Pulmonary Endothelial Surface Redox Activity: Roles in Propagation of and Protection from Injury

  • Marilyn P. Merker
  • Robert D. Bongard
  • Christopher A. Dawson
Part of the Molecular and Cellular Biology of Critical Care Medicine book series (MCCM, volume 1)

Abstract

Endothelial cells, like other cells, have endogenous enzymatic sources of reactive oxygen (ROS) species (e.g., superoxide, hydrogen peroxide, hydroxyl radical) and nitrogen species (e.g., nitric oxide, peroxynitrite) generated from the mitochondrial electron transport chain, nitric oxide synthases, xanthine dehydrogenase/xanthine oxidase, NAD(P)H oxidases, cytochrome P450 enzymes, and the enzymes of arachadonic acid metabolism, lipoxygenase and cyclooxygenase (1). The ROS generated in these reactions can be important in host defense and in signal transduction, but their generation can also be self-destructive (2, 3). Their respective roles in propagation of pulmonary endothelial and lung injury have been evaluated extensively (4, 5, 6, 7). Similarly, roles for antioxidant enzyme systems such as superoxide dismutase, catalase, glutathione peroxidase, and heme oxygenase, and for low molecular weight oxidant scavengers, such as glutathione, urate, and ascorbate, in protecting the endothelium and lung from injury are well established (8, 9, 10, 11).

Keywords

Ischemia Superoxide Angiotensin Doxorubicin NADPH 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sanders, K.A., Huecksteadt, T., Xu, P., Sturrock, A.B., and Hoidal, J.R. (1999) Regulation of oxidant production in acute lung injury. Chest 116, 56S–61SPubMedCrossRefGoogle Scholar
  2. 2.
    Babior, B.M. (1997) Superoxide: a two-edged sword. Braz J Med & Biol Res 30, 141–155Google Scholar
  3. 3.
    Irani, K. (2000) Oxidant signaling in vascular cell growth, death, and survival: a review of the roles of reactive oxygen species in smooth muscle and endothelial cell mitogenic and apoptotic signaling. Circ Res 87, 179–183PubMedCrossRefGoogle Scholar
  4. 4.
    Hassoun, P.M., Yu, F.S., Cote, C.G., Zulueta, J.J., Sawhney, R., Skinner, K.A., Skinner, H.B., Parks, D.A., and Lanzillo, J.J. (1998) Upregulation of xanthine oxidase by lipopolysaccharide, interleukin-1, and hypoxia. Role in acute lung injury. Am J Respir Crit Care Med 158, 299–305PubMedGoogle Scholar
  5. 5.
    Rubbo, H., Darley-Usmar, V., and Freeman, B.A. (1996) Nitric oxide regulation of tissue free radical injury. Chem Res Toxicol 9, 809–820PubMedCrossRefGoogle Scholar
  6. 6.
    Lum, H. and Roebuck, K. (2001) Oxidant stress and endothelial dysfunction. Am J Physiol 280, C219–C741Google Scholar
  7. 7.
    Zhu, S., Manuel, M., Tanaka, S., Choe, N., Kagan, E., and Matalon, S. (1998) Contribution of reactive oxygen and nitrogen species to particulate-induced lung injury. Environ Health Perspect 106 Suppl 5, 1157–1163PubMedCrossRefGoogle Scholar
  8. 8.
    Heffner, J.E., and Repine, J.E. (1989) Pulmonary strategies of antioxidant defense. Am Rev Resp Dis 140, 531–554PubMedCrossRefGoogle Scholar
  9. 9.
    Maritz, G.S. (2000) (1996) Ascorbic acid. Protection of lung tissue against damage. SubCell Biochem 25, 265–291CrossRefGoogle Scholar
  10. 10.
    Otterbein, L.E., Kolls, J.K., Mantell, L.L., Cook, J.L., Alam, J., and Choi, A.M. (1999) Exogenous administration of heme oxygenase-1 by gene transfer provides protection against hyperoxia-induced lung injury. J Clin Invest 103, 1047–1054PubMedCrossRefGoogle Scholar
  11. 11.
    Quinlan, T., Spivack, S., and Mossman, B.T. (1994) Regulation of antioxidant enzymes in lung after oxidant injury. Environ Health Persp 102, Suppl 2, 79–87CrossRefGoogle Scholar
  12. 12.
    Babior, B.M. (1999) NADPH oxidase: an update. Blood 93, 1464–1476PubMedGoogle Scholar
  13. 13.
    Ward, P.A. (1997) Phagocytes and the lung. Ann NY Acad Sci 832, 304–310PubMedCrossRefGoogle Scholar
  14. 14.
    Bayraktutan, U., Blayney, L., and Ajay, M. (2000) Molecular characterization and localization of the NAD(P)H oxidase components pp91-phox and p22-phox in endothelial cells. Arterioscler Thromb Vase Biol:20, 1903–1911CrossRefGoogle Scholar
  15. 15.
    Gorlach, A., Brandes, R.P., Nguyen, K., Amidi, M., Dehghani, F., and Busse, R. (2000) A gp91phox containing NADPH oxidase selectively expressed in endothelial cells is a major source of oxygen radical generation in the arterial wall. Circ Res 87, 26–32PubMedCrossRefGoogle Scholar
  16. 16.
    Jones, S.A., O'Donnell, V.B., Wood, J.D., Broughton, J.P., Hughes, E.J., and Jones, O.T. (1996) Expression of phagocyte NADPH oxidase components in human endothelial cells. Am J Physiol Heart Circ Physiol 271, H1626–H1634Google Scholar
  17. 17.
    Meyer, J.W., Holland, J.A., Ziegler, L.M., Chang, M.M., Beebe, G., and Schmitt, M.E. (1999) Identification of a functional leukocyte-type NADPH oxidase in human endothelial cells: a potential atherogenic source of reactive oxygen species. Endothelium 7, 11–22PubMedGoogle Scholar
  18. 18.
    Mohazzab, H., Kaminski, P.M., and Wolin, M.S. (1997) NADH oxidoreductase is a major source of superoxide anion in bovine coronary artery endothelium. Am J Physiol Heart Circ Physiol 266, H2568–H2572Google Scholar
  19. 19.
    Griendling, K.K., Sorescu, D., and Ushio-Fukai, M. (2000) NAD(P)H Oxidase: Role in Cardiovascular Disease and Pathology. Circ Res 86, 494–501PubMedCrossRefGoogle Scholar
  20. 20.
    Harrison, D.G. (1997) Endothelial function and oxidant stress. Clin Cardiol 20, II-11-7Google Scholar
  21. 21.
    Somers, M.J., Burchfield, J., and Harrison, D.G. (2000) Evidence for a NADH/NADPH oxidase in human umbilical vein endothelial cells using electron spin resonance. Antioxid Redox Signal 2, 779–787PubMedCrossRefGoogle Scholar
  22. 22.
    Zulueta, J.J., Yu, F.S., Hertig, I.A., Thannickal, V.J., and Hassoun, V.J. (1995) Release of hydrogen peroxide in response to hypoxia-reoxygenation: role of and NAD(P)H oxidase-like enzyme in endothelial cell plasma membrane. Am J Respir Cell Mol Biol 12, 41–49PubMedCrossRefGoogle Scholar
  23. 23.
    Duerrschmidt, N., Wippich, N., Goettsch, W., Broemme, H.J., and Morawietz, H. (2000) Endothelin-1 induces NAD(P)H oxidase in human endothelial cells. Biochem Biophys Res Commun 269, 713–717PubMedCrossRefGoogle Scholar
  24. 24.
    Fisher, A.B., Al Mehdi, A.B., and Muzykantov, V. (1999) Activation of endothelial NADPH oxidase as the source of a reactive oxygen species in lung ischemia. Chest 116, 25S–26SPubMedCrossRefGoogle Scholar
  25. 25.
    Hishikawa, K. and Luscher, T.F. (1997) Pulsatile stretch stimulates superoxide production in human aortic endothelial cells. Circulation 96, 3610–3616PubMedCrossRefGoogle Scholar
  26. 26.
    Howard, A.B., Alexander, R.W., Nerem, R.M., Griendling, K.K., and Taylor, W.R. (1997) Cyclic strain induces an oxidative stress in endothelial cells. Am J Physiol 272, C421–C427PubMedGoogle Scholar
  27. 27.
    Wei, Z., Costa, K., Al-Mehdi, A.B., Dodia, C., Muzykantov, V., and Fisher, A.B. (1999) Simulated ischemia in flow-adapted endothelial cells leads to generation of reactive oxygen species and cell signaling. Circ Res 85, 682–689PubMedCrossRefGoogle Scholar
  28. 28.
    Zhang, H., Schmeisser, A., Garlichs, CD., Plotze, K., Damme, U., Mugge, A., and Daniel, W.G. (1999) Angiotensin II-induced superoxide anion generation in human vascular endothelial cells: role of membrane-bound NADH-/NADPH-oxidases. Cardiovasc Res 44, 215–222PubMedCrossRefGoogle Scholar
  29. 29.
    Cross, A.R. (1987) The inhibitory effects of some iodium compounds on the superoxide generating system of neutrophils and their failure to inhibit diaphorase activity. Biochem Pharm 36, 489–493PubMedCrossRefGoogle Scholar
  30. 30.
    Brar, S.S., Kennedy, T.P., Whorton, A.R., Sturrock, A.B., Huecksteadt, T., Ghio, A.J., and Hoidal, J.R. (2001) Reactive oxygen species from NAD(P)H:quinone oxido-reductase constitutively activate NF-kappaB in malignant melanoma cells. Am J Physiol Cell Physiol 280, C659–C676PubMedGoogle Scholar
  31. 31.
    Dinkova-Kostova, A.T., and Talalay, P. (2001) Persuasive evidence that quinone reductase type I (DT diaphorase) protects cells against the toxicity of electrophiles and reactive forms of oxygen. Free Rad Biol Med 29, 231–240CrossRefGoogle Scholar
  32. 32.
    Sun, X. and Ross, D. (1996) Quinone-induced apoptosis in human colon adenocarcinoma cells via DT-diaphorase mediated bioactivation. Chem Biol Interact 100, 267–276PubMedCrossRefGoogle Scholar
  33. 33.
    Al Mehdi, A.B., Zhao, G., Dodia, C, Tozawa, K., Costa, K., Muzykantov, V., Ross, C., Blecha, F., Dinauer, M., and Fisher, A.B. (1998) Endothelial NADPH oxidase as the source of oxidants in lungs exposed to ischemia or high K+. Circ Res 83, 730–737CrossRefGoogle Scholar
  34. 34.
    Al Mehdi, A.B., Ischiropoulos, H., and Fisher, A.B. (1996) Endothelial cell oxidant generation during K+ induced membrane depolarization. J Cell Physiol 166, 274–282CrossRefGoogle Scholar
  35. 35.
    Zhao, G., Al-Mehdi, A.B., and Fisher, A.B. (1997) Anoxia-reoxygenation versus ischemia in isolated rat lungs. Am J Physiol 273, L1112–L1117PubMedGoogle Scholar
  36. 36.
    Zulueta, J.J., Sawhney, R., Yu, F.S., Cote, C.C., and Hassoun, P.M. (1997) Intracellular generation of reactive oxygen species in endothelial cells exposed to anoxia-reoxygenation. Am J Physiol 272, L897–L902PubMedGoogle Scholar
  37. 37.
    Janiszewski, M., Pedro, M.A., Scheffer, R.C.H., van Asseldonk, J.H., Souza, L.C., Luz, P.L., Augusto, O., and Laurindo, F.R.M. (2000) Inhibition of vascular NADH/NADPH oxidase activity by thiol reagents: lack of correlation with cellular glutathione redox status. Free Rad Biol Med 29, 889–899PubMedCrossRefGoogle Scholar
  38. 38.
    Souza, H.P., Laurindo, F.R.M., Ziegelstein, R.C., Berlowitz, C.O., and Zweier, J.L. (2001) Vascular NAD(P)H oxidase is distinct from phagocytic enzyme and modulates vascular reactivity control. Am J Physiol Heart Circ Physiol 280, H658–H667PubMedGoogle Scholar
  39. 39.
    Berridge, M.V., and Tan, A.S. (2000) Cell-surface NAD(P)H oxidase-Relationship to trans-plasma membrane NADH oxidoreductase and a potential source of circulating NADH oxidase. Antioxid Redox Signal 2, 277–288, 2000Google Scholar
  40. 40.
    Berridge, M.V., and Tan, A.S. (2000) High-capacity redox control and the plasma membrane of mammalian cells: Trans-membrane, cell surface and serum NADH oxidases. Antioxid Redox Signal 2, 231–242, 2000Google Scholar
  41. 41.
    Morre, D.J., and Brightman, A.O. (1991) NADH oxidase of plasma membranes. J Bioenerg Biomemb 23, 469–489CrossRefGoogle Scholar
  42. 42.
    Terada, L.S., Hybertson, B.M., Connelly, K.G., Weill, D., Piermattei, D., and Repine, J.E. (1997) XO increases neutrophil adherence to endothelial cells by a dual ICAM-1 and P-selectin-mediated mechanism. J Appl Physiol 82, 866–873PubMedGoogle Scholar
  43. 43.
    McCord, J.M. (1985) Oxygen derived free radicals in postischemic tissue injury. N Eng J Med 312, 159–163CrossRefGoogle Scholar
  44. 44.
    McCord, J.M. (1988) Free radicals and myocardial ischemia: Overview and outlook. Free Rad Biol Med 4, 9–14PubMedCrossRefGoogle Scholar
  45. 45.
    Adachi, T., Fukushima, T., Usami, Y., and Hirano, K. (1993) Binding of human xanthine oxidase to sulphated glycosaminoglycans on the endothelial cell surface. Biochem J 289, 523–527PubMedGoogle Scholar
  46. 46.
    Houston, M., Estevez, A., Chumley, P., Asian, M., Marklund, S., Parks, D.A., and Freeman, B.A. (1999) Binding of xanthine oxidase to vascular endothelium. Kinetic characterization and oxidative impairment of nitric oxide-dependent signaling. J Biol Chem 274, 4985–4994PubMedCrossRefGoogle Scholar
  47. 47.
    Rouquette, M., Page, S., Bryant, R., Benboubetra, M., Stevens, C.R., Blake, D.R., Whish, W.D., Harrison, R., and Tosh, D. (1998) Xanthine oxidoreductase is asymmetrically localized on the outer surface of human endothelial and epithelial cells in culture. FEBS Lett 426, 397–401PubMedCrossRefGoogle Scholar
  48. 48.
    Vickers, S., Schiller, H.J., Hildreth, J.E., and Bulkley, G.B. (1998) Immunoaffinity localization of the enzyme xanthine oxidase on the outside surface of the endothelial cell plasma membrane. Surgery 124, 551–560PubMedCrossRefGoogle Scholar
  49. 49.
    Nielsen, V.G., Tan, S., Baird, M.S., Samuelson, P.N., McCammon, A.T., and Parks, D.A. (1997) Xanthine oxidase mediates myocardial injury after hepatoenteric ischemia-reperfusion. Crit Care Med 25, 1044–1050PubMedCrossRefGoogle Scholar
  50. 50.
    Nielsen, V.G., Weinbroum, A., Tan, S., Samuelson, P.N., Gelman, S., and Parks, D.A. (1994) Xanthine oxidoreductase release after descending thoracic aorta occlusion and reperfusion in rabbits. J Thorac Cardiovas Sur 107, 1222–1227Google Scholar
  51. 51.
    Terada, L.S., Dormish, J.J., Shanley, P.F., Leff, J.A., Anderson, B.O., and Repine, J.E. (1992) Circulating xanthine oxidase mediates lung neutrophil sequestration after intestinal ischemia-reperfusion. Am J Physiol Lung Cell Mol Physiol 263, L394–L401Google Scholar
  52. 52.
    Galili, Y., Ben Abraham, R., Weinbroum, A., Marmur, S., Iaina, A., Volman, Y., Peer, G., Szold, O., Soffer, D., Klausner, J., Rabau, M., and Kluger, Y. (1998) Methylene blue prevents pulmonary injury after intestinal ischemia-reperfusion. J Trauma 45, 222–225PubMedCrossRefGoogle Scholar
  53. 53.
    Weinbroum, A., Nielsen, V.G., Tan, S., Gelman, S., Matalon, S., Skinner, K.A., Bradley, E. Jr, and Parks, D.A. (1995) Liver ischemia-reperfusion increases pulmonary permeability in rat: role of circulating xanthine oxidase. Am J Physiol 268, G988–G996PubMedGoogle Scholar
  54. 54.
    Parks, D.A., and Granger, D.N. (1986) Xanthine oxidase: biochemistry, distribution and physiology. Acta Physiol Scand 548, 87–99Google Scholar
  55. 55.
    Walsh, C. (1979) Metalloflavoprotein oxidases and superoxide dismutase. In: Enzymatic Reaction Mechanisms, edited by A.C. Bartlett. San Francisco: W.H. Freeman and Co., p. 432–448Google Scholar
  56. 56.
    Zhang, Z., Blake, D.R., Stevens, C.R., Kanczler, J.M., Winyard, P.G., Symons, M.C., Benboubetra, M., and Harrison, R. (1998) A reappraisal of xanthine dehydrogenase and oxidase in hypoxic reperfusion injury: the role of NADH as an electron donor. Free Rad Res 28, 151–164CrossRefGoogle Scholar
  57. 57.
    Komiyama, T., Kikuchi, T., and Sugiura, Y. (1986) Interactions of anticancer quinone drugs, aclacinomycin A, adriamycin, carbazilquinone, and mitomycin C, with NADPH-cytochrome P-450 reductase, xanthine oxidase and oxygen. J Pharmacobiodyn 9, 651–664PubMedCrossRefGoogle Scholar
  58. 58.
    Sakai, M., Yamagami, K., Kitazawa, Y., Takeyama, N., and Tanaka, T. (1995) Xanthine oxidase mediates paraquat induced toxicity on cultured endothelial cell. Pharmacol Toxicol 77, 36–40PubMedCrossRefGoogle Scholar
  59. 59.
    Yee, S.B. and Pritsos, C.A. (1997) Comparison of oxygen radical generation from the reductive activation of doxorubicin, streptonigrin, and menadione by xanthine oxidase and xanthine dehydrogenase. Arch Biochem Biophys 347, 235–241PubMedCrossRefGoogle Scholar
  60. 60.
    Shaul, P.W., Smart, E.J., Robinson, L.J., German, Z., Yuhanna, L.S., Ying, Y., Anderson, R.G., and Michel, T. (1996) Acylation targets endothelial nitric-oxide synthase to plasmalemmal caveolae. J Biol Chem 271, 6518–6522PubMedCrossRefGoogle Scholar
  61. 61.
    Day, B.J., Patel, M., Calavetta, L., Chang, L.Y., and Stamler, J.S. (1999) A mechanism of paraquat toxicity involving nitric oxide synthase. Proc Natl Acad Sci 96, 12760–12765PubMedCrossRefGoogle Scholar
  62. 62.
    Vasquez-Vivar, J., Martasek, P., Hogg, N., Masters, B.S., Pritchard, K.A.J., and Kalyanaraman, B. (1997) Endothelial nitric oxide synthase-dependent superoxide generation from adriamycin. Biochem J 36, 11293–11297CrossRefGoogle Scholar
  63. 63.
    Vasquez-Vivar, J., Kalyanaraman, B., Martasek, P., Hogg, N., Masters, B.S., Karoui, H., Tordo, P., and Pritchard, Jr., K.A. (1998) Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors. Proc Natl Acad Sci 95, 9220–9225PubMedCrossRefGoogle Scholar
  64. 64.
    Ignarro, L.J. (1999) Nitric oxide: a unique endogenous signaling molecule in vascular biology. Biosci Rep 19, 51–71PubMedCrossRefGoogle Scholar
  65. 65.
    Goss, S.P., Singh, R.J., Hogg, N., and Kalyanaraman, B. (1999) Reactions of *NO, *N02 and peroxynitrite in membranes: physiological implications. Free Radie Res 31, 597–606CrossRefGoogle Scholar
  66. 66.
    Munzel, T., Heitzer, T., and Harrison, D.G. (1997) The physiology and pathophysiology of the nitric oxide/superoxide system. Herz 22, 158–172PubMedCrossRefGoogle Scholar
  67. 67.
    Goss, S.P., Hogg, N., and Kalyanaraman, B. (1995) The antioxidant effect of spermine NONOate in human low density lipoprotein. Chem Res Toxicol 8, 800–806PubMedCrossRefGoogle Scholar
  68. 68.
    Ichinose, M., Sugiura, H., Yamagata, S., Koarai, A., and Shirato, K. (2000) Increase in reactive nitrogen species production in chronic obstructive pulmonary disease airways. Am J Respir Crit Care Med 162, 701–706PubMedGoogle Scholar
  69. 69.
    Saleh, D., Barnes, P. J., and Giaid, A. (1997) Increased production of the potent oxidant peroxynitrite in the lungs of patients with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 155, 1763–1769PubMedGoogle Scholar
  70. 70.
    Kooy, N.W., Royall, J.A., Ye, Y.Z., Kelly, D.R., and Beckman, J.S. (1995) Evidence for in vivo peroxynitrite production in human acute lung injury. Am J Respir Crit Care Med 151, 1250–1254PubMedGoogle Scholar
  71. 71.
    Crane, F., Sun, I.L., Barr, R., and Low, H. (1991) Electron and proton transport across the plasma membrane. J Bioenerg Biomemb 23, 733–803CrossRefGoogle Scholar
  72. 72.
    De Grey, A.D.N.J. (2000) Redox 2000: The 5th international conference on plasma membrane redox systems and their role in biological stress and disease. Antioxid Redox Signal 2, 373–374PubMedCrossRefGoogle Scholar
  73. 73.
    Crane, F., Sun, I.L., Clark, M.G., Grebing, C., and Low, H. (1985) Transplasma membrane redox systems in growth and development. Biochim Biophys Acta 811, 233–264PubMedCrossRefGoogle Scholar
  74. 74.
    Kaul, N., Choi, J., and Forman, H.J. (1998) Transmembrane redox signaling activates NF-kappaB in macrophages. Free Rad Biol Med 24, 202–207PubMedCrossRefGoogle Scholar
  75. 75.
    May, J.M., Qu, Z., Morrow, J.D., and Cobb, C.E. (2000) Ascorbate-dependent protection of human erythrocytes against oxidant stress generated by extracellular diazobenzene sulfonate. Biochem Pharmacol 60, 47–53PubMedCrossRefGoogle Scholar
  76. 76.
    Villalba, J. and Navas, P. (2000) Plasma membrane redox system in the control of stress induced apoptosis. Antioxid Redox Signal 2, 213–230PubMedCrossRefGoogle Scholar
  77. 77.
    Villalba, J.M., Navarro, F., Gomez-Diaz, C., Arroyo, A., Bello, R.I., and Navas, P. (1997) Role of cytochrome b5 reductase on the antioxidant function of coenzyme Q in the plasma membrane. Mol Aspects Med 18 Suppl, S7–13PubMedCrossRefGoogle Scholar
  78. 78.
    McKie, A.T., Barrow, D., Latunde-Dada, G., Rolfs, A., Sager, G., Mudaly, E., Mudaly, M., Richardson, C., Barlow, D., Bomord, A., Peters, T., Raja, D., and Shirali, S. (2001) An iron-regulated ferric reductase associated with the absorption of dietary iron. Science 291, 1755–1759PubMedCrossRefGoogle Scholar
  79. 79.
    Pountney, D.J., Raja, K.B., Bottwood, M.J., Wrigglesworth, J.M., and Simpson, R.J. (1996) Mucosal surface ferricyanide reductase activity in mouse duodenum. Biometals 9, 15–20PubMedCrossRefGoogle Scholar
  80. 80.
    Navas, P., Villalba, J.M., and Cordoba, F. (1994) Ascorbate function at the plasma membrane. Biochim Biophys Acta 1197, 1–13PubMedCrossRefGoogle Scholar
  81. 81.
    Mohazzab, K.M., Kaminski, P.M., Agarwal, R., and Wolin, M.S. (1999) Potential role of a membrane-bound NADH oxidoreductase in nitric oxide release and arterial relaxation to nitroprusside. Circ Res 84, 220–228CrossRefGoogle Scholar
  82. 82.
    Baker, M.A., and Lawen, A. (2000) Plasma membrane NADH -oxidoreductase system: a critical review of the structural and functional data. Antioxid Redox Signal, 197–212Google Scholar
  83. 83.
    Bongard, R.D., Krenz, G.S., Linehan, J.H., Roerig, D.L., Merker, M.P., Widell, J.L., and Dawson, C.A. (1994) Reduction and accumulation of methylene blue by the lung. J Appl Physiol 11, 1480–1491Google Scholar
  84. 84.
    Bongard, R.D., Merker, M.P., Shundo, R., Okamoto, Y., Roerig, D. L., Linehan, J.H., Dawson, C.A. (1995) Reduction of thiazine dyes by bovine pulmonary arterial endothelial cells in culture. Am J Physiol Lung Cell Mol Physiol 269, L78–L84Google Scholar
  85. 85.
    Merker, M.P., Bongard, R.D., Linehan, J.H., Okamoto, Y., Vyprachticky, D., Brantmeier, B.M., Roerig, D.L., and Dawson, C.A. (1997) Pulmonary endothelial thiazine uptake: separation of cell surface reduction from intracellular reoxidation. Am J Physiol Lung Cell Mol Physiol 272, L673–L680Google Scholar
  86. 86.
    Dixon, M. and Webb, E.C (1979) Enzyme Cofactors. In: Enzymes, New York: Academic Press, 468–518Google Scholar
  87. 87.
    Bongard, R.D., Merker, M.P., Daum, J.M., and Dawson, C.A. (1999) Quinone reduction by endothelial cells: Potential mechanism for regulating redox status of low density lipoproteins (LDL). FASEB J 13, A185Google Scholar
  88. 88.
    Dawson, C.A., Audi, S.H., Bongard, R.D., Okamoto, Y., Olson, L.E., and Merker, M.P. (2000) Transport and reaction at endothelial plasmalemma. Distinguishing intra- from extra-cellular events. Ann Biomed Eng 28, 1010–1018PubMedCrossRefGoogle Scholar
  89. 89.
    De La Fuente, E., Dawson, CA., Nelin, L.D., Bongard, R.D., McAuliffe, T.L., and Merker, M.P. (1997) Biotinylation of membrane proteins accessible via the pulmonary vasculature in normal and hyperoxic rats. Am J Physiol Lung Cell Mol Physiol 272, L461–L470Google Scholar
  90. 90.
    Merker, M.P., Olson, L.E., Bongard, R.D., Patel, M.K., Linehan, J.H., and Dawson, C.A. (1998) Ascorbate-mediated transplasma membrane electron transport in pulmonary arterial endothelial cells. Am J Physiol Lung Cell Mol Physiol 274, L685–L693Google Scholar
  91. 91.
    Olson, L.E., Merker, M.P., Patel, M.K., Bongard, R.D., Daum, J.M., Johns, R.A., and Dawson, C.A. (2000) Cyanide increases reduction but decreases sequestration of methylene blue by endothelial cells. Ann Biomed Eng 28, 85–93PubMedCrossRefGoogle Scholar
  92. 92.
    Giulivi, C., and Cadenas, E. (1998) Extracellular activation of fluorinated aziridinylbenzoquinone in HT29 cells EPR studies. Chem Biolinter 113: 191–204, 1998Google Scholar
  93. 93.
    Gillis, C.N., and Roth, J.A. (1976) Pulmonary disposition of circulating vasoactive hormones. Biochem Pharmacol 25, 2547–2553PubMedCrossRefGoogle Scholar
  94. 94.
    Hechtman, H.B. and Shepro, D. (1982) Lung metabolism and systemic organ function. Circ Shock 9, 457–467PubMedGoogle Scholar
  95. 95.
    Merker, M.P., Audi, S.H., Brantmeier, B.M., Nithipatikom, K., Goldman, R.S., Roerig, D.L., and Dawson, C.A. (1999) Proline in vasoactive peptides: consequences for peptide hydrolysis in the lung. Am J Physiol Lung Cell Mol Physiol 276, L341–L350Google Scholar
  96. 96.
    Claise, C., Edeas, M., Chaouchi, N., Chalas, J., Capel, L., Kalimouttou, S., Vazquez, A., and Lindenbaum, A. (1999) Oxidized-LDL induce apoptosis in HUVEC but not in the endothelial cell line EA.hy 926. Atherosclerosis 147, 95–104PubMedCrossRefGoogle Scholar
  97. 97.
    Drexler, H. and Hornig, B. (1999) Endothelial dysfunction in human disease. J Mol Cell Cardiol 31, 51–60PubMedCrossRefGoogle Scholar
  98. 98.
    Harrison, D.G. (1997) Cellular and molecular mechanisms of endothelial cell dysfunction. J Clin Invest 100, 2153–2157PubMedCrossRefGoogle Scholar
  99. 99.
    Berliner, J.A., and Heinecke, J.W. (1996) The role of oxidized lipoproteins in atherogenesis. Free Rad Biol Med 20, 101–121CrossRefGoogle Scholar
  100. 100.
    Smalley, D.M., Hogg, N., Kalyanaraman, B., and Pritchard, Jr., K.A. (1997) Endothelial cells prevent accumulation of lipid hydroperoxides in low-density lipoprotein. Arterio Thromb Vase Biol 17, 3469–3474CrossRefGoogle Scholar
  101. 101.
    Constantinescu, A., Vink, H., and Spaan, J.E.A. (2001) Elevated capillary tube hematocrit reflects degradation of endothelial cell glycocalyx by oxidized LDL. Am J Physiol Heart Circ Physiol 280, H1051–H1057PubMedGoogle Scholar
  102. 102.
    Cominacini, L., Garbin, U., De Santis, A., Campagnola, M., Davoli, A., Pasini, A.F., Faccini, G., Pasqualini, E., Bertozzo, L., Micciolo, R., Pastorino, A.M., and Lo, C. (1996) Mechanisms involved in the in vitro modification of low density lipoprotein by human umbilical vein endothelial cells and copper ions. J Lipid Media & Cell Signal 13, 19–33CrossRefGoogle Scholar
  103. 103.
    Dugas, T.R., Morel, D.W., and Harrison, E.H. (1998) Impact of LDL carotenoid and alpha-tocopherol content on LDL oxidation by endothelial cells in culture. J Lipid Res 39, 999–1007PubMedGoogle Scholar
  104. 104.
    Garner, B., van Reyk, D., Dean, R.T., and Jessup, W. (1997) Direct copper reduction by macrophages. J Biol Chem 272, 6927–6935PubMedCrossRefGoogle Scholar
  105. 105.
    Dawson, C., Bongard, R.D., Merker, M.P., Olson, L.E., and Linehan, J.H. (1998) Pulmonary endothelium reduces copper and ubiquinone: implications for atherosclerosis. J Vase Res 35, 61Google Scholar
  106. 106.
    Schneider, D., and Elstner, E.F. (2001) Coenzyme Q10, vitamin E, and dihydrothioctic acid cooperatively prevent diene conjugation in isolated low density lipoproteins. Antioxid Redox Signal 2, 327–333CrossRefGoogle Scholar
  107. 107.
    Bowry, V.W., Mohr, D., Cleary, J., and Stocker, R. (1995) Prevention of tocopherol-mediated peroxidation in ubiquinol-10-free human low density lipoprotein. J Biol Chem 270, 5756–5763PubMedCrossRefGoogle Scholar
  108. 108.
    Bowry, V.W., and Stocker R. (1993) Tocopherol mediated peroxidation. The prooxidant effect of Vitamin E on the radical-initiated oxidation of human low density lipoprotein. J Am Chem Soc 115, 6029–6044CrossRefGoogle Scholar
  109. 109.
    Thomas, S.R., Neuzil, J., Mohr, D., and Stocker, R. (1995) Coantioxidants make alpha-tocopherol an efficient antioxidant for low-density lipoprotein. Am J Clin Nutr 62, 1357S–1364SPubMedGoogle Scholar
  110. 110.
    Britigan, B.E., Roeder, T.L., and Shasby, D.M. (1992) Insight into the nature and site of oxygen centered free radical generation by endothelial cell monolayers using a novel spin trapping technique. Blood 79, 699–707PubMedGoogle Scholar
  111. 111.
    DeGray, J.A., Rao, D.N., and Mason, R.P. (1991) Reduction of paraquat and related bipyridylium compounds to free radical metabolites by rat hepatocytes. Arch Biochem Biophys 289, 145–152PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Marilyn P. Merker
    • 1
    • 2
  • Robert D. Bongard
    • 1
    • 2
  • Christopher A. Dawson
    • 1
    • 2
  1. 1.Medical College of WisconsinMarquette UniversityMilwaukeeUSA
  2. 2.Veteran’s Administration Medical CenterMilwaukeeUSA

Personalised recommendations