Skip to main content

Laminate/HDI Die Carriers

  • Chapter

Abstract

The use of more complex components with very high I/O counts has pushed the board fabricator to re-examine techniques for creating smaller vias. Over the last several years, many new or redeveloped processes have appeared on the market. These processes include revised methods of creating holes, such as laser drilling, micro-punching, and mass etching; new methods for additively creating dielectric with via holes using photo-sensitive dielectric materials; and new methods for metallizing the vias such as conductive adhesives and solid post vias. All of these methods share some common traits. They all allow the designer to significantly increase routing density through the use of vias in SMT pads, to reduce size and weight of product, and to improve the electrical performance of the system. These types of boards are generically called, “High Density Interconnects” or HDI.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Patent # 4,566,186, “Multilayer Interconnect Circuitry Using Photolmageable Dielectric,” Charles E. Bauer & William A. Bold, Tektronix, Inc. granted Jan. 28, 1985.

    Google Scholar 

  2. Y. Tsukada and S. Tsuchida, “Surface Laminar Circuit, A Low Cost High Density Printed-circuit Board,” Proceedings of the Surface Mount International Conference & Exposition (San Jose, CA), Sept. 1992.

    Google Scholar 

  3. W. Schmidt, “A Revolutionary Answer to Today’s and Future Interconnect Challenges,” Proceedings of the 6th PC World Conference (San Francisco, CA), May 1993.

    Google Scholar 

  4. H. Holden, “Segmentation of Assemblies: A Way to Predict Printed Circuit Characteristics,” Proceedings of IPC T/MRC (New Orleans), Dec. 6, 1994.

    Google Scholar 

  5. H. Holden, “Design Guidelines for HDI and Microvias,” IPC-2315, Chicago, IL: IPC, pp. 55, 1998.

    Google Scholar 

  6. H. Holden, “The Challenge: To Plan Successful Products When Packaging Is So Complicated,” Future Circuts, Issue 1, vol. 2, pp. 106–109,1997.

    MathSciNet  Google Scholar 

  7. D. P. Seraphim, R. C. Lasky and C. Y. Li, “Principles of Electronic Packaging, McGraw-Hill Book Co., 1989, pp. 39–52.

    Google Scholar 

  8. W. R. Heller, C. G. His and W. E Mikhail, “Wirability-Designing Wiring Space for Chips and Chip Packages,” IEEE Design Test, pp. 43–51, Aug. 1984.

    Google Scholar 

  9. G. Coors, P. Anderson and L. Seward, “A Statistical Approach to Wiring Requirements,” Proc of the IEPS, 1990, pp. 774–783.

    Google Scholar 

  10. I. E. Sutherland and D. Oestreicher, “How Big Should a Printed-Circuit Board Be?,” IEEE Trans. on Computers, vol. C-22, no. 5, May 1973, pp. 537–542.

    Article  Google Scholar 

  11. H. B. Bakoglu, Circuits,Interconnections and Packaging for VLSI, Reading, MA: Addison Wesley, 1990.

    Google Scholar 

  12. R. J. Hannemann, “Introduction: The Physical Architecture of Electronic Systems,” Physical Architecture of VLSI Systems, R. Hannemann, A.D. Kraus and M. Pecht editors, New York, NY: John Wiley & Sons, 1994, pp. 1–21.

    Google Scholar 

  13. L. Moresco “Electronic System Packaging: The Search for Manufacturing the Optimum in a Sea of Constraints,” IEEE Transactions on Components, Hybrids and Manufacturing Technology, vol. 13, pp. 494–508, 1990.

    Article  Google Scholar 

  14. D. Maliniak, “Future Packaging Depends Heavily on Materials,” Electronic Design, pp. 83–97, Jan. (1992).

    Google Scholar 

  15. D. Powell and M. Weinhold, “Laser Ablation of Microvia Holes in Woven Aramidreinforced PWBs,” Chip Scale Review, Sept. 1997, pp. 38–45.

    Google Scholar 

  16. D. Poulin, J. Reid and T. A. Znotins, “Materials Processing with Excimer Laser,” ICALEO Paper, Nov. 1987.

    Google Scholar 

  17. Knudsen, P. D. et al., US Patent 5,262,280, Nov. 16 (1993).

    Google Scholar 

  18. Shipley, C. R., US Patent 4,902,610, Feb. 20 (1990).

    Google Scholar 

  19. Shipley, C. R., US Patent 5,246,817, Sept. 21 (1993).

    Google Scholar 

  20. E. Sweetman, “Characteristics and Performance of PHP-92: AT&T’s Triazine-Based Dielectric for POLYHIC MCMs,” The International Journal of Microcircuits and Electronic Packaging, vol. 15, no. 4, pp. 195–204 (1992).

    Google Scholar 

  21. Y. Tsukada, S. Tsuchida and Y. Mashimoto, “Surface Laminar Circuit Packaging,” Proc. 42nd ECTC Conference, pp. 22–27,1992.

    Google Scholar 

  22. A. Kestenbaum et al., “Laser Drilling of Microvias in Epoxy Glass Printed Circuit Boards,” IEEE Transactions, vol. 13, no. 4, Dec. 1990, pp. 1055–1062.

    Google Scholar 

  23. J. Morrison, “A Large Format Modified TEA CO2 Laser Based Process for Cost-Effective Small Via Generation,” ISHM, Apr. 1994.

    Google Scholar 

  24. K. Arai, “High Reliability Laser Blind Hole Technology,” Hitachi Seiko Journal, Jan. 1997.

    Google Scholar 

  25. M. F. Bregman, “Multi Chip Module for Advanced Workstation Applications,” Proc. 7th IMC (Yokohama, Japan), pp. 30–36,1992.

    Google Scholar 

  26. H. B. Bakoglu, G. F. Grohoski and R. K. Iontoye, “The IBM RISC System/6000 Processor; Hardware Overview,” IBM J. Res. Develop., vol. 34, no. 1, pp. 12–22,1992.

    Article  Google Scholar 

  27. T. Kimura, T. Imura, K. Saithoh and Y. Kohno, “Fabrication and Characterization of Silicon Carrier Substrate for Silicon on Silicon Multichip Modules,” Proc. 1st International Conf. on Multichip Modules (Denver), pp. 23–27,1992.

    Google Scholar 

  28. C. Boyko, E Bucek, V. Marovich and D. Mayo. “Film Redistribution Layer Technology,” Proc. 2nd Int. MCM Conference, pp. 196–199,1993.

    Google Scholar 

  29. D. O. Powell, T. L. Heleine, R. H. Magnuson, V. Markovich and A. C. Bhatt, “Early Experience with Film Redistribution Layer Technology, ”Proc. 1994 TEPS Conference, pp. 649–658,1994.

    Google Scholar 

  30. R. Carpenter and I. Memis, “SLC: An Organic Packaging Solution for the Year 2000,” NEPCON West Conference, 1996.

    Google Scholar 

  31. R. Tummala, E. Rymazewski and A. Klopfenstein, “Microelectronics Packaging Handbook,Subsystem Packaging, Part III, Chapman & Hall, pp. 265–268,1997.

    Book  Google Scholar 

  32. Y. Tsukada, S. Tsuchida and Y. Mashimoto, “Surface Laminar Circuits and Flip Chip Attach Packaging,” Proceedings of the 4th International Microelectronics Conference (Yokohama), pp. 20–27,1992.

    Google Scholar 

  33. K. C. Norris and A. H. Landzberg, Reliability of Controlled Collapse Interconnections, IBM Journal Research and Development, vol. 13, no. 3, pp. 266–271, May 1969.

    Article  Google Scholar 

  34. N. Kawachi, T. Wada and T. Miki, Manufacturing printed wiring board by Ultra High Speed Electroforming, P. C. W.C.-5 U.K. 1990, no. B4 2.

    Google Scholar 

  35. T. Yoshino: The process of printed wiring board manufacturing, using photoelectroforming process. Surface Mount Technology, ‘80 Autumn issue, pp. 186.

    Google Scholar 

  36. H. Tourne, “Laser Via Technologies for High Density MCM-L Fabrication,” 95 MCM Conf., pp. 71–76.

    Google Scholar 

  37. D. A. Belforte, Industrial Laser, vol. 10, no. 8, p. 1,1995.

    Google Scholar 

  38. R. Srinivasan, “Ablation of Polymers and Biological Tissue by Ultraviolet Lasers,” Science, vol. 234, p. 559,1986.

    Article  Google Scholar 

  39. T. G. Tessier and G. Chandler, “Compatibility of Common MCM-D Dielectric with Scanning Laser Ablation Via Generation Processes,” IEEE Trans. CHMT, vol. 16, p. 39,1993.

    Google Scholar 

  40. R. S. Patel et al., “Laser Via Ablation Technology for MCMs Thin Film Packaging—Past, Present, and Future at IBM Microelectronics,” ISHM, 1994, pp. 31–41.

    Google Scholar 

  41. J. M. Morrison et al., “Small Via Generation, Advanced Packaging, Nov./Dec. 1994, pp. 26–29.

    Google Scholar 

  42. T. G. Tessier and G. Chandler, “Compatibility of Common MCM-D Dielectric with Scanning Laser Ablation Via Generation Processes,” IEEE 1993, vol. 16, no. 1, Feb. 1993, pp. 39–45.

    Google Scholar 

  43. L. Burgess and P. Madden, “Blind Vias in SMD Pads,” Printed Circuit Fabrication, vol. 21, no. 1, Jan. 1998, pp. 28–29.

    Google Scholar 

  44. T. G. Tessier, J. M. Morrison and B. Gu, “A Large Format Modified TEA CO2 Laser Based Process for Cost Effective Small Via Generation,” ISHM Paper, Apr. 1994.

    Google Scholar 

  45. J. Tourne, “Laser Via Technologies for High Density MCM-L Fabrication,” ISHM Paper, Apr. 1995.

    Google Scholar 

  46. M. Owen, “New Laser Technology for Drilling Through-and Blind-Vias in Copper Clad Reinforced Circuit Boards,” CircuiTree, Feb. 1997.

    Google Scholar 

  47. R. Srinivasan, “Ablation of Polymers and Biological Tissue by Ultraviolet Lasers,” Science, vol. 234, pp. 559–565, Oct. 1986.

    Article  Google Scholar 

  48. C. A. Pico et al., “Micromachining of Polyimides Using Ultraviolet Solid State Lasers,” C.A. Pico et al., FLEXCONTM ‘85, pp. 152–158.

    Google Scholar 

  49. M. Owen, “New Laser Technology for Drilling Through-and Blind-Vias in Copper Clad Reinforced Circuit Boards” IPC Exposition (San Diego, Ca), May, 1995.

    Google Scholar 

  50. A. Cable and M. Owen, “High Density Packaging: Micro-Vias with the UV Laser,” Surface Mount Technology, vol. 9, no. 7, p. 31, 1995.

    Google Scholar 

  51. L. Lemke, “Recent Developments in the Production and Application of Advanced Laminate Based MCMs and Chip Carriers,” 95 MCM Conf., pp. 23–24.

    Google Scholar 

  52. L. Lemke (1994), “Advanced Laminate Based MCM Consortium,” Proceedings of the International Electronics Packaging Conference, Atlanta, Ga.

    Google Scholar 

  53. S. Roberts, “The Role of Flexible Materials in MCM Substrates.” IPC National Conference on MCM-L Proceedings (Minneapolis, Minn), 1994.

    Google Scholar 

  54. G. Gengel, “A Process for the Manufacture of Cost Competitive MCM Substrates,” Proceedings of the 1994 International Conference on Multichip Modules (Denver, CO), pp. 182–187,1994.

    Google Scholar 

  55. G. Gengel, “Quick Turn Manufacturing of Interconnect Systems Using Predrilled and Plated Via Arrays,” Proceedings of the First International Conference on Flex Circuits.Flexcon TM 94, 1994.

    Google Scholar 

  56. R. A. Fillion, “Status and Update on the GE HDI Multichip Module Technology,” Proceedings Du Pont Symposium on High Density Interconnect, p. 52, May 1990.

    Google Scholar 

  57. R. A. Fillion, W. Daum, E. J. Wildi and E. B. Kaminsky, “Multichip Modules-Chips First vs. Chips Last Analysis,” Proceedings ISHM International Symposium on Microelectronics (San Francisco, CA), p. 391, Oct. 1992.

    Google Scholar 

  58. Happy T. Holden, “Using Non- 71. Conventional PCB Build-Up Technology to Reduce the Cost and Design Complexity for MCM-Ls,” ISHM Advancing Microelectronics, Apr. 1995 issue.

    Google Scholar 

  59. H. Holden, “Novel Approaches to Blind and Buried Vias Using Conductive Pastes,” Proc. of the Chip Scale International Conf. (Santa Clara, CA), May, 1998.

    Google Scholar 

  60. M. Buchwald and P. Stimpfig, “DYCOstrate,” Expertise, the Newsletter for Zuken-Redac Customers, Winter 1994/1995, pp.9–10.

    Google Scholar 

  61. H. Holden, “Optimizing MCM-L Designs: The Focus on Metrics”, Proceedings of 32nd ISHM-NORDIC Conference, Helsinki, Finland, Sept. 1994, pp. 123–129.

    Google Scholar 

  62. H. Holden, “How to Use High-Density Interconnect Structures with Fine-Pitch Area Array Components,” Chip Scale Review, Sept. 1997, pp. 54–57.

    Google Scholar 

  63. H. Holden, Where are modern pcb fabricators today?, Future Circuits, Issue 1, vol. 1,1997, pp. 15–20.

    Google Scholar 

  64. H. Holden, “Micro-via PCBs: The Next Generation of Substrates and Packages,” Future Circuits, Issue 1, vol. 1, 1997, pp. 71–75.

    Google Scholar 

  65. H. Holden, “Microvias Build Up PWBs: The Next Generation Substrates,” Proc. of the SMTA 4th Emerging Technology Symposium, Oct. 20–23, 1997, Bloomington, MN,pp. 1–9.

    Google Scholar 

  66. H. Holden, “Design and Fabrication Issues in Use of Flip Chip and High Density Area Array Packages,” Proc. of the SMTA 4th Emerging Technology Symposium, Oct. 20–23, 1997, Bloomington, MN, pp. 774–783.

    Google Scholar 

  67. H. Holden, “Microvia: The Next Generation of Substrates and Packages,” IEEE Micro Magazine, July-Aug. 1998, pp. 1–8.

    Google Scholar 

  68. T. Tessier, J. Aday and B. Crews, “Selecting Flip Chip on Board Compatible High Density PWB Technologies,” 1995 MCM Conference, pp. 42–51.

    Google Scholar 

  69. Nakamura, Kato, Asai, Takenaka, “High Reliability, High Density Build Up Printed Circuit Board for MCM-L,” 1995 MCM Conf., pp. 36–41.

    Google Scholar 

  70. M. Moser and T. Tessier, “Higher Density PCB’s for Enhanced SMT and Bare Chip Assembly Applications,” 1995 MCM Conference (Denver, CO), pp. 543–552.

    Google Scholar 

  71. G. Wada, “A New Circuit Substrate for MCM-L,” 1995 MCM Conference (Denver, CO), pp. 59–64.

    Google Scholar 

  72. G. Wada, “Printed Wiring Board Design Adopts Aramid, Enables High-Density Pac-kages,” Feb. 95, JEE, p. 42.

    Google Scholar 

  73. Advanced Research Projects Agency, Agreement # MDA 972–94–2–0006.

    Google Scholar 

  74. Messner, Turlik, Balde and Garrou (1992), “Thin Film Multichip Modules” Reston, VA: ISHM, 1992.

    Google Scholar 

  75. T. G. Tessier, “Mechanical Punching of Through-Holes in Thin Laminates for Higher Density MCM-L Fabrication,” Pro-ceedings of the 1994 International Conference on Multichip Modules, Denver, Colo., 1994, pp. 173–181.

    Google Scholar 

  76. Chang, Dobroff and Chung, “Challenges and Solutions for MCM Thermal Management,” Proceedings of the Technical Program, vol. 2, NEPCON West ‘83. Anaheim, Calif., 1993, pp. 661–669.

    Google Scholar 

  77. Y. Tsukada, S. Tsuchida and Y. Mashimoto, “Surface Laminar Circuits and Flip Clip Packaging,” Proc. 42nd ECTC Conf, pp. 22–27, San Diego, May 1992.

    Google Scholar 

  78. F. Boyko, V. Bucek, D. Markovich and D. Xbyo, “Film Redistribution Layer Technology,” Proc. 2nd Intl. CMCM Conf, Denver, pp. 196–199, Apr. 1993.

    Google Scholar 

  79. M. Luciano, “Maximize PCB Real Estate Through Buried and Blind Vias,” Surface Mount Technology, Oct. 1992, pp. 17–19.

    Google Scholar 

  80. Brown, V. et al., US Patent 5,162,144, Nov. 10 (1992).

    Google Scholar 

  81. H. Akahoshi et al., “A New Fully Additive Fabrication Process for Printed Wiring Boards,” IEEE Transactions, vol. CHMT-9, no. 2, pp. 181–187, June (1986).

    Google Scholar 

  82. L. Tuck, “Pushing the PCB,” Circuits Assembly, p. 32, July (1992).

    Google Scholar 

  83. E. Clark, “Transitioning to MCM Production,” Printed Circuit Fabrication, vol. 16, no. 20, pp. 69–73, Feb. (1993).

    Google Scholar 

  84. M. C. Tucker, “Meeting Global MCM Manufacturing Challenges,” Solid State Technology, pp. 101–104, June (1992).

    Google Scholar 

  85. C. Bovko et al., “Film Redistribution Layer Technology,” Proceedings 2nd International MCM Conference, Denver, pp. 196–199, Apr. (1993).

    Google Scholar 

  86. J. A. Ors and R. D. Small, Jr., US Patent 4,795,693, Jan. 3 (1989).

    Google Scholar 

  87. J. A. Ors and J. B. Enns, “Morphology of Rubber-Modified Photopolymers’, in Polymers in Electronics,” American Chemical Society, pp. 345–365 (1984).

    Google Scholar 

  88. Enomoto, R. and Asai, M., US Patent 5,055,321, Oct. 8 (1991).

    Google Scholar 

  89. C. L. Lassen, “Global Demand for New PWB Technologies and the Industry’s Responses,” Prismark Partners LLC, 1995.

    Google Scholar 

  90. K. Berg, “The Sequential Process Advantage in MCM-L Construction,” ICEMM 1993, pp. 190–195, 1993.

    Google Scholar 

  91. J. Grace, “Achieving Higher Circuit Densities Through Cost-Effective Blind Vias,” Electronic Packaging and Production, June 1993, pp. 46–48.

    Google Scholar 

  92. M. Greenstein and E Matta, “A Precision Vertical Interconnect Technology,” IEEE, vol. 14, no. 3, Sept. 1991, pp. 445–451.

    Google Scholar 

  93. T. Tessier and B. Adams, “Mechanical Punching of Through-Holes in Thin Laminates for Higher Density MCM-L Fabrication,” Proceedings of the 1994 Conference on Multichip Modules, 1994.

    Google Scholar 

  94. T. G. Tessier, “Laser Processing Alternatives for Via and Through Hole Fabrication in Supported and Free-Standing Polyimide Films,” Proceedings Du Pont Symposium on High Density Interconnect, Oct. (1993).

    Google Scholar 

  95. C. Lassen, “Perspective on Portable Design,” Portable Design magazine, May 1997, pp. 2732.

    Google Scholar 

  96. C. Lassen, “MLBs of the Future,” Printed Circuit Fabrication, vol. 20, no. 6, June 1997, pp. 22–24.

    Google Scholar 

  97. A. Singer and R. Bhatkal, “A Cost Analysis of Microvia Technologies,” CircuiTree, vol. 20, no. 6, June 1997, pp. 30–37, 56.

    Google Scholar 

  98. M. Andrews and J. Fisher, “Microvias: Highlight the Latest Generation of PWB Technology,” Chip Scale Review, Sept. 1997, pp. 46–48.

    Google Scholar 

  99. R. Bowlby, “Wanted: HDI PCBs,” Printed Circuit Fabrication, Oct. 1997.

    Google Scholar 

  100. A. Singer and R. Bhatkal, “Microvia PCBs: Do They Cost More?,” Printed Circuit Fabrication, vol. 21, no. 1, Jan. 1998, pp. 30–32, 42.

    Google Scholar 

  101. T. Aoyama, H. Tohda, D. Morrissey, G. Milad and T. Lee, “Sand Blasting: A Novel Approach to Microvia Processing,” Printed Circuit Fabrication, vol. 21, no. 1, Jan. 1998, pp. 18–22.

    Google Scholar 

  102. H. T. Holden et al., “High Density Interconnection,” The Board Authority, vol. 1, no. 2, pp. 32–34, 41–43,107–112, June, 1999.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Karl J. Puttlitz Paul A. Totta

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Holden, H.T., Barr, D., Powell, D. (2001). Laminate/HDI Die Carriers. In: Puttlitz, K.J., Totta, P.A. (eds) Area Array Interconnection Handbook. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1389-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1389-6_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5529-8

  • Online ISBN: 978-1-4615-1389-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics