Skip to main content

Ran Regulation by Ran GEF and Ran GAP

  • Chapter

Abstract

The Ras-related GTPase Ran was first isolated as a complex with the chromatin-associated protein RCC1 (Bischoff and Ponstingl, 1991a), which turned out to be its guanine nucleotide exchange factor (GEF; Bischoff and Ponstingl, 1991b). Ran was mainly found in the nucleus and hence was designated the Ras-related nuclear protein. Most other Ras-related GTPases are present in small total amounts per cell, but attain high local concentrations by attachment to cellular membranes at their sites of action. In contrast, Ran is readily soluble, free to move, and is one of the most abundant proteins in the nucleus. It forms and dissociates transport complexes, depending on the state of its bound nucleotide. Here, we focus on the regulators of this state.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmadian MR, Stege P, Scheffzek K, Wittinghofer A (1997) Confirmation of the arginine-finger hypothesis for the GAP-stimulated GTP-hydrolysis reaction of Ras. Nat Struct Biol 4, 686–689

    Article  PubMed  CAS  Google Scholar 

  • Azuma Y, Seino H, Seki T, Uzawa S, Klebe C, Ohba T, Wittinghofer A, Hayashi N, Nishimoto T (1996) Conserved histidine residues of RCC1 are essential for nucleotide exchange on Ran. J Biochem Tokyo 120, 82–91

    Article  PubMed  CAS  Google Scholar 

  • Azuma Y, Renault L, Garcia-Ranea JA, Valencia A, Nishimoto T, Wittinghofer A (1999) Model of the Ran-RCC1 interaction using biochemical and docking experiments. J Mol Biol 289, 1119–1130

    Article  PubMed  CAS  Google Scholar 

  • Bayer P, Arndt A, Metzger S, Mahajan R, Melchior F, Jaenicke R, Becker J (1998) Structure determination of the small ubiquitin-related modifier SUMO-1. J Mol Biol 280, 275–286

    Article  PubMed  CAS  Google Scholar 

  • Beddow AL, Richards SA, Orem NR, Macara IG (1995) The Ran/TC4 GTPase-binding domain: identification by expression cloning and characterization of a conserved sequence motif. Proc Natl Acad Sci USA 92, 3328–3332

    Article  PubMed  CAS  Google Scholar 

  • Bischoff FR, Görlich D (1997) RanBP1 is crucial for the release of RanGTP from importin beta-related nuclear transport factors. FEBS Lett 419, 249–254

    Article  PubMed  CAS  Google Scholar 

  • Bischoff FR, Ponstingl H (1991a) Mitotic regulator protein RCC1 is complexed with a nuclear ras-related polypeptide. Proc Natl Acad Sci USA 88, 10830–10834

    Article  Google Scholar 

  • Bischoff FR, Ponstingl H (1991b) Catalysis of guanine nucleotide exchange on Ran by the mitotic regulator RCC1. Nature 354, 80–82

    Article  Google Scholar 

  • Bischoff FR, Klebe C, Kretschmer J, Wittinghofer A, Ponstingl H (1994) RanGAPl induces GTPase activity of nuclear ras-related Ran. Proc Natl Acad Sci USA 91, 2587–2591

    Article  PubMed  CAS  Google Scholar 

  • Bischoff FR, Krebber H, Kempf T, Hermes I, Ponstingl H (1995a) Human RanGTPase activating protein RanGAPl is a homologue of yeast Rnalp involved in mRNA processing and transport. Proc Natl Acad Sci USA 92, 1749–1753

    Article  Google Scholar 

  • Bischoff FR, Krebber H, Smirnova E, Dong W, Ponstingl H (1995b) Co-activation of RanGTPase and inhibition of GTP dissociation by Ran.GTP binding protein RanBP1. EMBO J 14, 705–715

    Google Scholar 

  • Bressan A, Somma MP, Lewis J, Santolamazza C, Copeland NG, Gilbert DJ, Jenkins NA, Lavia P (1991) Characterization of the opposite-strand genes from the mouse bidirectionally transcribed HTF9 locus. Gene 103, 201–209

    Article  PubMed  CAS  Google Scholar 

  • Bullock TL, Clarkson WD, Kent HM, Stewart M (1996) The 1.6 angstrom resolution crystal structure of nuclear transport factor 2 (NTF2). J Mol Biol 260, 422–431

    Article  PubMed  CAS  Google Scholar 

  • Butler G., Wolfe KH (1994) Yeast homologue of mammalian Ran binding protein 1. BBA-Gene Struct Express 1219, 711–712

    Article  Google Scholar 

  • Carazo-Salas RE, Guarguaglini G, Gruss OJ, Segref A, Karsenti E, Mattaj IW (1999) Generation of GTP-bound Ran by RCC1 is required for chromatin-induced mitotic spindle formation. Nature 400, 178–181

    Article  PubMed  CAS  Google Scholar 

  • Carazo-Salas RE, Gruss OJ, Mattaj IW, Karsenti E (2001) Ran-GTP coordinates regulation of microtubule nucleation and dynamics during mitotic-spindle assembly. Nat Cell Biol 3, 228–234

    Article  PubMed  CAS  Google Scholar 

  • Chi NC, Adam EJH, Visser GD, Adam SA (1996) RanBP1 stabilizes the interaction of Ran with p97 in nuclear protein import. J Cell Biol 135, 559–569

    Article  PubMed  CAS  Google Scholar 

  • Chook YM, Blobel G (1999) Structure of the nuclear transport complex karyopherin-beta2-Ran.GppNHp. Nature 399, 230–237

    Article  PubMed  CAS  Google Scholar 

  • Cingolani G, Petosa C, Weis K, Muller CW (1999) Structure of importin-beta bound to the IBB domain of importin-alpha. Nature 399, 221–229

    Article  PubMed  CAS  Google Scholar 

  • Coutavas E., Ren M, Oppenheim JD, D’Eustachio P, Rush MG (1993) Characterization of proteins that interact with the cell-cycle regulatory protein Ran/TC4. Nature 366, 585–587

    Article  PubMed  CAS  Google Scholar 

  • Deane R, Schäfer W, Zimmermann H-P, Mueller L, Görlich D, Prehn S, Ponstingl H, Bischoff FR (1997) Ran-binding protein 5 (RanBP5) is related to nuclear transport factor importin-β but interacts differently with RanBPl. Mol Cell Biol 17, 5087–5096

    PubMed  CAS  Google Scholar 

  • Delphin C, Guan T, Melchior F, Gerace L (1997) RanGTP targets p97 to RanBP2, a filamentous protein localized at the cytoplasmic periphery of the nuclear pore complex. Mol Biol Cell 8, 2379–2390

    PubMed  CAS  Google Scholar 

  • Demeter J, Morphew M, Sazer S (1995) A mutation in the RCC1-related protein piml results in nuclear envelope fragmentation in fission yeast. Proc Natl Acad Sci USA 92, 1436–1440

    Article  PubMed  CAS  Google Scholar 

  • Epps JL, Tanda S (1998) The Drosophila semushi mutation blocks nuclear import of Bicoid during embryogenesis. Curr Biol 8, 1277–1280

    Article  PubMed  CAS  Google Scholar 

  • Fleig U, Salus SS, Karig I, Sazer S (2000) The fission yeast ran GTPase is required for microtubule integrity. J Cell Biol 151, 1101–1112

    Article  PubMed  CAS  Google Scholar 

  • Floer M, Blobel G (1996) The nuclear transport factor karyopherin β binds stoichiometrically to Ran-GTP and inhibits the Ran GTPase activating protein. J Biol Chem 271, 5313–5316

    Article  PubMed  CAS  Google Scholar 

  • Floer M, Blobel G, Rexach M (1997) Disassembly of RanGTP-karyopherin beta complex, an intermediate in nuclear protein import. J Biol Chem 272, 19538–19546

    Article  PubMed  CAS  Google Scholar 

  • Görlich D, Vogel F, Mills AD, Hartmann E, Laskey RA (1995) Distinct functions for the two importin subunits in nuclear protein import. Nature 377, 246–248

    Article  PubMed  Google Scholar 

  • Görlich D, Panté N, Kutay U, Aebi U, Bischoff FR (1996) Identification of different roles for RanGDP and RanGTP in nuclear protein import. EMBO J 15, 5584–5594

    PubMed  Google Scholar 

  • Görlich D, Dabrowski M, Bischoff FR, Kutay U, Bork P, Hartmann E, Prehn S, Izaurralde E (1997) A novel class of RanGTP binding proteins. J Cell Biol 138, 65–80

    Article  PubMed  Google Scholar 

  • Grundmann U, Nerlich C, Rein T, Lottspeich F, Kupper HA (1988) Isolation of cDNA coding for the placental protein 15 (PP15). Nucleic Acids Res 16, 4721

    Article  PubMed  CAS  Google Scholar 

  • Haberland J, Gerke V (1999) Conserved charged residues in the leucine-rich repeat domain of the Ran GTPase activating protein are required for Ran binding and GTPase activation. Biochem J 343, 653–662

    Article  PubMed  CAS  Google Scholar 

  • Haberland J, Becker J, Gerke V (1997) The acidic C-terminal domain of Rnalp is required for the binding of RanGTP and for RanGAP activity. J Biol Chem 272, 24717–22426

    Article  PubMed  CAS  Google Scholar 

  • Hellmuth K, Lau D, Bischoff FR, Künzler M, Hurt E, Simos G (1998) Yeast Loslp has properties of an exportin-like nucleocytoplasmic transport factor for tRNA. Mol Cell Biol 18, 6374–6386

    PubMed  CAS  Google Scholar 

  • Hetzer M, BilbaoCortes D, Walther TC, Gruss OJ, Mattaj IW (2000) GTP hydrolysis by Ran is required for nuclear envelope assembly. Mol Cell 5, 1013–1024

    Article  PubMed  CAS  Google Scholar 

  • Hieda M, Tachibana T, Yokoya F, Kose S, Imamoto N, Yoneda Y (1999) A monoclonal antibody to the COOH-terminal acidic portion of Ran inhibits both the recycling of Ran and nuclear protein import in living cells. J Cell Biol 144, 645–655

    Article  PubMed  CAS  Google Scholar 

  • Hillig RC, Renault L, Vetter IR, Drell T, Wittinghofer A, Becker J (1999) The crystal structure of rnalp: A new fold for a GTPase-activating protein. Mol Cell 3, 781–791

    Article  PubMed  CAS  Google Scholar 

  • Hopper AK, Traglia HM, Dunst RW (1990) The yeast RNA1 gene product necessary for RNA processing is located in the cytosol and apparently excluded from the nucleus. J Cell Biol 111, 309–321

    Article  PubMed  CAS  Google Scholar 

  • Izaurralde E, Kutay U, von Kobbe C, Mattaj IW, Görlich D (1997) The asymmetric distribution of the constituents of the Ran system is essential for transport into and out of the nucleus. EMBO J 16, 6535–6547

    Article  PubMed  CAS  Google Scholar 

  • Kalab P, Pu RT, Dasso M (1999) The Ran GTPase regulates mitotic spindle assembly. Curr Biol 9, 481–484

    Article  PubMed  CAS  Google Scholar 

  • Kent HM, Moore MS, Quimby BB, Baker AME, McCoy AJ, Murphy GA, Corbett AH, Stewart M (1999) Engineered mutants in the switch II loop of ran define the contribution made by key residues to the interaction with nuclear transport factor 2 (NTF2) and the role of this interaction in nuclear protein import. J Mol Biol 289, 565–577

    Article  PubMed  CAS  Google Scholar 

  • Klebe C, Bischoff FR, Ponstingl H, Wittinghofer A (1995a) Interaction of the nuclear GTP-binding protein Ran with its regulatory proteins RCC1 and RanGAP1. Biochemistry 34, 639–647

    Article  Google Scholar 

  • Klebe C, Prinz H, Wittinghofer A, Goody RS (1995b) The kinetic mechanism of Ran-nucleotide exchange catalyzed by RCC1. Biochemistry 34, 12543–12552

    Article  Google Scholar 

  • Kuhlmann J, Macara I, Wittinghofer A (1997) Dynamic and equilibrium studies on the interaction of Ran with its effector RanBP1. Biochemistry 36, 12027–12035

    Article  PubMed  CAS  Google Scholar 

  • Künzler M, Hurt EC (1998) Cse1p functions as the nuclear export receptor for importin alpha in yeast. FEBS Lett 433, 185–190

    Article  PubMed  Google Scholar 

  • Kutay U, Bischoff FR, Kostka S, Kraft R, Görlich D (1997) Export of importin alpha from the nucleus is mediated by a specific nuclear transport factor. Cell 90, 1061–1070

    Article  PubMed  CAS  Google Scholar 

  • Lounsbury KM, Macara IG (1997) Ran-binding protein 1 (RanBP1) forms a ternary complex with Ran and karyopherin beta and reduces Ran GTPase-activating protein (RanGAP) inhibition by karyopherin beta. J Biol Chem 272, 551–555

    Article  PubMed  CAS  Google Scholar 

  • Lounsbury KM, Beddow AL, Macara IG (1994) A family of proteins that stabilize the Ran/TC4 GTPase in its GTP-bound conformation. J Biol Chem 269, 11285–11290

    PubMed  CAS  Google Scholar 

  • Mahajan R, Delphin C, Guan T, Gerace L, Melchior F (1997) A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88, 97–107

    Article  PubMed  CAS  Google Scholar 

  • Mahajan R, Gerace L, Melchior F (1998) Molecular characterization of the SUMO-1 modification of RanGAP1 and its role in nuclear envelope association. J Cell Biol 140, 259–270

    Article  PubMed  CAS  Google Scholar 

  • Marelli M, Aitchison JD, Wozniak RW (1998) Specific binding of the karyopherin Kap 121p to a subunit of the nuclear pore complex containing Nup53p, Nup59p, and Nup170p. J Cell Biol 143, 1813–1830

    Article  PubMed  CAS  Google Scholar 

  • Matunis MJ, Coutavas E, Blobel G (1996) A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J Cell Biol 135, 1457–1470

    Article  PubMed  CAS  Google Scholar 

  • Maurer P, Redd M, Solsbacher J, Bischoff FR, Greiner M, Podtelejnikov AV, Matthias M, Stade K, Weis K, Schlenstedt G (2001). The nuclear export receptor Xpo1p forms distinct complexes with NES transport substrates and the yeast Ran binding protein 1 (Yrb1p). Mol Biol Cell 12, 539–549

    PubMed  CAS  Google Scholar 

  • Melchior F, Weber K, Gerke V (1993) A functional homologue of the RNA1 gene product in Schizosaccharomyces pombe: purification, biochemical characterization, and identification of a leucine-rich repeat motif. Mol Biol Cell 4, 569–581

    PubMed  CAS  Google Scholar 

  • Moore MS, Blobel G (1994) Purification of a Ran-interacting protein that is required for protein import into the nucleus. Proc Natl Acad Sci USA 91, 10212–10216

    Article  PubMed  CAS  Google Scholar 

  • Moroianu J, Hijikata M, Blobel G, Radu A (1995) Mammalian karyopherin alpha (1) beta and alpha (2) beta heterodimers: alpha (1) or alpha (2) subunit binds nuclear localization signal and beta subunit interacts with peptide repeat-containing nucleo-porins. Proc Natl Acad Sci USA 92, 6532–6536

    Article  PubMed  CAS  Google Scholar 

  • Nachury MV, Maresca TJ, Salmon WG, WatermanStorer CM, Heald R, Weis K (2001) Importin beta is a mitotic target of the small GTPase ran in spindle assembly. Cell 104, 95–106

    Article  PubMed  CAS  Google Scholar 

  • Nemergut ME, Macara IG (2000) Nuclear import of the Ran exchange factor, RCC1, is mediated by at least two distinct mechanisms. J Cell Biol 149, 835–850

    Article  PubMed  CAS  Google Scholar 

  • Nemergut ME, Mizzen CA, Stukenberg T, Allis CD, Macara IG (2001) Chromatin docking and exchange activity enhancement of RCC1 by histones H2A and H2B. Science 292, 1540–1543

    Article  PubMed  CAS  Google Scholar 

  • Nishimoto T, Eilen E, Basilico C (1978) Premature chromosome condensation in a ts DNA- mutant of BHK cells. Cell 75, 475–483

    Article  Google Scholar 

  • Ohba T, Nakamura M, Nishitani H, Nishimoto T (1999) Self-organization of microtubule asters induced in Xenopus egg extracts by GTP-bound Ran. Science 284, 1356–1358

    Article  PubMed  CAS  Google Scholar 

  • Oki M, Nishimoto T (1998) A protein required for nuclear-protein import, Mog1p, directly interacts with GTP-Gsp1p, the Saccharomyces cerevisiae Ran homologue. Proc Natl Acad Sci USA 95, 15388–15393

    Article  PubMed  CAS  Google Scholar 

  • Oki M, Nishimoto T (2000) Yrb1p interaction with the Gsp1p C terminus blocks Mog1p stimulation of GTP release from Gsp1p. J Biol Chem 275, 32894–32900

    Article  PubMed  CAS  Google Scholar 

  • Paschal BM, Gerace L (1995) Identification of NTF2, a cytosolic factor for nuclear import that interacts with nuclear pore complex protein p62. J Cell Biol 129, 925–937

    Article  PubMed  CAS  Google Scholar 

  • Plafker K, Macara IG (2000) Facilitated nucleocytoplasmic shuttling of the Ran binding protein RanBP1. Mol Cell Biol 20, 3510–3521

    Article  PubMed  CAS  Google Scholar 

  • Ren M, Drivas G, D’Eustachio P, Rush MG (1993) Ran/TC4: A small nuclear GTP-binding protein that regulates DNA synthesis. J Cell Biol 120, 313–323

    Article  PubMed  CAS  Google Scholar 

  • Renault L, Nassar N, Vetter I, Becker J, Klebe C, Roth M, Wittinghofer A (1998) The 1.7 Å crystal structure of the regulator of chromosome condensation (RCC1) reveals a seven-bladed propeller. Nature 392, 97–101

    Article  PubMed  CAS  Google Scholar 

  • Renault L, Kuhlmann J, Henkel A, Wittinghofer A (2001) Structural basis for guanine nucleotide exchange on Ran by the Regulator of Chromosome Condensation (RCC1). Cell 105, 245–255

    Article  PubMed  CAS  Google Scholar 

  • Ribbeck K, Görlich D (2001) Kinetic analysis of translocation through nuclear pore complexes. EMBO J 20, 1320–1330

    Article  PubMed  CAS  Google Scholar 

  • Ribbeck K, Lipowsky G, Kent HM, Stewart M, Görlich D (1998) NTF2 mediates nuclear import of Ran. EMBO J 17, 6587–6598

    Article  PubMed  CAS  Google Scholar 

  • Ribbeck K, Kutay U, Paraskeva E, Görlich D (1999) The translocation of transportin-cargo complexes through nuclear pores is independent of both Ran and energy. Curr Biol 9, 47–50

    Article  PubMed  CAS  Google Scholar 

  • Richards SA, Lounsbury KM, Macara IG (1995) The C terminus of the nuclear RAN/TC4 GTPase stabilizes the GDP-bound state and mediates interactions with RCC1, RAN-GAP, and HTF9A/RANBP1. J Biol Chem 270, 14405–14411

    Article  PubMed  CAS  Google Scholar 

  • Scheffzek K, Lautwein A, Kabsch W, Ahmadian MR, Wittinghofer A (1996) Crystal structure of the GTPase-activating domain of human p120GAP and implications for the interaction with Ras. Nature 384, 591–596

    Article  PubMed  CAS  Google Scholar 

  • Scheffzek K, Ahmadian MR, Kabsch W, Wiesmuller L, Lautwein A, Schmitz F, Wittinghofer A (1997) The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science 277, 333–338

    Article  PubMed  CAS  Google Scholar 

  • Scheffzek K, Ahmadian MR, Wiesmuller L, Kabsch W, Stege P, Schmitz F, Wittinghofer A (1998) Structural analysis of the GAP-related domain from neurofibromin and its implications. EMBO J 77, 4313–4327

    Article  Google Scholar 

  • Schlenstedt G, Wong DH, Koepp DM, Silver PA (1995) Mutants in a yeast Ran binding protein are defective in nuclear transport. EMBO J 14, 5367–5378

    PubMed  CAS  Google Scholar 

  • Schlenstedt G, Smirnova E, Deane R, Solsbacher J, Kutay U, Görlich D, Ponstingl H, Bischoff FR (1997) Yrb4p, a yeast RanGTP-binding protein in import of ribosomal protein L25 into the nucleus. EMBO J 16, 6237–6249

    Article  PubMed  CAS  Google Scholar 

  • Schwoebel ED, Talcott B, Cushman I, Moore MS (1998) Ran-dependent signal-mediated nuclear import does not require GTP hydrolysis by Ran. J Biol Chem 273, 35170–35175

    Article  PubMed  CAS  Google Scholar 

  • Seki T, Yamashita K, Nishitani H, Takagi T, Russell P, Nishimoto T (1992) Chromosome condensation caused by loss of RCC1 function requires the cdc25C protein that is located in the cytoplasm. Mol Biol Cell 3, 1373–1388

    PubMed  CAS  Google Scholar 

  • Singh BB, Patel HH, Roepman R, Schick D, Ferreira PA (1999) The zinc finger cluster domain of RanBP2 is a specific docking site for the nuclear export factor, exportin-1. J Biol Chem 274, 37370–37378

    Article  PubMed  CAS  Google Scholar 

  • Smith A, Brownawell A, Macara IG (1998) Nuclear import of Ran is mediated by the transport factor NTF2. Curr Biol 8, 1403–1406

    Article  PubMed  CAS  Google Scholar 

  • Solsbacher J, Maurer P, Bischoff FR, Schlenstedt G (1998) Cse1p is involved in export of yeast importin alpha from the nucleus. Mol Cell Biol 18, 6805–6815

    PubMed  CAS  Google Scholar 

  • Steggerda SM, Paschal BM (2000) The mammalian Mog1 protein is a guanine nucleotide release factor for Ran. J Biol Chem 275, 23175–23180

    Article  PubMed  CAS  Google Scholar 

  • Stewart M, Baker RP (2000) 1.9 A resolution crystal structure of the Saccharomyces cerevisiae Ran-binding protein Mog1p. J Mol Biol 299, 213–223

    Article  PubMed  CAS  Google Scholar 

  • Stewart M, Kent HM, McCoy AJ (1998) Structural basis for molecular recognition between nuclear transport factor 2 (NTF2) and the GDP-bound form of the Ras-family GTPase Ran. J Mol Biol 277, 635–646

    Article  PubMed  CAS  Google Scholar 

  • Talcott B, Moore MS (2000) The nuclear import of RCC1 requires a specific nuclear localization sequence receptor, karyopherin alpha 3/Qip. J Biol Chem 275, 10099–10104

    Article  PubMed  CAS  Google Scholar 

  • Tatebayashi K, Tani T, Ikeda H (2001) Fission yeast Mog1p homologue, which interacts with the small GTPase Ran, is required for mitosis-to-interphase transition and poly(A)+ RNA Metabolism. Genetics 157, 1513–1522

    PubMed  CAS  Google Scholar 

  • Vetter IR, Arndt A, Kutay U, Görlich D, Wittinghofer A (1999a) Structural view of the Ran-importin β interaction at 2.3 Å resolution. Cell 97, 635–646

    Article  Google Scholar 

  • Vetter IR, Nowak C, Nishimoto T, Kuhlmann J, Wittinghofer A (1999b) Structure of a Ran-binding domain complexed with Ran bound to a GTP analogue: implications for nuclear transport. Nature 398, 39–46

    Article  Google Scholar 

  • Villa Braslavsky CI, Nowak C, Görlich D, Wittinghofer A, Kuhlmann J (2000) Different structural and kinetic requirements for the interaction of Ran with the Ran-binding domains from RanBP2 and importin-β. Biochemistry 39, 11629–11639

    Article  PubMed  CAS  Google Scholar 

  • Wiese C, Wilde A, Moore MS, Adam SA, Merdes A, Zheng Y (2001) Role of importin-β in coupling Ran to downstream targets in microtubule assembly. Science 297, 653–656

    Article  Google Scholar 

  • Wilde A, Zheng Y (1999) Stimulation of microtubule aster formation and spindle assembly by the small GTPase Ran. Science 284, 1359–1362

    Article  PubMed  CAS  Google Scholar 

  • Wilde A, Lizarraga SB, Zhang L, Wiese C, Gliksman NR, Walczak CE, Zheng Y (2001) Ran stimulates spindle assembly by altering microtubule dynamics and the balance of motor activities. Nat Cell Biol 3, 221–227

    Article  PubMed  CAS  Google Scholar 

  • Wilken N, Senecal JL, Scheer U, Dabauvalle MC (1995) Localization of the ran-GTP binding protein RanBP2 at the cytoplasmic side of the nuclear pore complex. Eur J Cell Biol 68, 211–219

    PubMed  CAS  Google Scholar 

  • Wu J, Matunis MJ, Kraemer D, Blobel G, Coutavas E (1995) Nup358, a cytoplasmically exposed nucleoporin with peptide repeats, Ran-GTP binding sites, zinc fingers, a Cyclophilin A homologous domain, and a leucinerich region. J Biol Chem 270, 14209–14213

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama N, Hayashi N, Seki T, Panté N, Ohba T, Nishii K, Kuma K, Hayashida T. Mi-yata T, Aebi U, Fukui M, Nishimoto T (1995) A giant nucleopore protein that binds Ran/TC4. Nature 376, 184–188

    CAS  Google Scholar 

  • Zhang CM, Hughes M, Clarke PR (1999) Ran-GTP stabilises microtubule asters and inhibits nuclear assembly in Xenopus egg extracts. J Cell Sci 772, 2453–2461.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bischoff, F.R., Ponstingl, H. (2001). Ran Regulation by Ran GEF and Ran GAP. In: Rush, M., D’Eustachio, P. (eds) The Small GTPase Ran. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1501-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1501-2_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5585-4

  • Online ISBN: 978-1-4615-1501-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics