Skip to main content

Abstract

Research on gene expression tends to focus on the factors which bind to enhancers and upstream promoter elements to provide specific regulation of a given gene. It is unclear, however, how any of these factors exert their influence to either activate or repress the target gene. The downstream target for all of these specific activators and repressors is the basal transcription apparatus, a set of proteins which is capable of mRNA synthesis from any RNA polymerase II promoter. In this review the functions of the individual basal transcription factors will be described, as well as the way upstream activating factors may influence the basal apparatus. The basal apparatus can be found in a pre-assembled complex, known as the RNA polymerase II holoenzyme, which contains other bridging factors that may link upstream activators to the basal machinery. Chromatin–remodeling proteins, which may be part of a holoenzyme, will be discussed in a holistic model of activator interactions with the basal transcription apparatus on chromatin templates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Buratowski S, Hahn S, Guarente L, et al. Five intermediate complexes in transcription initiation by RNA polymerase II. Cell 1989; 56:549–561.

    Article  PubMed  CAS  Google Scholar 

  2. Zawel L, Reinberg D. Common themes in assembly and function of eukaryotic transcription complexes. Annu Rev Biochem 1995; 64:533–561.

    Article  PubMed  CAS  Google Scholar 

  3. Van Dyke MW, Sawadogo M, Roeder RG. Stability of transcription complexes on class II genes. Mol Cell Biol 1989; 9:342–344.

    PubMed  Google Scholar 

  4. Jiang Y, Gralla JD. Uncoupling of initiation and reinitiation rates during HeLa RNA polymerase II transcription in vitro. Mol Cell Biol 1993; 13:4572–4577.

    PubMed  CAS  Google Scholar 

  5. Stringer KF, Ingles CJ, Greenblatt J. Direct and selective binding of an acidic transcriptional activation domain to the TATA-box factor TFIID. Nature 1990; 345:783–786.

    Article  PubMed  CAS  Google Scholar 

  6. Lin YS, Green MR. Mechanism of action of an acidic transcriptional activator in vitro. Cell 1991; 64:971–981.

    Article  PubMed  CAS  Google Scholar 

  7. Koleske AM, Young RA. An RNA polymerase II holoenzyme responsive to activators. Nature 1994; 368:466–469.

    Article  PubMed  CAS  Google Scholar 

  8. Ossipow V, Tassan JP, Nigg EA, et al. A mammalian RNA polymerase II holoenzyme containing all components required for promoter-specific transcription initiation. Cell 1995; 83:137–146.

    Article  PubMed  CAS  Google Scholar 

  9. Chao DM, Gadbois EL, Murray PJ, et al. A mammalian SRB protein associated with an RNA polymerase holoenzyme. Nature 1996; 380:82–85.

    Article  PubMed  CAS  Google Scholar 

  10. Maldonado E, Shiekhattar R, Sheldon M, et al. A human RNA polymerase II complex associated with SRB and DNA-repair proteins. Nature 1996; 381:86–89.

    Article  PubMed  CAS  Google Scholar 

  11. Parvin, J. D., Young, R.A. Regulatory targets in the RNA polymerase II holoenzyme. Curr. Opin. Genet. Dev. 1998; 8:565–570.

    Article  PubMed  CAS  Google Scholar 

  12. Barberis A, Pearlberg J, Simkovich N, et al. Contact with a component of the polymerase II holoenzyme suffices for gene activation. Cell 1995; 81:359–368.

    Article  PubMed  CAS  Google Scholar 

  13. Marciniak RA, Sharp PA. HIV-1 Tat protein promotes formation of more-processive elongation complexes. EMBO J 1991; 10:4189–4196.

    PubMed  CAS  Google Scholar 

  14. Xiao H, Pearson A, Coulombe B, et al. Binding of basal transcription factor TFIIH to the acidic activation domains of VP16 and p53. Mol Cell Biol 1994; 14:7013–7024.

    PubMed  CAS  Google Scholar 

  15. Tong X, Drapkin R, Reinberg D, et al. The 62- and 80-kDa subunits of transcription factor IIH mediate the interaction with Epstein-Barr virus nuclear protein 2. Proc Natl Acad Sci U S A 1995; 92:3259–3263.

    Article  PubMed  CAS  Google Scholar 

  16. Blau J, Xiao H, McCracken S, et al. Three functional classes of transcriptional activation domains. Mol Cell Biol 1996; 16:2044–2055.

    PubMed  CAS  Google Scholar 

  17. Yankulov KY, Pandes M, McCracken S, et al. TFIIH functions in regulating transcriptional elongation by RNA polymerase II in Xenopus oocytes. Mol Cell Biol 1996; 16:3291–3299.

    PubMed  CAS  Google Scholar 

  18. Sawadogo M, Sentenac A. RNA polymerase B (II) and general transcription factors. Annu Rev Biochem 1990; 59:711–754.

    Article  PubMed  CAS  Google Scholar 

  19. Acker, J., de Graaff, M., Cheynel, I., Khazak, V., Kedinger, C, Vigneron, M. Interactions between the human RNA polymerase II subunits. J Biol Chem. 1997; 272:16815–16821.

    Article  PubMed  CAS  Google Scholar 

  20. Nonet M, Sweetser D, Young RA. Functional redundancy and structural polymorphism in the large subunit of RNA polymerase II. Cell 1987; 50:909–915.

    Article  PubMed  CAS  Google Scholar 

  21. CordenJL. Tails of RNA polymerase II. Trends Biochem Sci 1990; 15:383–387.

    Article  Google Scholar 

  22. Meredith GD, Chang W–H, Li Y, et al. The C-terminal domain revealed in the structure of RNA polymerase II. J Mol Biol 1996; 258:413–419.

    Article  PubMed  CAS  Google Scholar 

  23. Lu H, Flores O, Weinmann R, et al. The nonphosphorylated form of RNA polymerase II preferentially associates with the initiation complex. Proc Natl Acad Sci U S A 1991; 88:10004–10008.

    Article  PubMed  CAS  Google Scholar 

  24. O’Brien T, Hardin S, Greenleaf A, et al. Phosphorylation of RNA polymerase II C-terminal domain and transcriptional elongation. Nature 1994; 370:75–77.

    Article  PubMed  Google Scholar 

  25. Lu H, Zawel L, Fisher L et al. Human general transcription factor IIH phosphorylates the C-terminal domain of RNA polymerase II. Nature 1992; 358:641–645.

    Article  PubMed  CAS  Google Scholar 

  26. Cho, E. J., Rodriguez, C.R., Takagi, T., Buratowski, S. Allosteric interactions between capping enzyme subunits and the RNA polymerase II carboxy-terminal domain. Genes Dev. 1998; 12:3482–3487.

    Article  PubMed  CAS  Google Scholar 

  27. Mortillaro, M. J., Blencowe, B.J., Wei, X., Nakayasu, H., Du, L., Warren, S.L., Sharp, P.A., Berezney, R. A hyperphosphorylated form of the large subunit of RNA polymerase II is associated with splicing complexes and the nuclear matrix. Proc Natl Acad Sci U S A 1996; 93:8253–8257.

    Article  PubMed  CAS  Google Scholar 

  28. McAllister, W. T. Structure and function of the bacteriophage T7 RNA polymerase (or, the virtues of simplicity). Cell Mol Biol Res. 1993; 39:385–391.

    PubMed  CAS  Google Scholar 

  29. Miyao, T., Woychik, N.A. RNA polymerase subunit RPB5 plays a role in transcriptional activation. Proc Natl Acad Sci U S A 1998; 95:15281–15286.

    Article  PubMed  CAS  Google Scholar 

  30. Petermann, R., Mossier, B.M., Aryee, D.N., Khazak, V., Golemis, E.A., Kovar, H. Oncogenic EWS-Flil interacts with hsRPB7, a subunit of human RNA polymerase II. Oncogene 1998; 17:603–610.

    Article  PubMed  CAS  Google Scholar 

  31. Schlegel, B. P., Green, V.J., Ladias, J.A., Parvin, J.D. BRCA1 interaction with RNA polymerase II reveals a role for hRPB2 and hRPB10α in activated transcription. Proc Natl Acad Sci U S A 2000; 97:3148–3153.

    PubMed  CAS  Google Scholar 

  32. Matsui T, Segall J, Weil A, et al. Multiple factors required for accurate initiation of transcription by purified RNA polymerase II. J Biol Chem 1980; 255:11992–11996.

    PubMed  CAS  Google Scholar 

  33. Bucher P. Weight matrix descriptions of four eukaryotic RNA polymerase II promoter elements derived from 502 unrelated promoter sequences. J Mol Biol 1990; 212:563–578.

    Article  PubMed  CAS  Google Scholar 

  34. Purnell BA, Emanuel PA, Gilmour DS. TFIID sequence recognition of the initiator and sequences farther downstream in Drosophila class II genes. Genes Dev 1994; 8:830–842.

    Article  PubMed  CAS  Google Scholar 

  35. Burke TW, Kadonaga JT. Drosophila TFIID binds to a conserved downstream basal promoter element that is present in many TATA-box-deficient promoters. Genes Dev 1996; 10:711–724.

    Article  PubMed  CAS  Google Scholar 

  36. Nikolov DB, Hu SH, Lin J, et al. Crystal structure of TFIID TATA-box binding protein. Nature 1992; 360:40–46.

    Article  PubMed  CAS  Google Scholar 

  37. Chasman DI, Flaherty KM, Sharp PA et al. Crystal structure of yeast TATA-binding protein and model for interaction with DNA. Proc Natl Acad Sci U S A 1993; 90:8174–8178.

    Article  PubMed  CAS  Google Scholar 

  38. Kim JL, Nikolov DB, Burley SK. Co-crystal structure of TBP recognizing the minor groove of a TATA element. Nature 1993; 365:520–527.

    Article  PubMed  CAS  Google Scholar 

  39. Kim Y, Geiger JH, Hahn S et al. Crystal structure of a yeast TBP/TATA-box complex. Nature 1993; 365:512–520.

    Article  PubMed  CAS  Google Scholar 

  40. Coleman RA, Taggart AK, Benjamin LR, et al. Dimerization of the TATA binding protein. J Biol Chem 1995; 270:13842–13849.

    Article  PubMed  CAS  Google Scholar 

  41. Taggart AK, Pugh BF. Dimerization of TFIID when not bound to DNA. Science 1996; 272:1331–1333.

    Article  PubMed  CAS  Google Scholar 

  42. Tabuchi H, Handa H, Hirose S. Underwinding of DNA on binding of yeast TFIID to the TATA element. Biochem Biophys Res Commun 1993; 192:1432–1438.

    Article  PubMed  CAS  Google Scholar 

  43. Parvin JD, McCormick RJ, Sharp PA, et al. Pre-bending of a promoter sequence enhances affinity for the TATA-binding factor. Nature 1995; 373:724–727.

    Article  PubMed  CAS  Google Scholar 

  44. Comai L, Tanese N, Tjian R. The TATA-binding protein and associated factors are integral components of the RNA polymerase I transcription factor, SL1. Cell 1992; 68:965–976.

    Article  PubMed  CAS  Google Scholar 

  45. Sharp PA. TATA-binding protein is a classless factor. Cell 1992; 68:819–821.

    Article  PubMed  CAS  Google Scholar 

  46. Dynlacht BD, Hoey T, Tjian R. Isolation of coactivators associated with the TATA-binding protein that mediate transcriptional activation. Cell 1991; 66:563–576.

    Article  PubMed  CAS  Google Scholar 

  47. Brou C, Chaudhary S, Davidson I, et al. Distinct TFIID complexes mediate the effect of different transcriptional activators. EMBO J 1993; 12:489–499.

    PubMed  CAS  Google Scholar 

  48. Jacq X, Brou C, Lutz Y et al. Human TAFII30 is present in a distinct TFIID complex and is required for transcriptional activation by the estrogen receptor.Cell 1994; 79:107–117.

    Article  PubMed  CAS  Google Scholar 

  49. Hoffman A, Chiang C-M, Oelgeschläger T, et al. A histone octamer-like structure within TFIID. Nature 1996; 380:356–359.

    Article  Google Scholar 

  50. Xie X, Kobuko T, Cohen S, et al. Structural similarity between TAFs and the heterotetrameric core of the histone octamer. Nature 1996; 380:316–322.

    Article  PubMed  CAS  Google Scholar 

  51. Nakajima N, Horikoshi M, Roeder RG. Factors involved in specific transcription by mammalian RNA polymerase II: purification, genetic specificity, and TATA box-promoter interactions of TFIID. Mol Cell Biol 1988; 8:4028–4040.

    PubMed  CAS  Google Scholar 

  52. Sawadogo M, Roeder RG. Interaction of a gene-specific transcription factor with the adenovirus major late promoter upstream of the TATA box region. Cell 1985; 43:165–175.

    Article  PubMed  CAS  Google Scholar 

  53. Horikoshi M, Carey MF, Kakidani H, et al. Mechanism of action of a yeast activator: direct effect of GAL4 derivatives on mammalian TFIID-promoter interactions. Cell 1988; 54:665–669.

    Article  PubMed  CAS  Google Scholar 

  54. Horikoshi M, Hai T, Lin YS, et al. Transcription factor ATF interacts with the TATA factor to facilitate establishment of a preinitiation complex. Cell 1988; 54:1033–1042.

    Article  PubMed  CAS  Google Scholar 

  55. Oelgelschlager T, Chiang C-M, Roeder RG. Topology and reorganization of a human TFIID-promoter complex. Nature 1996; 382:735–738.

    Article  Google Scholar 

  56. Parvin JD, Sharp PA. DNA topology and a minimal set of basal factors for transcription by RNA polymerase II. Cell 1993; 73:533–540.

    Article  PubMed  CAS  Google Scholar 

  57. Sauer F, Hansen SK, Tjian R. Multiple TAFIIs directing synergistic activation of transcription. Science 1995; 270:1783–1788.

    Article  PubMed  CAS  Google Scholar 

  58. Sauer F, Hansen SK, Tjian R. DNA template and activator-coactivator requirements for transcriptional synergism by Drosophila Bicoid. Science 1995; 270:1825–1828.

    Article  PubMed  CAS  Google Scholar 

  59. Kretzschmar M, Kaiser K, Lottspeich F, et al. A novel mediator of class II gene transcription with homology to viral immediate-early transcriptional regulators. Cell 1994; 78:525–534.

    Article  PubMed  CAS  Google Scholar 

  60. Dikstein R, Ruppert S, Tjian R. TAFII250 is a bipartite protein kinase that phosphorylates the basal transcription factor RAP74. Cell 1996; 84:781–790.

    Article  PubMed  CAS  Google Scholar 

  61. Kitajima S, Chibazakura T, Yonaha M, et al. Regulation of the human general transcription initiation factor TFIIF by phosphorylation. J Biol Chem 1994; 269:29970–29977.

    PubMed  CAS  Google Scholar 

  62. Ruppert S, Wang EH, Tjian R. Cloning and expression of human TAFII250: a TBP-associated factor implicated in cell-cycle regulation. Nature 1993; 362:175–179.

    Article  PubMed  CAS  Google Scholar 

  63. Hisatake K, Hasegawa S, Takada R, et al. The p250 subunit of native TATA box-binding factor TFIID is the cell-cycle regulatory protein CCG1. Nature 1993; 362:179–181.

    Article  PubMed  CAS  Google Scholar 

  64. Sekiguchi T, Miyata T, Nishimoto T. Molecular cloning of the cDNA of human X chromosomal gene (CCG1) which complements the temperature-sensitive G1 mutants, tsBN462 and tsl3, of the BHK cell line. EMBO J 1988; 7:1683–1687.

    PubMed  CAS  Google Scholar 

  65. Sekiguchi T, Nohiro Y, Nakamura Y, et al. The human CCG1 gene, essential for progression of the G1 phase, encodes a 210-kilodalton nuclear DNA-binding protein. Mol Cell Biol 1991; 11:3317–3325.

    PubMed  CAS  Google Scholar 

  66. Smale ST, Baltimore D. The “initiator” as a transcription control element. Cell 1989; 57:103–113.

    Article  PubMed  CAS  Google Scholar 

  67. Javahery R, Khachi A, Lo K, et al. DNA sequence requirements for transcriptional initiator activity in mammalian cells. Mol Cell Biol 1994; 14:116–127.

    PubMed  CAS  Google Scholar 

  68. Roy AL, Meisterernst M, Pognonec P, et al. Cooperative interaction of an initiator-binding transcription initiation factor and the helix-loop-helix activator USF. Nature 1991; 354:245–248.

    Article  PubMed  CAS  Google Scholar 

  69. Roy AL, Malik S, Meisterernst M, et al. An alternative pathway for transcriptional initiation involving TFII-I. Nature 1993; 365:355–359.

    Article  PubMed  CAS  Google Scholar 

  70. Usheva A, Shenk T. TATA-binding protein-independent initiation: YY1, TFIIB, and RNA polymerase II direct basal transcription on supercoiled template DNA. Cell 1994; 76:1115–1121.

    Article  PubMed  CAS  Google Scholar 

  71. Ha I, Lane W, Reinberg D. Cloning of a human gene encoding the general transcription initiation factor IIB. Nature 1991; 352:689–695.

    Article  PubMed  CAS  Google Scholar 

  72. Imbalzano AN, Zaret KS, Kingston RE. Transcription factor (TF) IIB and TFIIA can independently increase the affinity of the TATA-binding protein for DNA. J Biol Chem 1994; 269:8280–8286.

    PubMed  CAS  Google Scholar 

  73. Nikolov DB, Chen H, Halay ED, et al. Crystal structure of a TFIIB-TBP-TATA-element ternary complex. Nature 1995; 377:119–128.

    Article  PubMed  CAS  Google Scholar 

  74. Pinto I, Ware DE, Hampsey M. The yeast SUA7 gene encodes a homolog of human transcription factor TFIIB and is required for normal start site selection in vivo. Cell 1992; 68:977–988.

    Article  PubMed  CAS  Google Scholar 

  75. Berroteran RW, Ware DE, Hampsey M. The sua8 suppressors of Saccharomyces cerevisiae encode replacements of conserved residues within the largest subunit of RNA polymerase II and affect transcription start site selection similarly to sua7 (TFIIB) mutations. Mol Cell Biol 1994; 14:226–237.

    PubMed  CAS  Google Scholar 

  76. Tschochner H, Sayre MH, Flanagan PM, et al. Yeast RNA polymerase II initiation factor e: isolationand identification as the functional counterpart of human transcription factor IIB. Proc Natl Acad Sci U S A 1992; 89:11292–11296.

    Article  PubMed  CAS  Google Scholar 

  77. Maldonado E, Ha I, Cortes P, et al. Factors involved in specific transcription by mammalian RNA polymerase II: role of transcription factors IIA, HD, and IIB during formation of a transcription-competent complex. Mol Cell Biol 1990; 10:6335–6347.

    PubMed  CAS  Google Scholar 

  78. Roberts SG, Green MR. Activator-induced conformational change in general transcription factor TFIIB. Nature 1994; 371:717–720.

    Article  PubMed  CAS  Google Scholar 

  79. Lin YS, Ha I, Maldonado E, et al. Binding of general transcription factor TFIIB to an acidic activating region. Nature 1991; 353:569–571.

    Article  PubMed  CAS  Google Scholar 

  80. Sopta M, Burton ZF, Greenblatt J. Structure and associated DNA-helicase activity of a general transcription initiation factor that binds to RNA polymerase II. Nature 1989; 341:410–414.

    Article  PubMed  CAS  Google Scholar 

  81. Aso T, Vasavada HA, Kawaguchi T, et al. Characterization of cDNA for the large subunit of the transcription initiation factor TFIIF. Nature 1992; 355:461–464.

    Article  PubMed  CAS  Google Scholar 

  82. Finkelstein A, Kostrub CF, Li J, et al. A cDNA encoding RAP74, a general initiation factor for transcription by RNA polymerase II. Nature 1992; 355:464–467.

    Article  PubMed  CAS  Google Scholar 

  83. Flores O, Lu H, Killeen M, et al. The small subunit of transcription factor IIF recruits RNA polymerase II into the preinitiation complex. Proc Natl Acad Sci USA 1991; 88:9999–10003.

    Article  PubMed  CAS  Google Scholar 

  84. Ha I, Roberts S, Maldonado E, et al. Multiple functional domains of human transcription factor IIB: distinct interactions with two general transcription factors and RNA polymerase II. Genes Dev 1993; 7:1021–1032.

    Article  PubMed  CAS  Google Scholar 

  85. Conaway JW, Conaway RC. An RNA polymerase II transcription factor shares functional properties with Escherichia coli sigma 70. Science 1990; 248:1550–1553.

    Article  PubMed  CAS  Google Scholar 

  86. Flores O, Maldonado E, Reinberg D. Factors involved in specific transcription by mammalian RNA polymerase II: factors IIE and IIF independently interact with RNA polymerase II. J Biol Chem 1989; 264:8913–8921.

    PubMed  CAS  Google Scholar 

  87. Price DH, Sluder AE, Greenleaf AL. Dynamic interaction between a Drosophila transcription factor and RNA polymerase II. Mol Cell Biol 1989; 9:1465–1475.

    PubMed  CAS  Google Scholar 

  88. Zawel L, Kumar KP, Reinberg D. Recycling of the general transcription factors during RNA polymerase II transcription. Genes Dev 1995; 9:1479–1490.

    Article  PubMed  CAS  Google Scholar 

  89. Joliot V, Demma M, Prywes R. Interaction with RAP74 subunit of TFIIF is required for transcriptional activation by serum response factor. Nature 1995; 373:632–635.

    Article  PubMed  CAS  Google Scholar 

  90. Martin ML, Lieberman PM, Curran T. Fos-Jun dimerization promotes interaction of the basic region with TFIIE-34 and TFIIF. Mol Cell Biol 1996; 16:2110–2118.

    PubMed  CAS  Google Scholar 

  91. Peterson MG, Inostroza J, Maxon ME, et al. Structure and function of the recombinant subunits of human TFIIE. Nature 1991; 354:369–373.

    Article  PubMed  CAS  Google Scholar 

  92. Ohkuma Y, Sumimoto H, Hoffman A, et al. Structural motifs and potential s holomogies in the large subunit of human general transcription factor TFIIE.

    Google Scholar 

  93. Sumimoto H, Ohkuma Y, Sinn E, et al. Conserved sequence motifs in the small subunit of human general transcription factor TFIIE. Nature 1991; 354:401–404.

    Article  PubMed  CAS  Google Scholar 

  94. Holstege FCP, Tantin D, Carey M, et al. The requirement for the basal transcription factor IIE is determined by the helical stability of promoter DNA. EMBO J 1995; 14:810–819.

    PubMed  CAS  Google Scholar 

  95. Maxon ME, Goodrich JA, Tjian R. Transcription factor IIE binds preferentially to RNA polymerase Ha and recruits TFIIH: a model for promoter clearance. Genes Dev 1994; 8:515–524.

    Article  PubMed  CAS  Google Scholar 

  96. Tong X, Wang F, Thut CJ, et al. The Epstein-Barr virus nuclear protein 2 acidic domain can interact with TFIIB, TAF40, and RPA70 but not with TATA-binding protein. J Virol 1995; 69:585–588.

    PubMed  CAS  Google Scholar 

  97. Sauer F, Fondell JD, Ohkuma Y, et al. Control of transcription by Kruppel through interactions with TFIIB and TFIIE beta. Nature 1995; 375:162–164.

    Article  PubMed  CAS  Google Scholar 

  98. Leuther KK, Bushnell DA, Kornberg RD. Two-dimensional crystallography of TFIIB- and IEE-RNA polymerase II complexes: implications for start site selection and initiation complex formation. Cell 1996; 85:773–779.

    Article  PubMed  CAS  Google Scholar 

  99. Parvin JD, Shykind BM, Meyers RE et al. Multiple sets of basal factors initiate transcription by RNA polymerase II. J Biol Chem 1994; 269:18414–18421.

    PubMed  CAS  Google Scholar 

  100. Timmers HTM. Transcription initiation by RNA polymerase II does not require hydrolysis of the beta-gamma phosphoanhydride bond of ATP. EMBO J 1994; 13:391–399.

    PubMed  CAS  Google Scholar 

  101. Goodrich JA, Tjian R. Transcription factors IIE and IIH and ATP hydrolysis direct promoter clearance by RNA polymerase II. Cell 1994; 77:145–156.

    Article  PubMed  CAS  Google Scholar 

  102. Pan G, Greenblatt J. Initiation of transcription by RNA polymerase II is limited by melting of the promoter DNA in the region immediately upstream of the initiation site. J Biol Chem 1994; 269:30101–30104.

    PubMed  CAS  Google Scholar 

  103. Drapkin R, Reinberg D. The multifunctional TFIIH complex and transcriptional control. Trends Biochem Sci 1994; 19:504–508.

    Article  PubMed  CAS  Google Scholar 

  104. Schaeffer L, Roy R, Humbert S, et al. DNA repair helicase: a component of BTF2 (TFIIH) basic transcription factor. Science 1993; 260:58–63.

    Article  PubMed  CAS  Google Scholar 

  105. Drapkin R, Reardon JT, Anseri A, et al. Dual role of TFIIH in DNA excision repair and in transcription by RNA polymerase II. Nature 1994; 368:769–772.

    Article  PubMed  CAS  Google Scholar 

  106. Ma L, Siemssen ED, Noteborn MHM, et al. The xeroderma pigmentosum group B protein ERCC3 produced in the baculovirus system exhibits DNA helicase activity. Nucl Acids Res 1994; 22:4095–4102.

    Article  PubMed  CAS  Google Scholar 

  107. Sung P, Bailly V, Weber C, et al. Human xeroderma pigmentosum group D gene encodes a DNA helicase. Nature 1993; 365:852–855.

    Article  PubMed  CAS  Google Scholar 

  108. Feaver WJ, Syjstrup JQ, Bardwell AJ, et al. Dual roles of a multiprotein complex from S. cerevisiae in transcription and DNA repair. Cell 1993; 75:1379–1387.

    Article  PubMed  CAS  Google Scholar 

  109. Park E, Guzder SN, Kokken MHM, et al. RAD25 (SSL2), the yeast homolog of the human xeroderma pigmentosum group B DNA repair gene, is essential for viability. Proc Natl Acad Sci U S A 1992; 89:11416–11420.

    Article  PubMed  CAS  Google Scholar 

  110. Hwang JR, Moncollin V, Vermeulen W, et al. A 3’–5’ XPB helicase defect in repair/transcription factor TFIIH of xeroderma pigmentosum group B affects both DNA repair and transcription. J Biol Chem 1996; 271:15898–15904.

    Article  PubMed  CAS  Google Scholar 

  111. Shuttleworth J, Godfrey R, Colman A. p40MO15, a cdc2-related protein kinase involved in negative regulation of meiotic maturation of Xenopus oocytes. EMBO J 1990; 9:3233–3240.

    PubMed  CAS  Google Scholar 

  112. Roy R, Adamczewski JP, Seroz T, et al. The MO15 cell cycle kinase is associated with the TFIIH transcription-DNA repair factor. Cell 1994; 79:1093–1101.

    Article  PubMed  CAS  Google Scholar 

  113. Serizawa H, Mäkelä TP, Conaway JW, et al. Association of Cdk-activating kinase subunits with transcription factor TFIIH. Nature 1995; 374:280–283.

    Article  PubMed  CAS  Google Scholar 

  114. Shiekhattar R, Mermelstein F, Fisher RP, et al. Cdk-activating kinase complex is a component of human transcription factor TFIIH. Nature 1995; 374:283–287.

    Article  PubMed  CAS  Google Scholar 

  115. Fisher RP, Jin P, Chamberlin HM, et al. Alternative mechanisms of CAK assembly require an assembly factor or an activating kinase. Cell 1995; 83:47–57.

    Article  PubMed  CAS  Google Scholar 

  116. Makela TP, Parvin JD, Kim J, et al. A kinase–deficient transcription factor IIH is functional in basal and activated transcription. Proc Natl Acad Sci U S A 1995; 92:5174–5178.

    Article  PubMed  CAS  Google Scholar 

  117. Drapkin R, Le Roy G, Cho H, et al. Human cyclin-dependent kinase-activating kinase exists in three distinct complexes. Proc Natl Acad Sci USA 1996; 93:6488–6493.

    Article  PubMed  CAS  Google Scholar 

  118. Serizawa H, Conaway JW, Conaway RC. Phosphorylation of C-terminal domain of RNA polymerase II is not required in basal transcription. Nature 1993; 363:371–374.

    Article  PubMed  CAS  Google Scholar 

  119. Tirode, F., Busso, D., Coin, F., Egly, J.M. Reconstitution of the transcription factor TFIIH: assignment of functions for the three enzymatic subunits, XPB, XPD, and cdk7. Mol Cell 1999; 3:87–95.

    Article  PubMed  CAS  Google Scholar 

  120. Moreland, R. J., Tirode, F., Yan, Q., Conaway, J.W., Egly, J.M., Conaway, R.C. A role for the TFIIH XPB DNA helicase in promoter escape by RNA polymerase II. J Biol Chem. 1999; 274:22127–22130

    Article  PubMed  CAS  Google Scholar 

  121. Meisterernst M, Roy AL, Lieu HM, et al. Activation of class II gene transcription by regulatory factors is potentiated by a novel activity. Cell 1991; 66:981–993.

    Article  PubMed  CAS  Google Scholar 

  122. Meisterernst M, Roeder RG. Family of proteins that interact with TFIID and regulate promoter activity. Cell 1991; 67:557–567.

    Article  PubMed  CAS  Google Scholar 

  123. Cortes P, Flores O, Reinberg D. Factors involved in specific transcription by mammalian RNA polymerase II: purification and analysis of transcription factor IIA and identification of transcription factor ID. Mol Cell Biol 1992; 12:413–421.

    PubMed  CAS  Google Scholar 

  124. Coulombe B, Killeen M, Liljelund P, et al. Identification of three mammalian proteins that bind to the yeast TATA box protein TFIID. Gene Expr 1992; 2:99–110.

    PubMed  CAS  Google Scholar 

  125. DeJong J, Roeder RG. A single cDNA, hTFIIA/a, encodes both the p35 and pl9 subunits of human TFIIA. Genes Dev 1993; 7:2220–2234.

    Article  PubMed  CAS  Google Scholar 

  126. Ma D, Watanabe H, Mermelstein F et al. Isolation of a cDNA encoding the largest subunit of TFIIA reveals function important for activated transcription. Genes Dev 1993; 7:2246–2257.

    Article  PubMed  CAS  Google Scholar 

  127. Sun X, Ma D, Sheldon, et al. Reconstitution of human TFIIA activity from recombinant polypeptides: a role in TFIID–mediated transcription. Genes Dev 1994; 8:2336–2348.

    Article  PubMed  CAS  Google Scholar 

  128. DeJong J, Bernstein R, Roeder RG. Human general transcription factor TFIIA: characterization of a cDNA encoding the small subunit and requirement for basal and activated transcription. Proc Natl Acad Sci U S A 1995; 92:3313–3317.

    Article  PubMed  CAS  Google Scholar 

  129. Tan S, Hunziker Y, Sargent DF, et al. Crystal structure of a yeast TFIIA/TBP/DNA complex. Nature 1996; 381:127–134.

    Article  PubMed  CAS  Google Scholar 

  130. Geiger JH, Hahn S, Lee S, et al. Crystal structure of the yeast TFIIA/TBP/DNA complex. Science 1996; 272:830–836.

    Article  PubMed  CAS  Google Scholar 

  131. Kang JJ, Auble DT, Ranish JA, et al. Analysis of the yeast transcription factor TFIIA: distinct functional regions and a polymerase II-specific role in basal and activated transcription. Mol Cell Biol 1995; 15:1234–1243.

    PubMed  CAS  Google Scholar 

  132. Merino A, Madden KR, Lane WS, et al. DNA topoisomerase I is involved in both repression and activation of transcription. Nature 1993; 365:227–232.

    Article  PubMed  CAS  Google Scholar 

  133. Shykind BM, Kim J, Sharp PA. Activation of the TFIID-TFIIA complex with HMG-2. Genes Dev 1995; 9:1354–1365.

    Article  PubMed  CAS  Google Scholar 

  134. Grosschedl R, Giese K, Pagel J. HMG domain proteins: architectural elements in the assembly of nucleoprotein structures. Trends Genet 1994; 10:94–100.

    Article  PubMed  CAS  Google Scholar 

  135. Ge H, Roeder RG. Purification, cloning, and characterization of a human coactivator, PC4, that mediates transcriptional activation of class II genes. Cell 1994; 78:513–523.

    Article  PubMed  CAS  Google Scholar 

  136. Goppelt A, Stelzer G, Lottspeich F, et al. A mechanism for repression of class II gene transcription through specific binding of NC2 to TBP-promoter complexes via heterodimeric histone fold domains. EMBO J 1996; 15:3105–3116.

    PubMed  CAS  Google Scholar 

  137. Inostroza J A, Mermelstein FH, Ha I, et al. Drl, a TATA-binding protein-associated phosphoprotein and inhibitor of class II gene expression. Cell 1992; 70:477–489.

    Article  PubMed  CAS  Google Scholar 

  138. Ge H, Roeder RG. The high mobility group protein HMG1 can reversibly inhibit class II gene transcription by interaction with the TATA-binding protein. J Biol Chem 1994; 269:17136–17140.

    PubMed  CAS  Google Scholar 

  139. Kim TK, Zhao Y, Ge H, et al. TATA-binding protein residues implicated in a functional interplay between negative cofactor NC2 (Drl) and general factors TFIIA and TFIIB. J Biol Chem 1995; 270:10976–10981.

    Article  PubMed  CAS  Google Scholar 

  140. Stelzer G, Goppelt A, Lottspeich F, et al. Repression of basal transcription by HMG2 is counteracted by TFIIH-associated factors in an ATP-dependent process. Mol Cell Biol 1994; 14:4712–4721.

    PubMed  CAS  Google Scholar 

  141. MaD, Olave I, Merino A, et al. Separation of the transcriptional coactivator and antirepression functions of transcription factor IIA. Proc Natl Acad Sci U S A 1996; 93:6583–6588.

    Article  Google Scholar 

  142. Workman JL, Kingston RE. Nucleosome core displacement in vitro via a metastable transcription factor-nucleosome complex. Science 1992; 258:1780–1784.

    Article  PubMed  CAS  Google Scholar 

  143. Thompson CM, Young RA. General requirement for RNA polymerase II holoenzymes in vivo. Proc Natl Acad Sci U S A 1995; 92:4587–4590.

    Article  PubMed  CAS  Google Scholar 

  144. Scully, R., Anderson, S.F., Chao, D.M., Wei, W., Ye, L., Young, R.A., Livingston, D.M., Parvin, J.D. BRCA1 is a component of the RNA polymerase II holoenzyme. Proc Natl Acad Sci U S A 1997; 94:5605–5610

    Article  PubMed  CAS  Google Scholar 

  145. Chiba, N., Suldan, Z., Freedman, L.P., Parvin, J.D. Binding of liganded vitamin D receptor to the vitamin D receptor interacting protein coactivator complex induces interaction with RNA polymerase II holoenzyme. J. Biol Chem 2000; 275:10719–10722

    Article  PubMed  CAS  Google Scholar 

  146. Thompson CM, Koleske AJ, Chao DM, et al. A multisubunit complex associated with the RNA polymerase II CTD and TATA-binding protein in yeast. Cell 1993; 73:1361–1375.

    Article  PubMed  CAS  Google Scholar 

  147. Hengartner CJ, Thompson CM, Zhang J, et al. Association of an activator with an RNA polymerase II holoenzyme. Genes Dev 1995; 9:897–910.

    Article  PubMed  CAS  Google Scholar 

  148. Liao SM, Zhang J, Jeffery DA et al. A kinase-cyclin pair in the RNA polymerase II holoenzyme. Nature 1995; 374:193–196.

    Article  PubMed  CAS  Google Scholar 

  149. Tassan J-P, Jaquenoud M, Léopold P, et al. Identification of human cyclin-dependent kinase 8, a putative protein kinase partner for cyclin C. Proc Natl Acad Sci U S A 1995; 92:8871–8875.

    Article  PubMed  CAS  Google Scholar 

  150. Rickert P, Seghezzi W, Shanahan F, et al. Cyclin C/CDK8 is a novel CTD kinase associated with RNA polymerase II. Oncogene 1996; 12:2631–2640.

    PubMed  CAS  Google Scholar 

  151. Kim YJ, Bjorklund S, Li Y, et al. A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 1994; 77:599–608.

    Article  PubMed  CAS  Google Scholar 

  152. Myers, L. C, Gustafsson, CM., Bushnell, D.A., Lui, M., Erdjument-Bromage, H., Tempst, P., Kornberg, R.D. The Med proteins of yeast and their function through the RNA polymerase II carboxy-terminal domain. Genes Dev 1998; 12:45–54

    Article  PubMed  CAS  Google Scholar 

  153. Svejstrup, J. Q., Li, Y., Fellows, J., Gnatt, A., Bjorklund, S., Kornberg, R.D. Evidence for a mediator cycle at the initiation of transcription. Proc Natl Acad Sci U S A 1997; 94:6075–6078

    Article  PubMed  CAS  Google Scholar 

  154. Pan, G., Aso, T., Greenblatt, J. Interaction of elongation factors TFIIS and elongin A with a human RNA polymerase II holoenzyme capable of promoter-specific initiation and responsive to transcriptional activators. J Biol Chem 1997; 272:24563–24571

    Article  PubMed  CAS  Google Scholar 

  155. Cho, H., Maldonado, E., Reinberg, D. Affinity purification of a human RNA polymerase II complex using monoclonal antibodies against transcription factor IIF. J Biol Chem 1997; 272:11495–11502

    Article  PubMed  CAS  Google Scholar 

  156. Nakajima, T., Uchida, C, Anderson, S.F., Parvin, J.D., Montminy, M. Analysis of a cAMP-responsive activator reveals a two-component mechanism for transcriptional induction via signal-dependent factors. Genes Dev 1997; 11:738–747

    Article  PubMed  CAS  Google Scholar 

  157. Neish, A. S., Anderson, S.F., Schlegel, B.P., Wei, W., Parvin, JD. Factors associated with the mammalian RNA polymerase II holoenzyme. Nuc. Acids Res. 1998; 26:847–853.

    Article  CAS  Google Scholar 

  158. Kim, T. K., Kim, T.H., Maniatis, T. Efficient recruitment of TFIIB and CBP-RNA polymerase II holoenzyme by an interferon-beta enhanceosome in vitro. Proc Natl Acad Sci U S A 1998; 95:12191–12196

    Article  PubMed  CAS  Google Scholar 

  159. Owen-Hughes T, Workman JL. Experimental analysis of chromatin function in transcription control. Crit Rev Eukaryot Gene Expr 1994; 4:403–441.

    PubMed  CAS  Google Scholar 

  160. Knezetic J A, Luse DS. The presence of nucleosomes on a DNA template prevents initiation by RNA polymerase II in vitro. Cell 1986; 45:95–104.

    Article  PubMed  CAS  Google Scholar 

  161. Lorch Y, LaPointe JW, Kornberg RD. Nucleosomes inhibit the initiation of transcription but allow chain elongation with the displacement of hi stones. Cell 1987; 49:203–210.

    Article  PubMed  CAS  Google Scholar 

  162. Workman JL, Roeder RG, Kingston RE. An upstream transcription factor, USF (MLTF), facilitates the formation of preinitation complexes during an in vitro chromatin assembly. EMBO J 1990; 9:1299–1308.

    PubMed  CAS  Google Scholar 

  163. Matsui T. Transcription of adenovirus type 2 major late and peptide DC genes under conditions of in vitro nucleosome assembly. Mol Cell Biol 1987; 7:1401–1408.

    PubMed  CAS  Google Scholar 

  164. Knezetic J A, Jacob GA, Luse DS. Assembly of RNA polymerase II preinitiation complexes before assembly of nucleosomes allows efficient initation by RNA polymerase II in vitro. Cell 1986; 45:95–104.

    Article  PubMed  CAS  Google Scholar 

  165. Workman JL, Roeder RG. Binding of transcription factor TFIID to the major late promoter during in vitro nucleosome assembly potentiates subsequent initiation by RNA polymerase II. Cell 1987; 51:613–622.

    Article  PubMed  CAS  Google Scholar 

  166. Meisterernst M, Horikoshi M, Roeder RG. Recombinant yeast TFIID, a general transcription factor, mediates activation by the gene-specific factor USF in a chromatin assembly assay. Proc Natl Acad Sci U S A 1990; 87:9153–9157.

    Article  PubMed  CAS  Google Scholar 

  167. Cosma, M. P., Tanaka, T., Nasmyth, K. Ordered recruitment of transcription and chromatin remodeling factors to a cell cycle- and developmentally regulated promoter. Cell 1999; 97:299–311

    Article  PubMed  CAS  Google Scholar 

  168. Cairns BR, Kim YJ, Sayre MH, et al. A multisubunit complex containing the SWI1/ADR6, SWI2/SNF2, SWI3, SNF5, and SNF6 gene products isolated from yeast. Proc Natl Acad Sci U S A 1994; 91:1950–1954.

    Article  PubMed  CAS  Google Scholar 

  169. Peterson CL, Dingwall A, Scott MP. Five SWI/SNF gene products are components of a large multisubunit complex required for transcriptional enhancement. Proc Natl Acad Sci U S A 1994; 91:2905–2908.

    Article  PubMed  CAS  Google Scholar 

  170. Cote J, Quinn J, Workman JL, et al. Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex. Science 1994; 265:53–60.

    Article  PubMed  CAS  Google Scholar 

  171. Wilson CJ, Chao DM, Imbalzano AN, et al. RNA polymerase II holoenzyme contains SWI/SNF regulators involved in chromatin remodeling. Cell 1996; 84:235–244.

    Article  PubMed  CAS  Google Scholar 

  172. Khavari PA, Peterson CL, Tamkun JW, et al. BRG1 contains a conserved domain of the SWI2/SNF2 family necessary for normal mitotic growth and transcription. Nature 1993; 366:170–174.

    Article  PubMed  CAS  Google Scholar 

  173. Muchardt C, Yaniv M. A human homologue of Saccharomyces cerevisiae SNF2/SWI2 and Drosophila brm genes potentiates transcriptional activation by the glucocorticoid receptor. EMBO J 1993; 12:4279–4290.

    PubMed  CAS  Google Scholar 

  174. Muchardt C, Sardet C, Bourachot B et al. A human protein with homology to Saccharomyces cerevisiae SNF5 interacts with the potential helicase hbrm. Nucl Acids Res 1995; 23:1127–1132.

    Article  PubMed  CAS  Google Scholar 

  175. Kwon H, Imbalzano AN, Khavari PA, et al. Nucleosome disruption and enhancement of activator binding by a human SWI/SNF complex. Nature 1994; 370:477–481.

    Article  PubMed  CAS  Google Scholar 

  176. Brown, S. A., Imbalzano, A.N., Kingston, R.E. Activator-dependent regulation of transcriptional pausing on nucleosomal templates. Genes Dev. 1996; 10:1479–1490

    Article  PubMed  CAS  Google Scholar 

  177. Lee DY, Hayes JJ, Pruss D et al. A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell 1993; 72:73–84.

    Article  PubMed  CAS  Google Scholar 

  178. Wolffe AP, Pruss D. Targeting chromatin disruption: transcription regulators that acetylate histones. Cell 1996; 84:817–819.

    Article  PubMed  CAS  Google Scholar 

  179. Yang X-J, Ogryzko VV, Nishikawa J-I, et al. A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 1996; 382:319–324.

    Article  PubMed  CAS  Google Scholar 

  180. Ogryzko, V. V., Kotani, T., Zhang, X., Schlitz, R.L., Howard, T., Yang, X.J., Howard, B.H., Qin, J., Nakatani, Y. Histone-like TAFs within the PCAF histone acetylase complex. Cell 1998; 94:35–44.

    Article  PubMed  CAS  Google Scholar 

  181. Grant, P. A., Duggan, L., Cote, J., Roberts, S.M., Brownell, J.E., Candau, R., Ohba, R., Owen-Hughes, T., Allis, CD., Winston, F., Berger, S.L., Workman, J.L. Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex. Genes Dev. 1997; 11:1640–1650.

    Article  PubMed  CAS  Google Scholar 

  182. Hassig, C. A., Fleischer, T.C., Billin, A.N., Schreiber, S.L., Ayer, D.E. Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell 1997; 89:341–347.

    Article  PubMed  CAS  Google Scholar 

  183. Brehm, A., Miska, E.A., McCance, D.J., Reid, J.L., Bannister, A.J., Kouzarides, T. Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 1998; 391:597–601.

    Article  PubMed  CAS  Google Scholar 

  184. Kass, S. U., Pruss, D., Wolffe, A.P. How does DNA methylation repress transcription? Trends Genet. 1997; 13:444–449

    Article  PubMed  CAS  Google Scholar 

  185. Kingston, R. E. A shared but complex bridge. Nature 1999; 399:199–200

    Article  PubMed  CAS  Google Scholar 

  186. Asturias, F. J., Jiang, Y.W., Myers, L.C., Gustafsson, CM., Romberg, R.D. Conserved structures of mediator and RNA polymerase II holoenzyme. Science 1999; 283:985–987

    Article  PubMed  CAS  Google Scholar 

  187. Naar, A. M., Beaurang, P.A., Zhou, S., Abraham, S., Solomon, W., Tjian, R. Composite co-activator ARC mediates chromatin-directed transcriptional activation. Nature 1999; 398:828–832

    Article  PubMed  CAS  Google Scholar 

  188. Rachez, C, Lemon, B.D., Suldan, Z., Bromleigh, V., Gamble, M., Naar, A.M., Erdjument-Bromage, H., Tempst, P., Freedman, L.P. Ligand-dependent transcription activation by nuclear receptors requires the DRIP complex. Nature 1999; 398:824–828

    Article  PubMed  CAS  Google Scholar 

  189. Freedman, L. P. Increasing the complexity of coactivation in nuclear receptor signaling. Cell 1999; 97:5–8

    Article  PubMed  CAS  Google Scholar 

  190. Wu-Baer F, Sigman D, Gaynor RB. Specific binding of RNA polymerase II to the human immunodeficiency virus trans-activating region RNA is regulated by cellular cofactors and Tat. Proc Natl Acad Sci U S A 1995; 92:7153–7157.

    Article  PubMed  CAS  Google Scholar 

  191. Keen NJ, Gait MJ, Karn J. Human immunodeficiency virus type-1 Tat is an integral component of the activated transcription-elongation complex. Proc Natl Acad Sci U S A 1996; 93:2505–2510.

    Article  PubMed  CAS  Google Scholar 

  192. Jiang Y, Yan M, Gralla JD. A three-step pathway of transcription initiation leading to promoter clearance at an activated RNA polymerase II promoter. Mol Cell Biol 1996; 16:1614–1621.

    PubMed  CAS  Google Scholar 

  193. Koleske AJ, Buratowski S, Nonet M, et al. A novel transcription factor reveals a functional link between the RNA polymerase II CTD and TFIID. Cell 1992; 69:883–894.

    Article  PubMed  CAS  Google Scholar 

  194. Zhu, Y., Pe’ery, T., Peng, J., Ramanathan, Y., Marshall, N., Marshall, T., Amendt, B., Mathews, M.B., Price, D.H. Transcription elongation factor P-TEFb is required for HIV-1 tat transactivation in vitro. Genes Dev. 1997; 11:2622–2632

    Article  PubMed  CAS  Google Scholar 

  195. Wei, P., Garber, M.E., Fang, S.M., Fischer, W.H., Jones, K.A. A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. Cell 1998; 92:451–462

    Article  PubMed  CAS  Google Scholar 

  196. Chen, D., Fong, Y., Zhou, Q. Specific interaction of Tat with the human but not rodent P-TEFb complex mediates the species-specific Tat activation of HIV-1 transcription. Proc Natl Acad Sci U S A 1999; 96:2728–2733

    Article  PubMed  CAS  Google Scholar 

  197. Holstege, F. C, Jennings, E.G., Wyrick, J.J., Lee, T.I., Hengartner, C.J., Green, M.R., Golub, T.R., Lander, E.S., Young, R.A. Dissecting the regulatory circuitry of a eukaryotic genome. Cell 1998; 95:717–728

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Parvin, J.D., Anderson, S.F. (2001). The Basal Transcription Apparatus. In: Collins, T. (eds) Leukocyte Recruitment, Endothelial Cell Adhesion Molecules, and Transcriptional Control. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1565-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1565-4_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5617-2

  • Online ISBN: 978-1-4615-1565-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics