Skip to main content
  • 263 Accesses

Abstract

The purpose of this chapter is to study the frequency content of data recorded as a function of time and which includes repetitive events. It will be shown that such data can be considered as being composed of a number of sinusoidal functions and an approximation function consisting of such may be fitted using least-squares.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Farris, D.A., Urquizo, G.C., Beattie, D.K., Woods, T.O. and Berghaus, D.G., “A Simplified Accelerometer System for Analysis of Human Gait”, Experimental Techniques, 17, (1993), p. 33–36

    Article  Google Scholar 

  2. Thomas, G.B., Calculus and Analytic Geometry, Addison-Wesley, New York, NY, (1953), p. 344

    MATH  Google Scholar 

  3. Lathi, B.P., Signals, Systems and Communications, John Wiley & Sons, New York, NY, (1967), p. 46–49

    Google Scholar 

  4. Ramirez, R.W., The FFT, Fundamentals and Concepts, Prentice-Hall, Englewood Cliffs, NJ, (1985), Chapters 3,4

    Google Scholar 

  5. Jones, R.H., and Steele, N.C., Mathematics in Communication Theory, Ellis Horwood, Chichester, West Sussex, England, (1989), Chapter 9

    MATH  Google Scholar 

  6. Dettman, M.A., Linder, M.T. and Sepic, B.S., Relationships Among Walking Performance, Postural Stability, and Functional Assessments of the Hemiplegic Patient”, American Journal of Physical Medicine, 66, (1987), p. 77–90

    Google Scholar 

  7. Otis, J.C., Burstein, J.M., Lane, J.M., Gage, H., Wright, T.M. and Klein, R.W., “Design and Performance of a Segmental Prosthetic Replacement for Limb Sparing”, Biomechanics of Normal and Prosthetic Gait, J.L. Stein, ed., DED-V.4, DSC-V.&, American Society of Mechanical Engineers, New York, NY, (1987), p. 57–60

    Google Scholar 

  8. Allard, P., Kofrnan, J., Labelle, H., Drouin, G. and Duhaime, M., “Application of an Arched Cantilever Beam Model to a Flat-Spring Foot Prosthesis”, Proceedings IEEE/Ninth Annual Conference of the Engineering in Medicine and Biology Society, Boston, MA, (1987), p. 1721–1722

    Google Scholar 

  9. DiAngelo, D.J., Winter, D.A., Ghista, D.N. and Newcombe, W.R., “Performance Analysis of the Terry Fox Jogging Prosthesis”, J.L. Stein, op. cit., p. 93–99

    Google Scholar 

  10. Berghaus, D.G., and Woods, T.O., “Harmonic Energy as a Measure of Gait Symmetry”, Proceedings VII International Congress on Experimental Mechanics, Las Vegas, NV, (1992), p. 161–164

    Google Scholar 

  11. Winter, D.A., Sidwall, H.G. and Hobson, D.A., “Measurement and Reduction of Noise in Kinematics of Locomotion”, Journal of Biomechanics, 7, (1974), p. 157–159

    Article  Google Scholar 

  12. Rabiner, L.R., and Gold, B., Theory and Application of Digital Signal Processing, Prentice-Hall, Englewood Cliffs, NJ, (1975), p. 356–379

    Google Scholar 

  13. Ramirez, R.W., op. cit, p. 161–168

    Google Scholar 

  14. Johnson, J.R., Introduction to Digital Signal Processing, Englewood Cliffs, NJ, (1989), Chapter 8

    Google Scholar 

  15. Holman, J.P., Experimental Methods for Engineers, McGraw-Hill, New York, NY, 1984, p. 166–168

    Google Scholar 

  16. Fitzgerald, A.E., and Higginbotham, S.M., Basic Electrcal Engineering, McGraw-Hill, New York, NY, (1957), p. 195–198

    Google Scholar 

  17. Berghaus, D.G., and Woods, T.O., “Differentiation and Integration of Continuous Experimental Data”, Experimental Techniques, 7, (1983), p. 22–27

    Article  Google Scholar 

  18. Ramirez, R.W., op. cit., p. 115

    Google Scholar 

  19. Holman, J.P., op. cit., p. 171–172

    Google Scholar 

  20. Kaiser, G., A Friendly Guide to Wavelets, Birkhauser,Boston, MA, (1994), p. 44–58

    MATH  Google Scholar 

  21. Ibid, p. 60–72

    Google Scholar 

  22. Newland, D.E., An Introduction to Random Vibrations and Spectral Analysis, Longman, London, England, (1975)

    Google Scholar 

  23. McConnell, K.G., Vibration Testing, Theory and Practice, John Wiley & Sons, New York, NY, (1995)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Berghaus, D. (2001). Fourier Transform Methods. In: Numerical Methods for Experimental Mechanics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1473-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1473-2_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-7403-9

  • Online ISBN: 978-1-4615-1473-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics