcoma virus cyclin-cdk6 complex. EMBO J. 18:644–653, 1999PubMedCrossRefGoogle Scholar
  206. 206.
    Geras-Raaka E, Arvanitakis L, Bais C, et al: Inhibition of constitutive signaling of Kaposi’s sarcoma-associated herpesvirus G protein-coupled receptor by protein kinases in mammalian cells in culture. J. Exp. Med. 187:801–806, 1998PubMedCrossRefGoogle Scholar
  207. 207.
    Tsujimoto Y, Yunis, J., Onorato-Showe, L., Erikson, J., Nowell, P. C., Croce, C. M.:Molecular cloning of the chromosomal breakpoint of B-cell lymphomas and leukemias with the t(11;14) chromosome translocation. Science 224:1403–1406, 1984PubMedCrossRefGoogle Scholar
  208. 208.
    Sherr CJ: Mammalian G1 cyclins. Cell 73:1059–1065, 1993PubMedCrossRefGoogle Scholar
  209. 209.
    Dang C: c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol. Cell. Biol. 19:1–11, 1999PubMedGoogle Scholar
  210. 210.
    Mateyak MK, Obaya, A. J., Sedivy, J. M.: c-Myc regulates cyclin D-Cdk4 and -Cdk6 activity but affects cell cycle progression at multiple independent points. Mol. Cell. Biol. 19:4672–4683, 1999PubMedGoogle Scholar
  211. 211.
    Perez-Roger I, Kim S, Griffiths B, et al: Cyclins.D1 and D2 mediate Myc-induced proliferation via sequestration of p27K1p1 and p21C1p1 EMBO J. 18:5310–5320, 1999PubMedCrossRefGoogle Scholar
  212. 212.
    Pelicci PG, Knowles DM, Magrath I, et al: Chromosomal breakpoints and structural alterations of the c-myc locus differ in endemic and sporadic forms of Burkitt lymphoma. Proc. Natl. Acad. Sci. USA 83:2984–2988, 1986PubMedCrossRefGoogle Scholar
  213. 213.
    Jain VK, Judde JG, Max EE, et al: Variable IgH chain enhancer activity in Burkitt’s lymphomas suggests an additional, direct mechanism of c-myc deregulation. Journal of Immunology 150:5418–5428, 1993Google Scholar
  214. 214.
    Bhatia K, Spangler, G., Gaidano, G., Hamdy, N., Della-Favera, R., McGrath, I.: Mutations in the coding region of c-myc occur frequently in acquired immunodeficiency syndrome. Blood 84:883–888, 1994PubMedGoogle Scholar
  215. 215.
    Ballerini P, Gaidano, G., Gong, J. Z.: Multiple genetic lesions in acquired immunodeficiency syndrome-related non-Hodgkin’s lymphoma. Blood 81:166–173, 1993PubMedGoogle Scholar
  216. 216.
    Kaplan LD, Shiramizu B, Herndier B, et al: Influence of molecular characteristics on clinical outcome in human immunodeficiency virus-associated non-Hodgkin’s lymphoma: identification of a subgroup with favorable clinical outcome. Blood 85:1727–1735, 1995PubMedGoogle Scholar
  217. 217.
    Nedergaard T, Guldberg, P., Ralfkiaer, E., Zeuthen, J.: A one step DGGE scanning method for detection of mutations in the K-, N-, and H-ras oncogenes: mutations at codons 12, 13, and 61 are rare in B-cell non-Hodgkin’s Lymphoma. Int. J. Cancer 71:364–379, 1997PubMedCrossRefGoogle Scholar
  218. 218.
    Clark HM, Yano, T., Sander, C., Jaffe, E. S., Raffeld, M.: Mutation of the ras genes is a rare genetic event in the histologic transformation of follicular lymphoma. Leukemia 10:844–847, 1996PubMedGoogle Scholar
  219. 219.
    Koduru P, Raju K, Vadmal V, et al: Correlation between mutation in P53, p53 expression, cytogenetics, histologic type, and survival in patients with B-cell non-Hodgkin’s lymphoma. Blood 90:4078–4091, 1997PubMedGoogle Scholar
  220. 220.
    Martin A, Flaman JM, Frebourg T, et al: Functional analysis of the p53 protein in AIDS-related non-Hodgkin’s lymphomas and polymorphic lymphoproliferations. Br. J. Haematol. 101:311–317, 1998PubMedCrossRefGoogle Scholar
  221. 221.
    Martinez-Delgado B, Robledo M, Arranz E, et al: Correlation between p53 gene and protein expression in human lymphomas. American Journal of Hematology 55:1–8, 1997PubMedCrossRefGoogle Scholar
  222. 222.
    Nakamura H, Said J, Miller C, et al: Mutation and protein expression of p53 in acquired immunodeficiency syndrome-related lymphomas. Blood 82:920–926, 1993PubMedGoogle Scholar
  223. 223.
    Donehower LA: The p53-deficient mouse: a model for basic and applied cancer studies. Sem. Cancer. Biol. 7:169–278, 1996Google Scholar
  224. 224.
    Ruf I, Rhyne P, Yang H, et al: Epstein-Barr virus regulates c-MYC, apoptosis, and tumorigenicity in Burkitt lymphoma. Mol. Cell. Biol. 19:1651–1660, 1999Google Scholar
  225. 225.
    Staudt L, Dent A, Shaffer A, et al: Regulation of lymphocyte cell fate decisions and lymphomagenesis by BCL-6. Int. Rev. Immunol. 18:381–403, 1999PubMedCrossRefGoogle Scholar
  226. 226.
    Gaidano G, Capello D, Gloghini A, et al: BCL-6 in aids-related lymphomas: pathogenetic and histogenetic implications. Leuk. Lymphoma 31:39–46, 1998CrossRefGoogle Scholar
  227. 227.
    Ye B, Cattoretti G, Shen Q, et al: The BCL-6 proto-oncogene controls germinal-centre formation and Th2-type inflammation. Nature Genet. 16:161–170, 1997PubMedCrossRefGoogle Scholar
  228. 228.
    Chang C, Ye B, Chaganti R, et al: BCL-6, a POZ/zinc-finger protein, is a sequence-specific transcriptional repressor. Proc. Natl. Acad. Sci. USA 93:6947–6952, 1996PubMedCrossRefGoogle Scholar
  229. 229.
    Ye B, Lista F, LoCoco F, et al: Alterations of a zinc finger-encoding gene, BCL-6, in diffuse large-cell lymphoma. Science 262:747–750, 1993PubMedCrossRefGoogle Scholar
  230. 230.
    Harris M, Chang C, Berton M, et al: Transcriptional Repression of Stat6-Dependent Interleukin-4-Induced Genes by BCL-6: Specific Regulation of Iepsilon Transcription and Immunoglobulin E Switching. Mol. Cell. Biol. 19:7264–7275, 1999Google Scholar
  231. 231.
    Gaidano G, LoCoco F, Ye B, et al: Rearrangements of the BCL-6 gene in acquired immunodeficiency syndrome-associated non-Hodgkin’s lymphoma: Association with diffuse large-cell large-cell subtype. Blood 84:397–402, 1994PubMedGoogle Scholar
  232. 232.
    Pasqualucci L, Migliazza A, Fracchiolla N, et al: BCL-6 mutations in normal germinal center B cells: evidence of somatic hypermutation acting outside Ig loci. Proc. Natl. Acad. Sci. USA 95:11816–11821, 1998PubMedCrossRefGoogle Scholar
  233. 233.
    Shen H, Peters A, Baron B, et al: Mutation of BCL-6 gene B cells by the process of somatic hypermutation of Ig genes. Science 280:1750–1752, 1998PubMedCrossRefGoogle Scholar
  234. 234.
    Wang J, Watanebe, T.: Expression and function of Fas during differentiation and activation of B cells. International Reviews in Immunology 18:367–369, 1999CrossRefGoogle Scholar
  235. 235.
    Ashkenazi A, Dixit V: Apoptosis control by death and decoy receptors. Curr. Opin. Cell Biol. 11:255–260, 1999PubMedCrossRefGoogle Scholar
  236. 236.
    Tepper C, Seldin M: Modulation of caspase-8 and FLICE-inhibitory protein expression as a potential mechanism of Epstein-Barr virus tumorigenesis in Burkitt’s lymphoma. Blood 94:1727–1737, 1999PubMedGoogle Scholar
  237. 237.
    Takahashi T, Tanaka, M., Brannan, C., Jenkins, M., Suda, T., Nagata, S.: Generalized lymphoproliferative disease in mice caused by a point mutation in the Fas Ligand. Cell 76:969–976, 1994PubMedCrossRefGoogle Scholar
  238. 238.
    Gronback K, Straten P, Ralfkiaer E, et al: Somatic Fas mutations in non-Hodgkin’s lymphoma: association with extranodal disease and autoimmunity. Blood 92:3018–3024, 1998Google Scholar
  239. 239.
    Samuelsson A, Sonnerberg A, Heuts N, et al: Progressive B cell apoptosis and expression of Fas ligand during human immunodeficiency virus type 1 infection. AIDS Res. Hum. Retroviruses 10:1031–1038, 1997CrossRefGoogle Scholar
  240. 240.
    Coffin JM. Structure and Classification of Retroviruses. P. 19–50. In Levy JA (ed.): The Retroviridae. Plenum Press, New York, 1992.CrossRefGoogle Scholar
  241. 241.
    Murphy FA, Fauquet CM, Bishop DHL, et al. Virus taxonomy: Sixth report of the International Committee on the Taxonomy of Viruses. Springer-Verlag, New York, 1995.Google Scholar
  242. 242.
    Teich N. Taxonomy of retroviruses. P. 1–16. In Weiss R, Teich N, Varmus H, Coffin J (eds): RNA tumor viruses. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1985.Google Scholar
  243. 243.
    Wong-Staal F, Gallo RC. Human T-lymphotropic retroviruses. Nature; 317:395–403, 1985.PubMedCrossRefGoogle Scholar
  244. 244.
    Poiesz BJ, Ruscetti FW, Gazdar AF, et al. Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci USA;77:7415–9, 1980.PubMedCrossRefGoogle Scholar
  245. 245.
    Uchiyama T, Yodoi J, Sagawa K, et al. Adult T-cell leukemia: Clinical and hematologic features of 16 cases. Blood; 50:481–92, 1977.PubMedGoogle Scholar
  246. 246.
    Hinuma Y, Nagata K, Hanaoka M, et al. Adult T-cell leukemia: Antigen in an AIL cell line and detection of antibodies to the antigen in human sera. Proc Natl Acad Sci USA;78:6476–80, 1981.PubMedCrossRefGoogle Scholar
  247. 247.
    Hinuma Y, Komoda H, Chosa T, et al. Antibodies to adult T-cell leukemia-virus­associated antigen (ATLA) in sera from patients with Ali and controls in Japan: a nation-wide seroepidemiologic study. Int J Cancer;29:631–5, 1982.PubMedCrossRefGoogle Scholar
  248. 248.
    Schupbach J, Kalyanaraman VS, Sarngadharan MG, et al. Antibodies against three purified proteins of the human type C retrovirus, human T-cell leukemia-lymphoma virus, in adult T-cell leukemia-lymphoma patients and healthy blacks from the Caribbean. Cancer Res ;43:886–91, 1983.PubMedGoogle Scholar
  249. 249.
    Schaffar-DesHayes L, Chavance M, Monplaisir N, et al. Antibodies to HTLV-1 p24 in sera of blood donors, elderly people and patients with hemopoietic diseases in France and in French West Indies. Int J Cancer;34:667–70, 1984.PubMedCrossRefGoogle Scholar
  250. 250.
    Miller GJ, Pegram SM, Kirkwood BR, et al. Ethnic composition, age and sex, together with location and standard of housing as determinants of HTLV-1 infection in an urban Trinidadian community. Int J Cancer ; 38:801–8, 1986.PubMedCrossRefGoogle Scholar
  251. 251.
    Wiktor SZ, Piot P, Mann JM, et al. Human T-cell lymphotropic virus type I (HTLV-I) among female prostitutes in Kinshasa, Zaire. J Infect Dis; 161:1073–7, 1990.PubMedCrossRefGoogle Scholar
  252. 252.
    Delaporte E, Dupont A, Peeters M, et al. Epidemiology of HTLV-I in Gabon (Western Equatorial Africa). Int J Cancer; 42:687–9, 1988.PubMedCrossRefGoogle Scholar
  253. 253.
    Yanagihara R, Jenkins CL, Alexander SS, et al. Human T lymphotropic virus type I infection in Papua New Guinea: high prevalence among the Hagahai confirmed by western analysis. J Infect Dis; 162:649–54 1990.PubMedCrossRefGoogle Scholar
  254. 254.
    Nogueira CM, Cavalcanti M, Schechter M, Ferreira OC Jr. Human T lymphotropic virus type I and II infections in healthy blood donors from Rio de Janeiro, Brazil. Vox Sang; 70:47–8, 1996.CrossRefGoogle Scholar
  255. 255.
    Meytes D, Schochat B, Lee H, et al. A serological and molecular survey for HTLV-I infection in a high-risk Middle Eastern group. Lancet; 336:1533–5, 1990.PubMedCrossRefGoogle Scholar
  256. 256.
    Singhal BS, Lalkaka JA, Sonoda S et al. Human T-lymphotropic virus type I infections in Western India. AIDS;7:138–9, 1993.PubMedCrossRefGoogle Scholar
  257. 257.
    Tokudome S, Tokunaga O, Shimamoto Y et al. Incidence of adult T-cell leukemia/lymphoma among human T-lymphotropic virus type I carriers in Saga, Japan. Cancer Res;49:226–8, 1989.PubMedGoogle Scholar
  258. 258.
    Gessain A, Gallo RC, Franchini G. Low degree of human T-cell leukemia/lymphoma virus type I genetic drift in vivo as a means of monitoring viral transmission and movement of ancient human populations. J Viro1;66:2288–95, 1992.Google Scholar
  259. 259.
    Komurian F, Pelloquin F, G. de The. In vivo genomic variability of human T-cell leukemia virus depends more upon geography than upon pathologies. J Virol; 65:3770–8, 1991.PubMedGoogle Scholar
  260. 260.
    Malik KT, Even J, Karpas A. Molecular cloning and complete nucleotide sequence of an adult T-cell leukemia virus/human T-cell leukemia virus type I (ATLV/HTLV-I) isolate of Caribbean origin: relationship to other members of the ATLV/HTLV-I subgroup. J Gen Virol.;69:1695–710, 1988.PubMedCrossRefGoogle Scholar
  261. 261.
    Gessain A, Yanagihara R, Franchini G et al. Highly divergent molecular variants of human T-lymphotropic virus type I from isolated populations in Papua New Guinea and the Solomon Islands. Proc Natl Acad Sci.;88:7694–8, 1991.CrossRefGoogle Scholar
  262. 262.
    Li HC, Fujiyoshi T, Lou H et al. The presence of ancient human T-cell lymphotropic virus type 1 provirus DNA in an Andean mummy. Nature Med; 5(12): 1428–32, 1999PubMedCrossRefGoogle Scholar
  263. 263.
    Takatsuki K, Yamaguchi K, Kawano F et al. Clinical aspects of adult T-cell leukemia/lymphoma. Curr Top Mircobiol Immuno1;115:89–97, 1985.CrossRefGoogle Scholar
  264. 264.
    Shimoyama M Diagnostic criteria and classification of clinical subtypes of adult T-cell leukemia-lymphoma. A report from the Lymphoma Study Group (1984–87). Br J Haemato1;79:428–37, 1991.Google Scholar
  265. 265.
    Bartholomew C, Blattner W, Cleghom F. Progression to AIDS in homosexual men co-infected with HIV and HTLV-I in Trinidad. Lancet;2:1469, 1987.PubMedCrossRefGoogle Scholar
  266. 266.
    Gotuzzo E, Escamilla J, Phillips IA et al. The impact of human T-lymphotropic virus type I/II infection on the prognosis of sexually acquired cases of acquired immune deficiency syndrome. Arch Intern Med.;152:1429–32, 1992.PubMedCrossRefGoogle Scholar
  267. 267.
    Cleghom FR, Blattner WA. Does human T-cell lymphotropic virus type I and human immunodeficiency virus type I co-infection accelerate acquired immune deficiency syndrome? Arch Intern Med.; 152:1372–3, 1992.CrossRefGoogle Scholar
  268. 268.
    Akizuki S., Setoguchi M, Nakazato O, et al. Case studies: an autopsy case of human T­lymphotropic virus type I-associated myelopathy. Hum Pathol.;19:988–90, 1988.PubMedCrossRefGoogle Scholar
  269. 269.
    Bhighjee AI, Wiley CA, Wachsman W et al. HTLV-I-associated myelopathy: Clinicopathologic correlation with localization of provirus to spinal cord. Neurology;41:1990–2, 1991.CrossRefGoogle Scholar
  270. 270.
    Ohama E, Horikawa Y, Shimizu T et al. Demyelination and remyelination in spinal cord lesions of human lymphotropic virus type I-associated myelopathy. Acta Neuropathol;81:78–83, 1990.PubMedCrossRefGoogle Scholar
  271. 271.
    Hollsberg P, Hailer DA. What is the pathogenesis of human T-cell lymphotropic virus type-I associated myelopathy/tropical spastic paraparesis? Ann Neurol.;37:143–5, 1995.PubMedCrossRefGoogle Scholar
  272. 272.
    Yoshida M, Osame M, Usuku K et al. Viruses detected in HTLV-I associated myelopathy and adult T-cell leukemia are identical on DNA blotting. Lancet; I: 1085–6, 1987.CrossRefGoogle Scholar
  273. 273.
    Yoshida M, Osame M, Kawai H et al. Increased replication of HTLV-I in HTLV-I­associated myelopathy. Ann Neurol; 26:331–5, 1989.PubMedCrossRefGoogle Scholar
  274. 274.
    Nishioka K, Nakajima T, Hasunuma T et al. Rheumatic manifestation of human leukemia virus infection. Rheum Dis Clin North Am;19:489–503, 1993PubMedGoogle Scholar
  275. 275.
    Mochizuki M, Tajima K, Watanabe T et al. Human T lymphotropic virus type I uveitis. Br J Ophthalmo1;78:149–54, 1994.CrossRefGoogle Scholar
  276. 276.
    Morgan OS, Rodgers-Johnson P, Mora C et al. HTLV-I and polymyositis in Jamaica. Lancet;ii:1184–7, 1989.CrossRefGoogle Scholar
  277. 277.
    La Grenade L, Schwartz RA, Janniger CK. Childhood dermatitis in the tropics: with special emphasis on infective dermatitis, a marker for infection with human T-cell leukemia virus-I. Cutis.;58:115–8, 1996.PubMedGoogle Scholar
  278. 278.
    Maruyama I, Mori S, Kawabata M et al. [Bronchopneumonopathy in HTLV-I associated myelopathy (HAM) and non-HAM HTLV-I carriers]. Nippon Kyobu Shikkan Gakkai Zasshi;30:775–9, 1992.PubMedGoogle Scholar
  279. 279.
    Kompoliti A, Gage B, Sharma L et al. Human T-cell lymphotropic virus type 1-associated myelopathy, Sjogren syndrome, and lymphocytic pneumonitis. Arch Neurol.;53:940–2, 1996.PubMedCrossRefGoogle Scholar
  280. 280.
    Ghosh SK, Abrams JT, Terunuma H et al. Human T-cell leukemia virus type I tax/rex DNA and RNA in cutaneous T-cell lymphoma. Blood;84:2663–71, 1994.PubMedGoogle Scholar
  281. 281.
    Pancake BA, Zucker-Franklin D, Coutavas EE. The cutaneous T cell lymphoma, mycosis fungoides, is a human T cell lymphotropic virus-associated disease. A study of 50 patients. J Clin Invest.;95:547–54, 1995.PubMedCrossRefGoogle Scholar
  282. 282.
    Zucker-Franklin D, Coutavas EE, Rush MG et al. Detection of human T-lymphotropic virus-like particles in cultures of peripheral blood lymphocytes from patients with mycosis fungoides. Proc Natl Acad Sci USA.;88:7630–4, 1991.PubMedCrossRefGoogle Scholar
  283. 283.
    Kalyanaraman VS, Sarngadharan MG, Robert-Guroff et al. A new subtype of human T-cell leukemia virus (HTLV-II) associated with a T-cell variant of hairy cell leukemia. Science; 218:571–3, 1982.PubMedCrossRefGoogle Scholar
  284. 284.
    Rosenblatt JD, Golde DW, Wachsman W et al. A second isolate of HTLV-II associated with atypical hairy-cell leukemia. N Eng J Med;315:372–7, 1986.CrossRefGoogle Scholar
  285. 285.
    Loughran TP Jr, Coyle T, Sherman MP et al. Detection of human T-cell leukemia/lymphoma virus, Type II, in a patient with large granular lymphocytic leukemia. Blood; 80:1116–9, 1992.PubMedGoogle Scholar
  286. 286.
    Zucker-Franklin D, Hooper WC, Evatt BL. Human lymphotropic retroviruses associated with mycosis fungoides: Evidence that human T-cell lymphotropic virus type II (HTLV-II) as well as HTLV-I may play a role in the disease. Blood;80:1537–45, 1992.PubMedGoogle Scholar
  287. 287.
    Harrington WJ Jr, Sheremata W, Hjelle B et al. Spastic ataxia associated with human T-cell lymphotropic virus type II infection. Ann Neuro1;33:411–4, 1993.CrossRefGoogle Scholar
  288. 288.
    Hjelle B, Appenzeller O, Mills R et al. Chronic neurodegenerative disease associated with HTLV-II infection. Lancet;339:645–6, 1992.PubMedCrossRefGoogle Scholar
  289. 289.
    Rosenblatt JD, Tomkins P, Rosenthal M et al. Progressive spastic myelopathy in a patient co-infected with HIV-1 and HTLV-II: Autoantibodies to the human homologue of rig in blood and cerebrospinal fluid. AIDS.; 6:1151–8, 1992.PubMedCrossRefGoogle Scholar
  290. 290.
    Seiki M, Hattori S, Yoshida M. Human adult T-cell leukemia virus: molecular cloning of the provirus DNA and the unique terminal structure. Proc Natl Acad Sci USA;79:6899–902, 1982.PubMedCrossRefGoogle Scholar
  291. 291.
    Seiki M, Hattori S, Hirayama Y, Yoshida M. Human adult T-cell leukemia virus: complete nucleotide sequence of the provirus genome integrated in leukemia cell DNA. Proc Natl Acad Sci;80:3618–3622, 1983.PubMedCrossRefGoogle Scholar
  292. 292.
    Lawson VA, Lee JY, Doultree JC et al. Visualisation of phenotypically mixed HIV-1 and HTLV-I virus particles by electron microscopy. J Biomed Science; 7(1): 71–4, 2000.CrossRefGoogle Scholar
  293. 293.
    Slamon DJ, Shimotohno K, Cline MJ et al. Identification of the putative transforming protein of the human T-cell leukemia viruses HTLV-I and HTLV-II. Science;226:61–5, 1984.PubMedCrossRefGoogle Scholar
  294. 294.
    Cann AJ, Rosenblatt JD, Wachsman W et al. Identification of the gene responsible for human T-cell leukemia virus transcriptional regulation. Nature.;318:571–4, 1985.PubMedCrossRefGoogle Scholar
  295. 295.
    Felber BK, Paskalis H, Kleinman-Ewing C et al. The pX protein of HTLV-I is a transcriptional activator of its long terminal repeats. Science.;229:675–9, 1985.PubMedCrossRefGoogle Scholar
  296. 296.
    Sodorski JG, Rosen CA, Haseltine WA. Trans-acting transcriptional activation of the long terminal repeat of human T lymphotropic viruses in infected cells. Science.;225:381–5, 1984.CrossRefGoogle Scholar
  297. 297.
    Jeang KT, Boros I, Brady J et al. Characterization of cellular factors that interact with the human T-cell leukemia virus type I p40x-responsive 21-base-pair sequence. J Virol.;62:4499–509, 1988.PubMedGoogle Scholar
  298. 298.
    Marriott SJ, Boros I, Duvall JF et al. Indirect binding of human T-cell leukemia virus type I tax 1 to a responsive element in the viral long terminal repeat. Mol Cell Biol.;9:4152–60, 1989.PubMedGoogle Scholar
  299. 299.
    Suzuki T, Fujisawa JI, Toita M, Yoshida M. The trans-activator tax of human T-cell leukemia virus type I (HTLV-I) interacts with cAMP-responsive element (CRE) binding and CRE modulator proteins that bind to the 21-base-pair enhancer of HTLV-I. Proc Natl Acad Sci USA.;90:610–4, 1993.PubMedCrossRefGoogle Scholar
  300. 300.
    Kwok RP, Laurance ME, Lundblad JR et al. Control of c-AMP-regulated enhancers by the viral transactivator Tax through CREB and the co-activator CBP. Nature.;380:642–6, 1996.PubMedCrossRefGoogle Scholar
  301. 301.
    Yin MJ, Gaynor RB. HTLV-I 21 bp repeat sequences facilitate stable association between Tax and CREB to increase CREB binding affinity. J Mol Bio1;264:20–31, 1996.CrossRefGoogle Scholar
  302. 302.
    Giebler HA, Loring JE, van Orden K et al. Anchoring of CREB binding protein to the human T-cell leukemia virus type 1 promoter: a molecular mechanism of Tax transactivation. Mol Cell Bio1;17:5156–64, 1997.Google Scholar
  303. 303.
    Lenzmeir BA, Giebler HA, Nyborg JK. Human T-cell leukemia virus type 1 tax requires direct access to DNA for recruitment of CREB binding protein to the viral promoter. Mol Cell Biol. ;18:721–31, 1997.Google Scholar
  304. 304.
    Bosselut R, Duvall JF, Gegonne A et al. The product of the c-ets-1 proto-oncogene and the related Ets2 protein act as transcriptional activators of the long terminal repeat of human T-cell leukemia virus HTLV-1. EMBO J.;9:3137–44, 1990.PubMedGoogle Scholar
  305. 305.
    Bosselut R, Lim F, Romond PC et al. Myb protein binds to multiple sites in the human T-cell lymphotropic virus type 1 long terminal repeat and transactivates LTR-mediated expression. Virology.;186:764–9, 1992.PubMedCrossRefGoogle Scholar
  306. 306.
    Marriott SJ, Lindholm PF, Brown KM et al. A 36-kilodalton cellular transcription factor mediates an indirect interaction of human T-cell leukemia/lymphoma virus type I Tax 1 with a responsive element in the viral long terminal repeat. Mol Cell Biol.;10:4192–201, 1990.PubMedGoogle Scholar
  307. 307.
    Yoshida M. HTLV-I oncoprotein Tax deregulates transcription of cellular genes through multiple mechanisms. J Cancer Res Clin Oncol.;121:521–8, 1995.PubMedCrossRefGoogle Scholar
  308. 308.
    Franchini G. Molecular mechanisms of human T-cell leukemia/lymphotropic virus type I infection. Blood;86:3619–39, 1995.PubMedGoogle Scholar
  309. 309.
    Baeuerle PA, Baltimore D. NF-кB: ten years after. Cell; 87:13–20, 1996.PubMedCrossRefGoogle Scholar
  310. 310.
    Baldwin JAS. The NF-кB and Ix proteins: new discoveries and insights. Ann Rev Immunol;14: 649–81, 1996.CrossRefGoogle Scholar
  311. 311.
    Yamaoka S, Inoue H, Sakurai M et al. Constitutive activation of NF-кB is essential for transformation of rat fibroblasts by the human T-cell leukemia virus type I Tax protein. EMBO J; 15: 873–887, 1996.PubMedGoogle Scholar
  312. 312.
    Suzuki T, Hirai H, Fujisawa J et al. A transactivator Tax of human T-cell leukemia virus type lbinds to NF-кB P50 and serum response factor (SRF) and associates with enhancer DNAs of the NF-кB site and CarG box. Oncogene; 8:2391–7, 1993.PubMedGoogle Scholar
  313. 313.
    Hirai H, Suzuki T, Fujisawa J et al. Tax protein of human T-cell leukemia virus type I binds to the ankyrin motifs of inhibitory factor KB and induces nuclear translocation of transcription factor NF-кB proteins for transcriptional activation. Proc Natl Acad Sci USA; 91:3584–8, 1994.PubMedCrossRefGoogle Scholar
  314. 314.
    Hirai H, Fujisawa J, Suzuki T et al. Transcriptional activator Tax of HTLV-I binds to the NF-кB precursor p105. Oncogene.; 7:1737–42, 1992PubMedGoogle Scholar
  315. 315.
    Beimling P, Moelling K. Direct interaction of CREM protein with 21 bp Tax-response elements of HTLV-I LTR. Oncogene;7: 257–62, 1992.PubMedGoogle Scholar
  316. 316.
    Yin MJ, Christerson LB, Yamamoto Y et al. HTLV-I Tax protein binds to MEKK1 to stimulate IKB kinase activity and NF-кB activation. Cell; 93:875–884, 1998.CrossRefGoogle Scholar
  317. 317.
    Xu X, Kang SH, Heidenreich O et al. Constitutive activation of different Jak tyrosine kinases in human T-cell leukemia virus type I (HTLV-I) tax protein or virus-transformed cells. J Clin Invest.; 96:1548–55, 1995.PubMedCrossRefGoogle Scholar
  318. 318.
    Migone TS, Lin JX, Cereseto A et al. Constitutively activated Jak-STAT pathway in T-cells transformed with HTLV-I. Science; 269:79–81, 1995.PubMedCrossRefGoogle Scholar
  319. 319.
    Takemoto S, Mulloy JC, Ceresoto A et al. Proliferation of adult T cell leukemia/lymphoma cells is associated with the constitutive activation of JAK/STAT proteins. Proc Natl Acad Sci USA; 94(25): 13897–902, 1997.PubMedCrossRefGoogle Scholar
  320. 320.
    Fujii M, Tsuchiya H, Chuhjo T et al. Interaction of HTLV-I Tax 1 with p67SRF causes the aberrant induction of cellular immediate-early genes through CarG boxes. Genes Dev; 6:2066–76, 1992.PubMedCrossRefGoogle Scholar
  321. 321.
    Jin DY, Spencer F, Jeang KT. Human T cell leukemia virus type 1 oncoprotein tax targets the human mitotic checkpoint protein MAD1. Cell.; 93:81–91, 1998.PubMedCrossRefGoogle Scholar
  322. 322.
    Tanaka Y, Hayashi M, Takayagi S et al. Differential transactivation of the intercellular adhesion molecule 1 gene promoter by Taxl and Tax2 of human t-cell leukemia viruses. J Virol.;70:8505–17, 1996.Google Scholar
  323. 323.
    Owen SM, Rudolph DL, Dezzutti CS et al. Transcriptional activation of the intercellular adhesion molecule 1 (CD54) gene by human T lymphotropic virus types I and II Tax is mediated through a palindromic response element. AIDS Res Hum Retroviruses.;13:1429–37, 1997.PubMedCrossRefGoogle Scholar
  324. 324.
    Suzuki T, Narita T, Uchida-Toita M et al. Down-regulation of the INK4 family of cyclin-dependent kinase inhibitors by tax protein of HTLV-1 through two distinct mechanisms. Virology; 259(2): 384–91, 1999.PubMedCrossRefGoogle Scholar
  325. 325.
    Cann AJ, Rosenblatt JD, Wachsman W et al. Identification of the gene responsible for human T-cell leukemia virus transcriptional regulation. Nature;318:571–4, 1985PubMedCrossRefGoogle Scholar
  326. 326.
    Grassmann R, Dengler C, Muller-Fleckenstein I et al. Transformation to continuous growth of primary human T lymphocytes by human T-cell leukemia virus type I X-region genes transduced by a Herpesvirus saimiri vector. Proc Nail Acad Sci USA;86:3351–5, 1989.CrossRefGoogle Scholar
  327. 327.
    Grassmann R, Berchtold S, Radant I et al. Role of human T-cell leukemia virus type 1 X region proteins in immortalization of primary human lymphocytes in culture. J Virol.;66:4570–5, 1992.PubMedGoogle Scholar
  328. 328.
    Low KG, Dorner LF, Fernando DB et al. Human T-cell leukemia virus type 1 tax releases cell cycle arrest induced by pl6INK4a. J Virol.;71:1956–62, 1997.PubMedGoogle Scholar
  329. 329.
    Majone F, Semmes OJ, Jeang K-T. Induction of micronuclei by HTLV-I Tax: a cellular assay for function. Virology; 456–9, 1993.Google Scholar
  330. 330.
    Semmes OJ, Jeang K-T. Mutational analysis of human T-cell leukemia virus type I tax: regions necessary for function determined with 47 mutant proteins. J Viro1;66:7183–92, 1992.Google Scholar
  331. 331.
    Kiyokawa T, Seiki M, Iwashita S et al. 1327x-III and p27x-III proteins encoded by the pX sequence of human T-cell leukemia virus type 1. Proc Natl Acad Sci USA;82:8359–63, 1985.PubMedCrossRefGoogle Scholar
  332. 332.
    Rosenblatt JD, Cann AJ, Slamon DJ et al. HTLV-II trans-activation is regulated by the overlapping tax/rex nonstructural genes. Science;240:916–9, 1988.PubMedCrossRefGoogle Scholar
  333. 333.
    Hanly SM, Rimsky LT, Malim MH et al. Comparative analysis of the HTLV-I rex and HIV-1 rev trans-regulatory proteins and their RNA response elements. Genes Dev.;3:1534–44, 1989.PubMedCrossRefGoogle Scholar
  334. 334.
    Itoh M, Inoue J, Toyoshima H et al. HTLV-I rex and HIV-1 rev act through similar mechanisms to relieve suppression of unspliced RNA expression. Oncogene:4:1275–9, 1989.PubMedGoogle Scholar
  335. 335.
    Nosaka T, Siomi H, Adachi Y et al. Nucleolar targeting signal of human T-cell leukemia virus type 1 rex-encoded protein is essential for cytoplasmic accumulation of unspliced viral mRNA. Proc Natl Acad Sci USA;86:9798–9802, 1989.PubMedCrossRefGoogle Scholar
  336. 336.
    Black AC, Ruland CT, Yip MT et al. Human T-cell leukemia virus type II Rex binding and activity require an intact splice donor site and a specific RNA secondary structure. J Virol ;65:6645–53, 1991.PubMedGoogle Scholar
  337. 337.
    Bogerd HP, Tiley LS, Cullen BR. Specific binding of the human T-cell leukemia virus type I Rex protein to a short RNA sequence located within the Rex-response element. J Virol.; 66:7572–75, 1992.PubMedGoogle Scholar
  338. 338.
    Grassman R, Berchtold S, Aepinus C et al. In vitro binding of human T-cell leukemia virus rex proteins to the rex-response element of viral transcripts. J Virol; 65:3721–27, 1991.Google Scholar
  339. 339.
    Yip MT, Dynan WS, Green PL et al. Human T-cell leukemia virus (HTLV) type II rex protein binds specifically to RNA sequences of the HTLV long terminal repeat but poorly to the human immunodeficiency virus type 1 Rev-responsive elements. J Viro1;65:2261–72, 1991.Google Scholar
  340. 340.
    Seiki M, Inoue J, Hidaka M et al. Two cis-acting elements responsible for post-transcriptional trans-regulation of gene expression of human T-cell leukemia virus type I. Proc Natl Acad Sci USA;85:7124–28, 1988.PubMedCrossRefGoogle Scholar
  341. 341.
    Ballaun C, Farrington GK, Dubrovnik M et al. Functional analysis of human T-cell leukemia virus type I rex-response element: Direct RNA binding of Rex protein correlates with in vivo activity. J Viro1;65:4408–13, 1991.Google Scholar
  342. 342.
    Kanamori H, Suzuki N, Siomi H et al. HTLV-I p27rex stabilizes human interleukin-2 receptor alpha chain mRNA. EMBO J.;9:4161–66, 1990.PubMedGoogle Scholar
  343. 343.
    Kubota S, Adachi Y, Copeland TD et al. Binding of human prothymosin alpha to the leucine-motifactivation domains of HTLV-I Rex and HIV-1 Rev. Eur J. Biochem.;233:48–54, 1995.CrossRefGoogle Scholar
  344. 344.
    Bakker A, Li X, Ruland CT et al. Human T-cell leukemia virus type II Rex inhibits pre­mRNA splicing in vitro at an early state of spliceosome formation J Virol ;70:5511–18, 1996.PubMedGoogle Scholar
  345. 345.
    Watanabe CT, Rosenblatt JD, Bakker A et al. Negative regulation of gene expression from the HTLV-II long terminal repeat by Rex: Functional and structural dissociation from positive post-transcriptional regulation. AIDS Res Hum Retroviruses;12:535–46, 1996.PubMedCrossRefGoogle Scholar
  346. 346.
    Koralnik IJ, Fullen J, Franchirai G. The p12’, p13“, and p30” proteins encoded by human T-cell leukemia/lymphotropic virus type I open reading frames I and II are localized in three different cellular compartments. J Viro1;67:2360–66, 1993Google Scholar
  347. 347.
    Schlegel R, Wade-Glass M, Rabson MS et al. The E5 transforming gene of bovine papillomavirus encodes a small hydrophobic polypeptide. Science;233:464–7, 1986.PubMedCrossRefGoogle Scholar
  348. 348.
    Franchirai G, Mulloy JC, Koralnik U et al. The human T-cell leukemia/lymphotropic virus type I p12’ protein cooperates with the E5 oncoprotein of bovine papillome virus in cell transformation and binds the 16-kilodalton subunit of the vacuolar H+ ATPase. J Virol;67:7701–4, 1993.Google Scholar
  349. 349.
    Mulloy JC, Crownley RW, Fullen J et al. The human T-cell leukemia/lymphotropic virus type I p12’ protein binds the interleukin-2 receptor ß and y. chains and affects their expression on the cell surface. J Viro1;70:3599–3605, 1996.Google Scholar
  350. 350.
    Derse D, Mikovits J, Ruscetti F. X-I and X-II open reading frames of HTLV-I are not required for virus replication or for immortalization of primary T-cells in vitro. Virology; 237:123–8, 1997.PubMedCrossRefGoogle Scholar
  351. 351.
    Bartoe JT, Albrecht B, Collins ND et al. Functional role of pX open reading frame II of human T-lymphocytic virus type 1 in maintenance of viral loads in vivo. J Virol; 74(3): 1094–1100, 2000.PubMedCrossRefGoogle Scholar
  352. 352.
    Seiki M, Eddy R, Shows TB, Yoshida M. Nonspecific integration of the HTLV provirus genome into adult T-cell leukemia cells. Nature;309:640–2, 1984.PubMedCrossRefGoogle Scholar
  353. 353.
    Hollsberg P, Hafler DA. Seminars in medicine of the Beth Israel Hospital, Boston. Pathogenesis of diseases induced by human lymphotropic virus type I infection. N Eng J Med. ;328:1173–82, 1993.CrossRefGoogle Scholar
  354. 354.
    Newton RC, Limpuangthip P, Greenberg S et al. Strongyloides stercoralis hyperinfection in a carrier of HTLV-I virus with evidence of selective immunosuppression. Am J Med.;92:202–8, 1992.PubMedCrossRefGoogle Scholar
  355. 355.
    Nakada K, Yamaguchi K, Furugen S et al. Monoclonal integration of HTLV-I proviral DNA in patients with strongyloidiasis. Int J Cancer.;40:145–8, 1987.PubMedCrossRefGoogle Scholar
  356. 356.
    Plumelle Y, Gonin C, Edouard A et al. Effect of Strongyloides stercoralis infection and eosinophilia on age at onset and prognosis of adult T-cell leukemia. Am J Clin Pathol.;107:81–7, 1997.PubMedGoogle Scholar
  357. 357.
    Sato Y, Shiroma Y. Concurrent infections with Strongyloides and T-cell leukemia virus and their possible effect on immune responses of host. Clin Immunol Immunopathol.;52:214–24, 1989.PubMedCrossRefGoogle Scholar
  358. 358.
    Popovic M, Lange-Wantzin G, Sann PS et al. Transformation of human umbilical cord blood T cells by human T-cell leukemia/lymphoma virus. Proc Nail Acad Sci USA;80:5402–6, 1983CrossRefGoogle Scholar
  359. 359.
    Richardson JH, Edwards AJ, Cruickshank JK et al. In vivo cellular tropism of human T-cell leukemia virus type 1. J Virol.;64:5682–7, 1990.PubMedGoogle Scholar
  360. 360.
    Hattori T, Uchiyama T, Toibana T et al. Surface phenotype of Japanese adult T-cell leukemia cells characterized by monoclonal antibodies. Blood.;58:645–7, 1981.PubMedGoogle Scholar
  361. 361.
    Waldmann TA, Greene WC, San PS et al. Functional and phenotypic comparison of human T-cell leukemia/lymphoma virus positive adult T-cell leukemia with human T-cell leukemia/lymphoma virus negative Sezary leukemia, and their distinction using anti-Tac monoclonal antibody identifying the human receptor for T-cell growth factor. J Clin Invest;73:1711–8, 1984.PubMedCrossRefGoogle Scholar
  362. 362.
    Waldmann TA, White JD, Goldman CK et al. The interleukin-2 receptor: a target for monoclonal antibody treatment of human T-cell lymphotropic virus I-induced adult T-cell leukemia Blood.;82:1701–12, 1993.Google Scholar
  363. 363.
    Depper JM, Lenard WJ, Kronke M et al. Augment T-cell growth receptor expression in HTLV-I-infected human leukemic T-cell. J Immuno1;133:1691–95, 1984.Google Scholar
  364. 364.
    Berger R. Chromosomal abnormalities in T-cell malignant lymphoma. Bull Cancer;78:283–90, 1991.PubMedGoogle Scholar
  365. 365.
    Sanada I, Tanaka R, Kumugai E et al. Chromosomal aberrations in adult T-cell leukemia: Relationship to the clinical severity. Blood;65:649–54, 1985.PubMedGoogle Scholar
  366. 366.
    Sommerfelt MA, Williams BP, Clapham PR et al. Human T cell leukemia viruses use a receptor determined by human chromosome 17. Science;242:1557–9, 1988.PubMedCrossRefGoogle Scholar
  367. 367.
    Tajima Y, Tashiro K, Camerini D. Assignment of the possible HTLV-I receptor gene to chromosome 17q21-q23. Somatic Cell Mol Genet.;27:1427–32, 1997.Google Scholar
  368. 368.
    Sagara Y, Ishida C, Inoue Y et al. 71-kilodalton heat shock cognate protein acts as a cellular receptor for syncytium formation induced by human T-cell lymphotropic virus type 1. J Virol; 72(1):535–41, 1998.PubMedGoogle Scholar
  369. 369.
    Fang D, Haraguchi Y, Jinno A et al. Heat shock cognate protein 70 is a cell fusion-enhancing factor but not an entry factor for human T-cell lymphotropic virus type I. Biochem Biophys Res Comm; 261(2): 357–63, 1999.PubMedCrossRefGoogle Scholar
  370. 370.
    Daenke S, Booth S. HTLV-1-induced cell fusion is limited at two distinct steps in the fusion pathway after receptor binding. J Cell Science.; 113(1):37–44, 2000.PubMedGoogle Scholar
  371. 371.
    Delamarre L, Pique C, Rosenberg AR et al. The U-S-L-I tyrosine-based motif in the cytoplasmic domain of the human T-cell leukemia virus type 1 envelope is essential for cell-to-cell transmission. J Virol; 73(11):9659–63, 1999.PubMedGoogle Scholar
  372. 372.
    Hollsberg P, Wucherpfennig KW, Ausubel LJ et al. Characterization of HTLV-I in vivo infected T cell clones. IL-2 independent growth of nontransformed T cells. J Immunol.;148:3256–63, 1992.PubMedGoogle Scholar
  373. 373.
    Newbound GC, Andrews JM, O’Rourke JP et al. Human T-cell lymphotropic virus type I Tax mediates enhanced transcription in CD4+ T lymphocytes. J. Virol.; 70:2101–6, 1996.PubMedGoogle Scholar
  374. 374.
    Hollsberg P. Mechanisms of T-cell activation by human T-cell lymphotropic virus type I. Micro Mol Biol Rev; 63(2);308–333, 1999.Google Scholar
  375. 375.
    Green JM, Noel PJ, Sperling TL et al. Absence of B7-dependent responses in CD28­deficient mice. Immunity; 1:501–8, 1994.PubMedCrossRefGoogle Scholar
  376. 376.
    Lal RB, Rudolph DL, Dezzutti CS et al. Costimulatory effects of T cell proliferation during infection with human T lymphotropic virus types I and II are mediated through CD80 and CD86 ligands. J Immunol: 157: 1288–96, 1996PubMedGoogle Scholar
  377. 377.
    Scholz C, Freeman GJ, Greenfield EA et al. Activation of human T cell lymphotropic virus type I-infected T cells is independent of B7 costimulation. J Immunol; 157: 293–238, 1996.Google Scholar
  378. 378.
    Hanabuchi S, Ohashi T, Koya Y et al. Development of human T-cell leukemia virus type 1-transformed tumors in rats following suppression of T-cell immunity by CD80 and CD86 blockade. J Virol; 74(1):428–35, 2000.PubMedCrossRefGoogle Scholar
  379. 379.
    Jeang K-T, Widen SG, Semmes OJ et al. HTLV-I trans-activator protein, Tax, is a trans-repressor of the human f3-polymerase gene. Science; 247:1082–4, 1990.PubMedCrossRefGoogle Scholar
  380. 380.
    Kao SY, Marriott SJ. Disruption of nucleotide excision repair by the human T-cell leukemia virus type 1 Tax protein.; 73(5): 4299–304, 1999.Google Scholar
  381. 381.
    Philpott SM, Buehring GC. Defective DNA repair in cells with human T-cell leukemia/bovine leukemia viruses: role of tax gene.; 91(11): 933–42, 1999.Google Scholar
  382. 382.
    Nakamura N, Fujii M, Tsukahara T et al. Human T-cell leukemia virus type 1 Tax protein induces the expression of STAT1 and STATS genes in T-cells. Oncogene; 18(17): 2667–75, 1999.PubMedCrossRefGoogle Scholar
  383. 383.
    Schmitt I, Rosin O, Rohwer P et al. Stimulation of cyclin-dependent kinase activity and Gl-to S-phase transition in human lymphocytes by the human T-cell leukemia/lymphotropic virus type 1 Tax protein. J Virol; 72:633–40, 1998.PubMedGoogle Scholar
  384. 384.
    Brauweiler A, Garrus JE, Reed JC et al. Repression of bax gene expression by the HTLV-I Tax protein: implications for suppression of apoptosis in virally infected cells. Virology;231:135–40, 1997.PubMedCrossRefGoogle Scholar
  385. 385.
    Copeland KFT, Haaksama AGM, Goudsmit J et al. Inhibition of apoptosis in T cells expressing human T cell leukemia virus type I Tax. AIDS Res Hum Retroviruses; 10:1259–68, 1994.PubMedCrossRefGoogle Scholar
  386. 386.
    Debatin K-M, Goldmann CK, Waldmann TA et al. Monoclonal-antibody-mediated apoptosis in adult T-cell leukemia. Lancet; 335:497–500, 1990.PubMedCrossRefGoogle Scholar
  387. 387.
    Guyot DJ, Trask J, Andrews JM et al. Stimulation of the CD2 receptor pathway induces apoptosis in human T lymphotropic virus type I-infected cell lines. J Acquired Immune Defic Syndr Hum Retroviruses 11:317–25, 1996..CrossRefGoogle Scholar
  388. 388.
    Chlichlia K, Moldenhauer G, Daniel PT et al. Immediate effects of reversible HTLV-I tax function: T cell activation and apoptosis. Oncogene; 10:269–77, 1995.PubMedGoogle Scholar
  389. 389.
    Chlichlia K, Busslinger M, Peter ME et al. ICE-proteases mediate HTLV-I Tax-induced apoptotic T-cell death. Oncogene 14: 2265–72, 1997.PubMedCrossRefGoogle Scholar
  390. 390.
    Chen X, Zachar V, Zdravkovic M et al. Role of the Fas/Fas ligand pathway in apoptotic cell death induced by the human T cell lymphotropic virus type 1 Tax transactivator. J Gen Virol; 78:3277–3285, 1997.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Alok A. Khorana
    • 1
  • Joseph D. Rosenblatt
    • 1
  • Faith M. Young
    • 1
  1. 1.Cancer Center and Hematology-Oncology UnitUniversity of Rochester Medical CenterRochester

Personalised recommendations