Advertisement

Biology of Anogenital Neoplasia

  • Anna S. Kadish
Chapter
Part of the Cancer Treatment and Research book series (CTAR, volume 104)

Abstract

Cancers of the anogenital area, including uterine cervical carcinoma, vulvar and vaginal, penile, and anal carcinomas occur with increased frequency in HIV-infected individuals.123456Human papillomavirus (HPV) infection has been implicated as an etiologic agent, producing lesions ranging from genital warts (condylomata accuminata), to squamous intraepithelial lesions (SIL) that may involve the cervix (cervical intraepithelial lesions - CIN) or anus (anal intraepithelial lesions - AIL), and finally to invasive squamous cell carcinoma of the cervix, anus, or other genital organs. In patients with HIV infection, there is an increased incidence of CIN in women and AIL in both men and women (Figure1, Figure2, Figure3, Figure4). Intraepithelial lesions and carcinomas of the skin, including the perianal region, vulva, and penis have also been associated with HPV infection. In the non-immunosuppressed individuals, intraepithelial lesions often undergo spontaneous regression. In the setting of HIV infection, however, most lesions persist and some progress to invasive carcinoma.

Keywords

Cervical Cancer Cervical Intraepithelial Neoplasia Vulvar Intraepithelial Neoplasia Tumor Rejection Antigen Anogenital Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goedert JJ, Cote TR, Virgo P, et al. Spectrum of AIDS-associated malignant disorders [see comments]. Lancet 1998; 351:1833–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Brookmeyer N, Barthel B. Clinical manifestations and therapies of AIDS associated tumors. Eur J Med Res 1998; 3:127–47Google Scholar
  3. 3.
    Kuhn L, Sun XW, Wright TC, Jr. Human immunodeficiency virus infection and female lower genital tract malignancy. Curr Opin Obstet Gynecol 1999; 11:35–9PubMedCrossRefGoogle Scholar
  4. 4.
    Korn AP, Abercrombie PD, Foster A. Vulvar intraepithelial neoplasia in women infected with human immunodeficiency virus-1. Gynecol Oncol 1996; 61:384–6PubMedCrossRefGoogle Scholar
  5. 5.
    Chiasson MA, Ellerbrock TV, Bush TJ, Sun XW, Wright TC, Jr. Increased prevalence of vulvovaginal condyloma and vulvar intraepithelial neoplasia in women infected with the human immunodeficiency virus. Obstet Gynecol 1997; 89:690–4PubMedCrossRefGoogle Scholar
  6. 6.
    Poblet E, Alfaro L, Fernander-Segoviano P, Jimenez-Reyes J, Salido EC. Human papillomavirus-associated penile squamous cell carcinoma in HIV- positive patients. Am J Surg Pathol 1999; 23:1119–23PubMedCrossRefGoogle Scholar
  7. 7.
    Kadish AS, Romney SL, Ledwidge R, et al. Cell mediated immune response to I-IPV16 E7 peptides are dependent on HPV type infecting the cervix, whereas serologic reactivity is not type specific. J Gen Virol 1994; 75:2277–2284PubMedCrossRefGoogle Scholar
  8. 8.
    Kadish AS, Ho GYF, Burk RD, et al. Lymphoproliferative cell-mediated immune responses to human papillomavirus (HP V) type 16 proteins E6 and E7: outcome of HPV infection and associated neoplasia. J Natl Cancer Inst 1997; 89:1285–1293PubMedCrossRefGoogle Scholar
  9. 9.
    de Gruijl TD, Bontkes HJ, Walboomers JMM, et al. Differential T helper cell responses to human papillomavirus type 16 E7 related to viral clearance or persistence in patients with cervical neoplasia: a longitudinal study. Cancer Res 1998; 58:1700–1706PubMedGoogle Scholar
  10. 10.
    de Gruijl TD, Bontkes HJ, Stukart MJ, et al. T cell proliferative responses against human papillomavirus type 16 E7 oncoprotein are most prominent in cervical intraepithelial neoplasia patients with a persistent viral infection. J Gen Virol 1996; 77:2183–2191PubMedCrossRefGoogle Scholar
  11. 11.
    Strickler HD, Goedert JJ, Bethke FR, et al. Human herpesvirus 8 cellular immune responses in homosexual men. J Infect Dis 1999; 180:1682–5PubMedCrossRefGoogle Scholar
  12. 12.
    Spitzer M. Lower genital tract intraepithelial neoplasia in HIV-infected women: guidelines for evaluation and management. Obstet Gynecol Sury 1999; 54:131–7CrossRefGoogle Scholar
  13. 13.
    Syrjanen SM, Syrjanen KJ. New concepts on the role of human papillomavirus in cell cycle regulation. Ann Med 1999; 31:175–87PubMedCrossRefGoogle Scholar
  14. 14.
    Walboomers JM, Jacobs MV, Manos MM, et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 1999; 189:12–19PubMedCrossRefGoogle Scholar
  15. 15.
    Xi LF, Koutsky LA, Galloway DA, et al. Genomic variation of human papillomavirus type 16 and risk for high grade cervical intraepithelial neoplasia [see comments]. J Natl Cancer Inst 1997; 89: 796–802.PubMedCrossRefGoogle Scholar
  16. 16.
    Zehbe I. Human papillomavirus 16 E6 variants are more prevalent in invasive cervical carcinoma than the prototype. Cancer Res 1998; 58: 829–833PubMedGoogle Scholar
  17. 17.
    Xi LF, Critchlow CW, Wheeler CM, et al. Risk of anal carcinoma in situ in relation to human papillomavirus type 16 variants. Cancer Res 1998; 58:3839–44 Xi LF, Critchlow CW, Wheeler CM, et al. Risk of anal carcinoma in situ in relation to human papillomavirus type 16 variants. Cancer Res 1998; 58:3839–44 Xi LF, Critchlow CW, Wheeler CM, et al. Risk of anal carcinoma in situ in relation to human papillomavirus type 16 variants. Cancer Res 1998; 58:3839–44Google Scholar
  18. 18.
    Carter JJ, Hagensee MB, Lee SK, McKnight B, Koutskys LA, Galloway DA. Use of HPVI capsids produced by recombinant vaccinia viruses in an ELISA to detect serum antibodies in people with foot warts. Virology 1994; 199:284–291PubMedCrossRefGoogle Scholar
  19. 19.
    Hagensee M, Yaegashi N, Galloway DA. Self-assembly of human papillomavirus type 1 capsids by expression of the L1 protein alone or by co-expression of the L1 and L2 capsid proteins. J Virol 1993; 67:315–322PubMedGoogle Scholar
  20. 20.
    Kinnbauer R, Booy F, Cheng N, Lowy DR, Schiller JT. Papillomavirus Ll major capsid protein self-assembles into virus-like particles that are highly immunogenic. Proc Natl Acad Sci USA 1992; 89:12180–12184CrossRefGoogle Scholar
  21. 21.
    Zhou J, Sun XY, Stenzel DJ, Frazer IH. Expression of vaccinia recombinant HPV 16 LI and L2 ORF proteins in epithelial cells is sufficient for assembly of HPV virion-like particles. Virology 1991; 185:251–7PubMedCrossRefGoogle Scholar
  22. 22.
    Wideroff L, Schiffman M, Haderer P, et al. Seroreactivity to human papillomavirus types 16, 18, 31, and 45 virus-like particles in a case-control study of cervical squamous intraepithelial lesions. J Infect Dis 1999; 180:1424–8CrossRefGoogle Scholar
  23. 23.
    Munger K, Scheffner M, Huibregtse JM, Howley PM. Interactions of HPV E6 and E7 oncoproteins with tumour suppressor gene products. Cancer Sury 1992; 12:197–217Google Scholar
  24. 24.
    Tommasino M, Crawford L. Human papillomavirus E6 and E7: proteins which deregulate the cell cycle. Bioessays 1995; 17:509–18PubMedCrossRefGoogle Scholar
  25. 25.
    Stoppler MC, Straight SW, Tsao G, Schlegel R, McCance DJ. The E5 gene of HPV-16 enhances keratinocyte immortalization by full-length DNA. Virology 1996; 223:251–4PubMedCrossRefGoogle Scholar
  26. 26.
    Brown DR, Pratt L, Bryan JT, Fife KH, Jansen K. Virus-like particles and El-E4 protein expressed from the human papillomavirus type 11 bicistronic El -E4–L1 transcript. Virology 1996; 222:43–50CrossRefGoogle Scholar
  27. 27.
    Ho GYF, Burk RD, Klein S, et al. Persistent genital human papillomavirus infection as a risk factor for persistent cervical dysplasia. J Natl Cancer Inst 1995; 87:1365–1371PubMedCrossRefGoogle Scholar
  28. 28.
    Van Doomum GJ, Prins M, Juffermans LH, et al. Regional distribution and incidence of human papillomavirus infections among heterosexual men and women with multiple sexual partners: a prospective study. Genitourin Med 1994; 70:240–6Google Scholar
  29. 29.
    Newfield L, Bradlow HL, Sepkovic DW, Aubom K. Estrogen metabolism and the malignant potential of human papillomavirus immortalized keratinocytes. Proc Soc Exp Biol Med 1998; 217:322–6PubMedGoogle Scholar
  30. 30.
    Nasiell K, Nasiell M, Vaclavinkova V. Behavior of moderate cervical dysplasia during longterm follow-up. Obstet Gynecol 1983; 61:609–614PubMedGoogle Scholar
  31. 31.
    Nasiell K, Roger V, Nasiell M. Behavior of mild cervical dysplasia during long-term follow-up. Obstet Gynecol 1986; 67:665–725PubMedCrossRefGoogle Scholar
  32. 32.
    Arends MJ, Buckley CH, Wells M. Aetiology, pathogenesis, and pathology of cervical neoplasia. J Clin Pathol 1998; 51:96–103PubMedCrossRefGoogle Scholar
  33. 33.
    Schneider A, Koutsky LA. Natural history and epidemiological features of genital HPV infection. In: Munoz N, Bosch FX, Shah KV, Meheus A, eds. The epidemiology of cervical cancer and human papillomavirus. Lyon: IARC, 1992Google Scholar
  34. 34.
    Koskela P, Anttila T, Bjorge T, et al. Chlamydia trachomatis infection as a risk factor for invasive cervical cancer [In Process Citation]. Int J Cancer 2000; 85:35–9PubMedCrossRefGoogle Scholar
  35. 35.
    Six C, Heard I, Bergeron C, et al. Comparative prevalence, incidence and short-term prognosis of cervical squamous intraepithelial lesions amongst HIV-positive and HIV-negative women. AIDS 1998; 12:1047–1056PubMedCrossRefGoogle Scholar
  36. 36.
    Breitburd F, Ramoz N, Salmon J, Orth G. HLA control in the progression of human papillomavirus infections. Semin Cancer Biol 1996; 7:359–71PubMedCrossRefGoogle Scholar
  37. 37.
    Michelin D, Gissmann L, Street D, et al. Regulation of human papillomavirus type 18 in vivo: effects of estrogen and progesterone in transgenic mice. Gynecol Oncol 1997; 66:202–8PubMedCrossRefGoogle Scholar
  38. 38.
    Strickler HD, Schiffman MH, Shah KV, et al. A survey of human papillomavirus 16 antibodies in patients with epithelial cancers. Eur J Cancer Prey 1998; 7:305–13CrossRefGoogle Scholar
  39. 39.
    Sun Y, Hildesheim A, Brinton LA, et al Human papillomavirus-specific serologic response in vulvar neoplasia. Gynecol Oncol 1996; 63:200–3PubMedCrossRefGoogle Scholar
  40. 40.
    Trimble CL, Hildesheim A, Brinton LA, Shah KV, Kurman RJ. Heterogeneous etiology of squamous carcinoma of the vulva. Obstet Gynecol 1996; 87:59–64.41.PubMedCrossRefGoogle Scholar
  41. 41.
    Hildesheim A, Han CL, Brinton LA, Kurman RJ, Schiller JT. Human papillomavirus type 16 and risk of preinvasive and invasive vulvar cancer: results from a seroepidemiological case-control study [see comments]. Obstet Gynecol 1997; 90:748–54PubMedCrossRefGoogle Scholar
  42. 42.
    Ylitalo N, Sorensen P, Josefsson A, et al. Smoking and oral contraceptives as risk factors for cervical carcinoma in situ. Int J Cancer 1999; 81:357–65PubMedCrossRefGoogle Scholar
  43. 43.
    Sun XW, Kuhn L, Ellerbrock TV, Chiasson MA, Bush TJ, Wright TC, Jr. Human papillomavirus infection in women infected with the human immunodeficiency virus [see comments]. N Engl J Med 1997; 337:1343–9PubMedCrossRefGoogle Scholar
  44. 44.
    Frisch M, Fenger C, van den Brule AJ, et al. Variants of squamous cell carcinoma of the anal canal and perianal skin and their relation to human papillomaviruses. Cancer Res 1999; 59:753–7PubMedGoogle Scholar
  45. 45.
    Jay N, Berry JM, Hogeboom CJ, Holly EA, Darragh TM, Palefsky JM. Colposcopie appearance of anal squamous intraepithelial lesions: relationship to histopathology. Dis Colon Rectum 1997; 40:919–28PubMedCrossRefGoogle Scholar
  46. 46.
    Lacey HB, Wilson GE, Tilston P, et al. A study of anal intraepithelial neoplasia in HIV positive homosexual men. Sex Transm Infect 1999; 75:172–7PubMedCrossRefGoogle Scholar
  47. 47.
    Feingold AR, Vermund SH, Burk RD, et al. Cervical cytologic abnormalities and papillomavirus in women infected with human immunodeficiency virus. J AIDS 1990; 3:896–903Google Scholar
  48. 48.
    Kiviat NB, Critchlow CW, Holmes KK, et al. Association of anal dysplasia and human papillomavirus with immunosuppression and HIV infection among homosexual men. AIDS 1993; 7:43–49PubMedCrossRefGoogle Scholar
  49. 49.
    Melbye M, Cote TR, Kessler L, Gail M, Biggar RJ, Group ACW. High incidence of anal cancer among AIDS patients. Lancet 1994; 343:636–639PubMedCrossRefGoogle Scholar
  50. 50.
    Palefsky JM. Human papillomavirus infection and anogenital neoplasia in human immunodeficiency virus-positive men and women. J Natl Cancer Inst Monogr 1998; 23; 15–20PubMedCrossRefGoogle Scholar
  51. 51.
    Ho G, Y.F, Bierman R, Beardsley L, Chang CJ, Burk RD. Natural history of cervicovaginal papillomavirus infection in young women. N Engl J Med 1998; 338:423–428PubMedCrossRefGoogle Scholar
  52. 52.
    Moscicki AB HN, Shiboski S, Darragh TM, Jay N, Powell K, Hanson E, Miller SB, Farhat S, Palefsky J. Risk factors for abnormal anal cytology in young heterosexual women. Cancer Epidemiol Biomarkers Prey 1999; 8:173–178Google Scholar
  53. 53.
    Critchlow CW, Surawicz CM, Holmes KK, et al. Prospective study of high grade anal squamous intraepithelial neoplasia in a cohort of homosexual men: influence of HIV infection, immunosuppression and human papillomavirus infection. AIDS 1995; 9:1255–62PubMedCrossRefGoogle Scholar
  54. 54.
    Williams AB, Darragh TM, Vranizan K, Ochia C, Moss AR, Palefsky JM. Anal and cervical human papillomavirus infection and risk of anal and cervical epithelial abnormalities in human immunodeficiency virus-infected women. Obstet Gynecol 1994; 83:205–211PubMedGoogle Scholar
  55. 55.
    Klein RS, Ho GYF, Vermund SH, Fleming I, Burk RD. Risk factors for squamous intraepithelial lesions on Pap smear in women at risk for human immunodeficiency virus infection. J Inf Dis 1994; 170:1404–1409CrossRefGoogle Scholar
  56. 56.
    Carter J, Carlson J, Fowler J, et al. Invasive vulvar tumors in young women - a disease of the immunosuppressed. Gynecol Oncol 1993; 51:307–310PubMedCrossRefGoogle Scholar
  57. 57.
    Friedman HB, Saah AJ, Sherman ME, et al. Human papillomavirus, anal squamous intraepithelial lesions, and human immunodeficiency virus in a cohort of gay men. J Infect Dis 1998; 178:45–52CrossRefGoogle Scholar
  58. 58.
    Serraino D, Carrieri P, Pradier C, et al. Risk of invasive cervical cancer among women with, or at risk for, HIV infection. Int J Cancer 1999; 82:334–7PubMedCrossRefGoogle Scholar
  59. 59.
    Luque AE, Demeter LM, Reichman RC. Association of human papillomavirus infection and disease with magnitude of human immunodeficiency virus type 1 (HIV-1) RNA plasma level among women with HIV-1 infection. J Infect Dis 1999; 179:1405–9CrossRefGoogle Scholar
  60. 60.
    Holcomb K, Matthews RP, Chapman JE, et al. The efficacy of cervical conization in the treatment of cervical intraepithelial neoplasia in HIV-positive women. Gynecol Oncol 1999; 74:428–31PubMedCrossRefGoogle Scholar
  61. 61.
    Palefsky JM. Anal squamous intraepithelial lesions: relation to HIV and human papillomavirus infection. J AIDS 1999; 21 Suppl 1:542–8Google Scholar
  62. 62.
    Apple RJ, Erlich HA, Klitz W, Manos MM, Becker TM, Wheeler CM. HLA DR-DQ associations with cervical carcinoma show papillomavirus-type specificity. Nature Genetics 1994; 6:157–162PubMedCrossRefGoogle Scholar
  63. 63.
    Helland A, Olsen AO, Gjoen K, et al. An increased risk of cervical intra-epithelial neoplasia grade II-III among human papillomavirus positive patients with the HLA-DQ1*0102DQB 1 *0602 haplotype: a population-based case-control study of Norwegian women. Int J Cancer 1998; 76:19–24PubMedCrossRefGoogle Scholar
  64. 64.
    Hildesheim A, Schiffman M, Scott DR, et al. Human leukocyte antigen class I/II alleles and development of human papillomavirus-related cervical neoplasia: results from a case-control study conducted in the United States. Cancer Epidemiol Biomarkers Prey 1998; 7:1035–1041Google Scholar
  65. 65.
    Palefsky JM, Minkoff H, Kalish LA, et al. Cervicovaginal human papillomavirus infection in human immunodeficiency virus-1 (HIV)-positive and high-risk HIV-negative women [see comments]. J Natl Cancer Inst 1999; 91:226–36PubMedCrossRefGoogle Scholar
  66. 66.
    Koutsky LA, Holmes KK, Critchlow CW, et al. A cohort study of the risk of cervical intraepithelial neoplasia grade 2 or 3 in relation to papillomavirus infection. N Eng J Med 1992; 327:1272–1278CrossRefGoogle Scholar
  67. 67.
    Yuan F, Chen DZ, Liu K, Sepkovic DW, Bradlow HL, Aubom K. Anti-estrogenic activities of indole-3-carbinol in cervical cells: implication for prevention of cervical cancer. Anticancer Res 1999; 19:1673–80PubMedGoogle Scholar
  68. 68.
    Dillner J. Mapping of linear epitopes of human papillomavirus type 16: The El, E2, E4, E5,E6 and E7 open reading frames. Int J Cancer 1990; 46:703–711PubMedCrossRefGoogle Scholar
  69. 69.
    Dillner J, Lehner P, Lehtinen M, et al. A population based seroepidemiological study of cervical cancer. Cancer Res 1994; 54: 134–141PubMedGoogle Scholar
  70. 70.
    Jochmus-Kudielka I, Schneider A, Braun R, et al. Antibodies against the human papillomavirus type 16 early proteins in human sera: Correlation of anti-E7 reactivity with cervical cancer. J Natl Cancer Inst 1989; 81:1698–1703PubMedCrossRefGoogle Scholar
  71. 71.
    Krchnak V, Vagner J, Suchankova A, Krcmar M, Ritterova L, Vonka V. Synthetic peptides derived from E7 region of human papillomavirus type 16 used as antigens in ELISA. Journal of General Virology 1990; 71:2719–2724PubMedCrossRefGoogle Scholar
  72. 72.
    Mann VM, de Lao SL, Brenes M, et al. Occurrence of IgA and IgG antibodies to select peptides representing human papillomavirus type 16 among cervical cancer cases and controls. Cancer Res 1990; 50:7815–7819PubMedGoogle Scholar
  73. 73.
    Tindle RW, Fernando GJP, Sterling JC, Frazer IH. A “public” T-helper epitope of the E7 transforming protein of human papillomavirus 16 provides cognate help for several E7 B-cell epitopes from cervical cancer-associated human papillomavirus genotypes. Proc Natl Acad Science USA 1991; 88:5887–5891CrossRefGoogle Scholar
  74. 74.
    Comerford SA, McCance DJ, Dougan G, Tite JP. Identification of T- and B-cell epitopes of the E7 protein of human papillomavirus type 16. J Virol 1991; 65:4681–4690PubMedGoogle Scholar
  75. 75.
    Chen L, Thomas EK, Hu SL, Hellstrom I, Hellstrom KE. Human papillomavirus type 16 nucleoprotein E7 is a tumor rejection antigen. Proc Natl Acad Sci USA 1991; 88:110–114PubMedCrossRefGoogle Scholar
  76. 76.
    Chen L, Mizuno MT, Singhal MC, et al. Induction of cytotoxic T lymphocytes specific for an syngeneic tumor expressing the E6 oncoprotein of human papillomavirus type 16. J Immunol 1992; 148:2617–2621PubMedGoogle Scholar
  77. 77.
    Greenstone HL, Nieland JD, de Visser KE, et al. Chimeric papillomavirus virus-like particles elicit antitumor immunity against the E7 oncoprotein in an I-IP V 16 tumor model. Proc Natl Acad Sci U S A 1998; 95:1800–5PubMedCrossRefGoogle Scholar
  78. 78.
    Wu TC, Guarnieri FG, Staveli-O’Carroll KF, et al. Engineering an intracellular pathway for MHC class II presentation of HPV-16 E7. Proc Natl Acad Sci USA 1995; 92:11671–11675PubMedCrossRefGoogle Scholar
  79. 79.
    Lin KY, Guarnieri FG, Staveli-O’Carroll KF, et al. Treatment of established tumors with a novel vaccine that enhances major histocompatibility class II presentation of tumor antigen. Cancer Res 1996; 56:21–26PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Anna S. Kadish
    • 1
  1. 1.Albert Einstein College of MedicineAlbert Einstein Comphrensive Cancer CenterAmerica

Personalised recommendations