The growth hormone axis in cachectic patients with chronic heart failure: evidence for acquired growth hormone resistance.

  • Stefan D. Anker
  • Claus-Dieter Pfaum
  • Mariantonietta Cicoira
  • Christian J. Strasburger
Part of the Endocrine Updates book series (ENDO, volume 9)

Abstract

Chronic heart failure (CHF) is a clinical syndrome with an overall poor prognosis, despite the advances in drug treatment. CHF is characterized by left ventricular impairment which leads to secondary changes in other organs with consequent symptoms like dyspnoea, muscular fatigue and exercise intolerance. It has long been recognised that significant body wasting (i.e. weight loss) is also an important feature of severe CHF. This dates back to the time of Hippocrates (about 460 - 370 BC), when he wrote: “The flesh is consumed and becomes water,…., the shoulders, clavicles, chest and thighs melt away. This illness is fatal,…” (1). Like inflammation and fever; weight loss is frequently observed as one of the common patterns of response to sever disease. The presence of general weight loss in patients with CHF has been termedcardiac cachexia.The term cachexia is of Greek origin, derived from the wordskakos(i.e. bad) andhexis(i.e. condition). Cachexia is one of the most visible and devastating consequences of human disease, similarly seen in a number of chronic diseases like cancer, acquired immunodeficiency syndrome (AIDS), thyrotoxicosis and rheumatoid arthritis. In malignant cancer, AIDS and chronic lung disease, cachexia is well known to be a sign of very poor prognosis. In principal it is thought to be related to loss of appetite (anorexia), anemia and metabolic abnormalities, that in turn are influenced by altered hormones and cytokines. Acquired GH resistance is a feature of severe catabolism and malnutrition in conditions of sepsis, surgery and critical illness (reviewed in (2,3). Biochemically it is defined as the presence of high GH but low IGF-I levels. GH resistance, i.e. GH insensitivity, is typical in Laron dwarfism, which results from a GH receptor mutation (4).

Keywords

Placebo Fatigue Catheter Cortisol Anemia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Katz, AM, Katz, PB. Diseases of heart in works of Hippocrates. Br Heart J 1962;24:257–264.PubMedCrossRefGoogle Scholar
  2. 2.
    Bentham J, Rodriguez-Arnao J, Ross RJM. Acquired growth hormone resistance in patients with hypercatabolism. Horm Res 1993;40:87–91.PubMedCrossRefGoogle Scholar
  3. 3.
    Ross RJM, Chew SL. Acquired growth hormone resistance. Eur J Endocrinol 1995;132:655–660.PubMedCrossRefGoogle Scholar
  4. 4.
    Amselem S, Duquesnoy P, Duriez B, et al. Spectrum of growth hormone receptor mutations and associated haplotypes in Laron syndrome. Hum Mol Genet 1993;2:355–359.Google Scholar
  5. 5.
    Packer M. The neurohormonal hypothesis: a theory to explain the mechanism of disease progression in heart failure. J Am Coll Cardiol 1992;20:248–54.PubMedCrossRefGoogle Scholar
  6. 6.
    Anker SD, ChuaTP, Ponikowski P, et al. Hormonal changes and catabolic/anabolic imbalance in chronic heart failure and their importance for cardiac cachexia. Circulation 1997;96:526–534.PubMedCrossRefGoogle Scholar
  7. 7.
    Anker SD, Coats AJS. Cardiac cachexia: a syndrome with impaired survival and immune and neuroendocrine activation. Chest 1999;115:836–847.PubMedCrossRefGoogle Scholar
  8. 8.
    Anker SD, Ponikowski P, Varney S, et al. Wasting as independent risk factor for mortality in chronic heart failure. Lancet 1997;349:1050–53.PubMedCrossRefGoogle Scholar
  9. 9.
    Anker SD, Ponikowski PP, Clark AL, et al. Cytokines and neurohormones relating to body composition alterations in the wasting syndrome of chronic heart failure. Eur Heart J 1999;20:683–693.PubMedCrossRefGoogle Scholar
  10. 10.
    Anker SD, Clark AL, Teixeira MM, Hellewell PG, Coats AJS. Loss of bone mineral in patients with cachexia due to chronic heart failure. Am J Cardiol 1999;83:612–615.PubMedCrossRefGoogle Scholar
  11. 11.
    Poehlman ET, Scheffers J, Gottlieb SS, Fisher ML, Vaitekevicius P. Increased resting metabolic rate in patients with congestive heart failure. Ann Intern Med 1994;121:860–862.PubMedGoogle Scholar
  12. 12.
    Pittman JG, Cohen P. The pathogenesis of cardiac cachexia. N Engl J Med 1964;271:403–409.PubMedCrossRefGoogle Scholar
  13. 13.
    King D, Smith ML, Lye M. Gastro-intestinal protein loss in elderly patients with cardiac cachexia. Age Aging 1996;25:221–223.CrossRefGoogle Scholar
  14. 14.
    Anker SD, Chua TP, Swan JW, et al. Hormonal changes and catabolic/anabolic imbalance in chronic heart failure: The importance for cardiac cachexia. Circulation 1997;96:526–534.PubMedCrossRefGoogle Scholar
  15. 15.
    Mancini DM, Walter G, Reichek N, et al. Contribution of skeletal muscle atrophy to exercise intolerance and altered muscle metabolism in heart failure. Circulation 1992;85:1364–1373.PubMedCrossRefGoogle Scholar
  16. 16.
    Vescovo G, Serafini F, Facchin L, et al. Specific changes in skeletal muscle myosin heavy chains composition in cardiac failure: differences compared with disuse atrophy as assessed on microbiopsies by high resolution electrophoresis. Heart 1996; 76:337–343.Google Scholar
  17. 17.
    Anker SD. Catecholamine levels and treatment in chronic heart failure. Eur Heart J 1998;19:F56–F61.PubMedGoogle Scholar
  18. 18.
    Ferrari R, Bachetti T, Confortini R, et al. Tumor necrosis factor soluble receptors in patients with various degrees of congestive heart failure. Circulation 1995;92:1479–1486.Google Scholar
  19. 19.
    Levine B, Kalman J, Mayer L, et al. Elevated circulating levels of tumour necrosis factor in severe chronic heart failure. N Engl J Med 1990;323:236–41.PubMedCrossRefGoogle Scholar
  20. 20.
    Mc Murray J, Abdullah I, Dargie HJ, Saphiro D. Increased concentrations of tumour necrosis factor in cachectic patients with severe chronic heart failure. Br Heart J 1991;66:356–8.CrossRefGoogle Scholar
  21. 21.
    Anand IS, Ferrari R, Kalra GS, Wahi PL, Poole-Wilson PA, Harris PC. Edema of cardiac origin. Studies on body water and sodium, renal function, hemodynamic indexes, and plasma hormones in untreated congestive cardiac failure. Circulation 1989;80:299–305.PubMedCrossRefGoogle Scholar
  22. 22.
    Anker SD, Volterrani M, Pflaum CD, Poole-Wilson PA, Strasburger CJ, Voats AJS. Growth hormone resistance in chronic heart failure. J Am Coll Cardiol 1998;31:204A.CrossRefGoogle Scholar
  23. 23.
    Goddard AD, Covello R, Luoh S-M, et al., for the Growth Hormone Insensitivity Study Group. Mutations of the growth hormone receptor in children with ideopathic short stature. N Engl J Med 1995;333:1093–1098.PubMedCrossRefGoogle Scholar
  24. 24.
    Sotiropoulos A, Goujon L, Simonin G, Kelly PA, Postel-Vinay MC, Finidori J. Evidence for generation of the growth hormone-binding protein through proteolysis of the growth hormone membrane receptor. Endocrinology 1993;132:1863–1865.PubMedCrossRefGoogle Scholar
  25. 25.
    Pflaum C-D, Dressendörfer RA, Strasburger CJ. A nonisotopic solid phase immunoassay for the determination of human growth hormone binding protein (hGHBP). Exp Clin Endocrinol 1993; 101:44.Google Scholar
  26. 26.
    Strasburger CJ, Wu Z, Pflaum CD, Dressendorfer RA. Immunofunctional assay of human growth hormone (hGH) in serum: a possible consensus for quantitative hGH measurement. J Clin Endocrinol Metab 1996; 81:2613–20.PubMedCrossRefGoogle Scholar
  27. 27.
    Strasburger CJ, Dressendörfer RA, Lee PD. Non-isotopic two-site immunoassay for IGFBP-3. Growth Regulation 1994;4:138.Google Scholar
  28. 28.
    Fisker S, Vahl N, Jorgensen JO, Christiansen JS, Orskov H. Abdominal fat determines growth hormone-binding protein levels in healthy nonobese adults. J Clin Endocrinol Metab 1997;82:123–128.PubMedCrossRefGoogle Scholar
  29. 29.
    Roelen CA, Koppeschaar HP, De Vries WR, et al. Visceral adipose tissue is associated with circulating high affinity growth hormone-binding protein. J Clin Endocrinol Metab 1997;82:760–764.PubMedCrossRefGoogle Scholar
  30. 30.
    Swan JW, Anker SD, Walton C, et al. Insulin resistance in chronic heart failure: Relationship to severity and etiology of heart failure. J Am Coll Cardiol 1997;30:527–532.Google Scholar
  31. 31.
    Schulze PC, Adams V, Linke A, Gielen S, Hambrecht R, Schuler G. Decreased expression of insulin-like growth factor mRNA in muscle biopsies from patients with chronic heart failure. Europ Heart J 1999;20:19.Google Scholar
  32. 32.
    Kaleko M, Rutter WG, Miller AD. Overexpression of the human insulin-like growth factor-I receptor promotes ligand-dependent neoplastic transformation. Mol Cell Biol 1990;10:464–473.PubMedGoogle Scholar
  33. 33.
    Kalebic T, Tsokos M, Helman LJ. In vivo treatment with antibody against the IGF-I receptor suppresses growth of human rhabdomyosarcoma and down-regulates p34/cdc2. Cancer Res 1994;54:5531–5534.PubMedGoogle Scholar
  34. 34.
    Baserga R, Hongo A, Rubini M, Prisco M, Valentinis B. The IGF-I receptor in cell growth, transormation and apoptosis. Biochimica and Biophysica Acta 1997;1332:F105–F126.Google Scholar
  35. 35.
    Arteaga CL, Osborne CK. Growth inhibition of human breast cancer cells in vitro with antibody against the type I somatomedin receptor. Cancer Res 1989;49:6237–6241.PubMedGoogle Scholar
  36. 36.
    Harrington EA, Bennett MR, Fanidi A, Evan GI. C-myc-induced apoptosis in fibroblasts is inhibited by specific cytokines. Embo J 1994;13:3286–3295.PubMedGoogle Scholar
  37. 37.
    Sell C, Baserga R, Rubin R. Insulin-like growth factor I (IGF-I) and the IGF-I receptor prevent etoposide-induced apoptosis. Cancer Res 1995;55:2463–2469.Google Scholar
  38. 38.
    D’Mello SR, Galli C, Ciotti T, Calissano P. Induction of apoptosis in cerebellar granule neurons by low potassium: inhibition of death by insulin-like growth factor-I and cAMP. Proc Natl Acad Sci 1993;90:10989–10993.PubMedCrossRefGoogle Scholar
  39. 39.
    Singleton JR, Randolph AE, Feldman EL. Insulin-like growth factor-I receptor prevents apoptosis and enhances neuroblastoma tumorigenesis. Cancer Res 1996;56:4522–4529.PubMedGoogle Scholar
  40. 40.
    Resnicoff M, Burgaud JL, Rotman HL, Abraham D, Baserga R. Correlation between apoptosis, tumorigenesis, and levels of insulin-like factor-I receptors. Cancer Res 1995;55:3739–3741.PubMedGoogle Scholar
  41. 41.
    Resnicoff M, Abraham D, Yutanawiboonchai W, et al. The insulin-like growth factor-I receptor protects tumor cells from apoptosis in vivo. Cancer Res 1995;55:2463–2469.PubMedGoogle Scholar
  42. 42.
    Niebauer J, Pflaum C-D, Clark AL, et al. Deficient insulin-like growth factor-1 in chronic heart failure predicts altered body composition, cytokine and neurohormonal activation. J Am Coll Cardiol 1998;32:393–397.PubMedCrossRefGoogle Scholar
  43. 43.
    Fazio S, Sabatini D, Capaldo B, et al. A preliminary study of growth hormone in the treatment of dilated cardiomyopathy. N Engl J Med 1996;334:809–814.PubMedCrossRefGoogle Scholar
  44. 44.
    Frustaci A, Gentiloni N, Russo MA. Growth hormone in the treatment of dilated cardiomyopathy. N Engl J Med 1996;335:672–673.PubMedCrossRefGoogle Scholar
  45. 45.
    Osterziel KJ, Strohm O, Schuler J, et al. Randomised, double-blind, placebo-controlled trial of human recombinant growth hormone in patients with chronic heart failure due to dilated cardiomyopathy. Lancet 1998;351:1233–1237.PubMedCrossRefGoogle Scholar
  46. 46.
    Isgaard J, Bergh CH, Caidahl K, Lomsky M, Hjalmarson A, Bengtsson BA. A placebo controlled study of growth hormone in patients with congestive heart failure. Eur Heart J 1998;19:1704–1711.PubMedCrossRefGoogle Scholar
  47. 47.
    Volterrani M, Desenzani P, Lorusso R, D’Aloia A, Manelli F, Giustina A. Haemodynamic effects of intravenous growth hormone in congestive heart failure. Lancet 1997;49:1067–1068.CrossRefGoogle Scholar
  48. 48.
    Genth-Zotz S, Zotz R, Geil S, Voigtlander T, Meyer J, Darius H. Recombinant growth hormone therapy in patients with ischemic cardiomyopathy. Effects on hemodynamics, left ventricular function, and cardiopulmonary exercise capacity. Circulation 1999;99:18–21.PubMedCrossRefGoogle Scholar
  49. 49.
    Loh E, Swain JL. Growth hormone for heart failure - cause for cautious optimism. N Engl J Med 1996;334:856–857.PubMedCrossRefGoogle Scholar
  50. 50.
    Moxley RT. Potential for growth factor treatment of muscle disease. Curr Opin Neurol 1994;7:427–434.PubMedCrossRefGoogle Scholar
  51. 51.
    Takala J, Ruokonen E, Webster NR, et al. Increased mortality associated with growth hormone treatment in critically ill adults. N Engl J Med 1999;341:785–792.PubMedCrossRefGoogle Scholar
  52. 52.
    Demling R. Growth hormone therapy in critically ill patients. N Engl J Med 1999;341:837–839.PubMedCrossRefGoogle Scholar
  53. 53.
    Windisch PA, Papatheofanis FJ, Matuszewski KA. Recombinant human growth hormone for AIDS-associated wasting. Ann Pharmacother 1998;32:437–445.PubMedCrossRefGoogle Scholar
  54. 54.
    Van Loon K. Safety of high doses of recombinant human growth hormone. Horm Res 1998;49:78–81.CrossRefGoogle Scholar
  55. 55.
    Cuneo RC, Wilmshurst, P, Lowy, McGauley G, Sönksen PH. Cardiac failure responding to growth hormone. Lancet 1989;333:838–839.CrossRefGoogle Scholar
  56. 56.
    O’Driscoll JG, Green DJ, Ireland M, Kerr D, Larbalestier. Treatment of end-stage cardiac failure with growth hormone. Lancet 1997;349:1068.CrossRefGoogle Scholar
  57. 57.
    Usala A-L, Madigan T, Burguera B, et al. Brief report: treatment of insulin-resistant diabetic ketoacidosis with insulin-like growth factor 1 in an aldolescent with insulin-dependent diabetes. N Engl J Med 1992;327:853–857.PubMedCrossRefGoogle Scholar
  58. 58.
    Dimitriadis G, Parry-Billings M, Bevan S, et al. Effects of insulin-like growth factor 1 on the rates of glucose transport and utilization in rat skeltal muscle in vitro. Biochem J 1992;285:269–275.PubMedGoogle Scholar
  59. 59.
    O’Sullivan U, Gluckman PD, Breier BH, Woodall S, Siddiqui RA, McCutcheon SN. Insulin-like growth factor 1 (IGF-1) in mice reduces weight loss during starvation. Endocrinology 1989;125: 2793–2794.CrossRefGoogle Scholar
  60. 60.
    Guler H-P, Zapf J, Froesch ER. Short-term metabolic effects of recombinant human insulin-like growth factor in healthy adults. N Engl J Med 1987;317:137–140.PubMedCrossRefGoogle Scholar
  61. 61.
    Hankinson SE, Willett WC, Colditz GA, et al. Circulating concentrations of insulin-like growth factor-I and risk of breast cancer. Lancet 1998;351:1393–1396.PubMedCrossRefGoogle Scholar
  62. 62.
    Chan JM, Stampfer MJ, Giovannucci E, et al. Plasma insulin-like growth factor-I and prostate cancer risk: a prospective study. Science 1998;279:563–566.PubMedCrossRefGoogle Scholar
  63. 63.
    Qureshi AR, Alvestrand A, Danielsson A, et al. Factors predicting malnutrition in hemodialysis patients: a cross-sectional study. Kidney Int 1998;53:773–782.PubMedCrossRefGoogle Scholar
  64. 64.
    Moller S, Becker U, Juul A, Skakkebaek NE, Christensen E. Prognostic value of insulinlike growth factor I and its binding protein in patients with alcohol-induced liver disease. Hepatology 1996;23:1073–1078.PubMedCrossRefGoogle Scholar
  65. 65.
    Freeman LM, Rush JE, Kehayias JJ, et al. Nutritional alterations and the effect of fish oil supplementation in dogs with heart failure. Vet Intern Med 1998;12:440–448.CrossRefGoogle Scholar
  66. 66.
    Jenkins RC, Ross RJM. Growth hormone therapy for protein catabolism. Q J Med 1996;89:813–819.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Stefan D. Anker
    • 1
    • 2
  • Claus-Dieter Pfaum
    • 3
  • Mariantonietta Cicoira
    • 2
  • Christian J. Strasburger
    • 3
  1. 1.Franz-Volhard-KlinikCharité,Campus Berlin-Buch) at Max-Delbrück-Centrum for Molecular MedicineBerlinGermany
  2. 2.Cardiac Medicine, NHLIImperial College School of MedicineLondonUK
  3. 3.3Medizinische KlinikLudwigs Maximilian Universität MünchenMünchenGermany

Personalised recommendations