Ceramic Chip Carriers

  • John U. Knickerbocker
  • Thomas F. Redmond


Ceramic chip carriers which utilize area-array interconnections have been used in industry applications for over 30 years. This chapter provides ceramic chip carrier examples for each of the six market applications which include High Performance, Cost Performance, Commodity, Hand Held and Communication, Automotive and Memory. Materials and properties are summarized for standard alumina chip carriers, high-performance materials, thin-film materials, and high-thermal-performance materials. Fabrication processes include comparisons for thick film, dry pressed and multilayer ceramics with and without advanced thin-film wiring. Thin-film wiring provides the highest level of wiring for both Single Chip Modules (SCM) and Multi-chip Modules (MCM). Relative comparisons are also made for availability, cost, characteristics and various application form factors.


Ball Grid Array Chip Carrier Multichip Module Ceramic Carrier Blank Carrier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    The National Technology Roadmap for Semiconductors, 1997 Edition, Semiconductor Industry Association.Google Scholar
  2. 2.
    Microelectronics Packaging Handbook, R. R. Tummala and E. Rymaszewski, eds., New York, Van Nostrand Rienhold, 1989.Google Scholar
  3. 3.
    A. J. Blodgett “Microelectronic Packaging,” Sci. Amer., 249, p. 86, 1983.CrossRefGoogle Scholar
  4. 4.
    Multichip Modules Technology Handbook, P.E. Garrou and I. Turlik, eds., New York, McGraw-Hill, 1998.Google Scholar
  5. 5.
    K. Yokouchi, N. Kamehara and Niwa., “Packaging Technology for High Speed Computers-Multilayer Glass/Ceramic Circuit Board,” Proc. ISHM, p. 183, 1991.Google Scholar
  6. 6.
    M. Yamada, M. Nishiyama, T. Tokaichi and M. Okano, “Packaging Technology for the NEC ACOS System 3900,” Proc. 42nd ECTC (IEEE), p. 745, 1992.Google Scholar
  7. 7.
    Y. Shimada, Y. Koybayashi, K. Kata, M. Kurano and H. Takamizawa, “Large Scale Multilayer Ceramic Substrate for Supercomputers,” Proc. 40th ECTC (IEEE), p. 76, 1990.Google Scholar
  8. 8.
    S. K. Ray, H. Quinnones, S. Iruvanti, E. Atwood and L. Walls, “Ceramic Column Grid Array (CCGA) Module for A High Performance Work Station Application,” Proc. 47th ECTC (IEEE), pp. 319–324,1997.Google Scholar
  9. 9.
    A. Shaikh, “Thick Film Pastes For AIN Substrates.” Advancing Microelectronics, Special AIN Edition, P. Garrou, ed. p. 18, 1994.Google Scholar
  10. 10.
    R. Master, private communication, 1998.Google Scholar
  11. 11.
    J. Tetar, “Game Chips Drive Technology,” Electronic News, 44 (2102), pp. 16–18, Jan. 1998.Google Scholar
  12. 12.
    S. Knickerbocker, private communication, 1999.Google Scholar
  13. 13.
    D. L. Wilcox, R. F. Huang and D. Anderson, “The Multilayer Ceramic Integrated Circuit (MCIC) Technology: Opportunities and Challenges,” Proc. IMAPS, 1997.Google Scholar
  14. 14.
    Business Week, Jan. 1998.Google Scholar
  15. 15.
    J. P. Cazenave and T. Suess, “Fodel Photoimageable Materials-A Thick Film Solutsity MCMs,” Proc. ISHM, p. 483, 1993.Google Scholar
  16. 16.
    J. Knickerbocker et al., “IBM System/390 Air-cooled Alumina Thermal Conduction Module,” IBM J. Res. Develop., 35, p. 330, 1991.CrossRefGoogle Scholar
  17. 17.
    D. Bendz, R. Gedney and J. Rasile, “Cost/Performance Single-Chip Module,” IBM J. Res. Develop., 26, p. 278, 1982.CrossRefGoogle Scholar
  18. 18.
    M. Williams, “Production of MCP Chip Carriers,” Proc. 40th ECTC (IEEE), p. 408, 1990.Google Scholar
  19. 19.
    T. Watari and H. Murano, “Packaging Technology for the NEC SX Supercomputer,” IEEE Trans. Components Hybrids Manuf. 31. Technol. vol. CHMT-8: p. 462, 1985.CrossRefGoogle Scholar
  20. 20.
    G. Katopis, W. Becker and H. Stoller, “First Level Package Design Considerations for the IBM S/390 G5 Server,” Proc. 7th Topical 32. Meeting on Electrical Performance of Electronic Packaging (IEEE), pp. 15–16, 1998.Google Scholar
  21. 21.
    C. W. Ho, D. A. Chance, C. H. Bajorek and R. E. Acosta, TitleIBM J. Res. Develop., 26, p. 286, 1982.CrossRefGoogle Scholar
  22. 22.
    G. Katopis and W. Becker, “S/390 Cost Performance Considerations for MCM Packaging Choices,” IEEE Trans. Components Pack 34. ages Manuf. Technol. B, 21, p. 286, 1998.Google Scholar
  23. 23.
    T. F. Redmond, C. Prasad and G. Walker, “Polyimide-Copper Thin Film Redistribution on Glass Ceramic/Copper Multilevel Substrates,” Proc. 41st ECTC (IEEE), p. 689, 1991.Google Scholar
  24. 24.
    S. Mok, R. Reinschmidt and L. Smith, “Design and Packaging of a Pentium Pro 36. cessor Based MCM-D Module for Wearable Personal Computers, Notebooks, and Embedded Control Applications,” Proc. International Conference on Multichip Modules, pp. 208–213, 1997.Google Scholar
  25. 25.
    E. Perfecto, S. Ray, T. Wassick and H. Stoller, “Evolution of Engineering Change and Repair Technology in High Performance Multichip Modules at IBM,” IEEE Trans. Adv. 38. Packag., 22, p. 129, 1999.CrossRefGoogle Scholar
  26. 26.
    G. Leung and S. Sands, “A Thin Films on MLC Application,” Proc. 41st ECTC (IEEE), pp. 10–13,1991Google Scholar
  27. 27.
    W. Shutler et al., “A Family of High Perfor- 39. manee MCM C/D Packages Utilizing Cofired Alumina Multilayer Ceramic and a Shielded Thin Film Redistribution Structure,” Int. J. Microcircuits Electron. Packag., 20, p. 289, 1997.Google Scholar
  28. 28.
    E. Perfecto et al., “MCM-D/C Application for a High Performance Module,” Proc. International Conference on Multichip Modules, pp. 69–74,1996.Google Scholar
  29. 29.
    J. Pan, S. Poon and B. Nelson, “A Planar Approach to High Density Copper-Polyimide Interconnect Fabrication,” Proc. 8th Int. Electronics Packaging Conference, p. 174, 1988.Google Scholar
  30. 30.
    S. Ray et al., “Dual Level Metal (DLM) Method for Fabricating Thin Film Wiring Structures,” Proc. 43rd ECTC (IEEE), pp. 538–543,1993.Google Scholar
  31. 31.
    L. Levinson, C. Eichelberger, R. Wojnarowski and R. Carlson, “High Density Interconnects Using Laser Lithography,” Proc. hit. Symp. Microelectron., pp. 301–306,1988.Google Scholar
  32. 32.
    R. Fillion, R. Wojnarowski, R. Saia and D. Kuk, “Demonstration of a Chip Scale Chip-on-Flex Technology,” Proc. International Conference on Multichip Modules, pp. 351–356,1996.Google Scholar
  33. 33.
    E. O’Sullivan et al., “Electrolessly Deposited Diffusion Barriers for Microelectronics,” IBMJ.Res. Develop., 42, p. 607, 1998.CrossRefGoogle Scholar
  34. 34.
    L. Abelson, R. Elmadjian, G. Kerber and A. Smith, “Superconductive Multi Chip Module Process for High Speed Digital Applications.” IEEE Trans. Appl. Supercond., 7, pp. 2627–30, 1997.CrossRefGoogle Scholar
  35. 35.
    Y.H. Kim et al., “Adhesion and Interface Investigation of Polyimide and Metals,” J. Adhesion Sei. Technol., 2, p. 95, 1988.CrossRefGoogle Scholar
  36. 36.
    D. Burdeaux, P. Townsend, J. Carr and P. Garrou, “Benzocyclobutene (BCB) Dielectrics for the Fabrication of High Density, Thin Film Multichip Modules,” J. Electron. Mater., 19, p. 1357, 1990.CrossRefGoogle Scholar
  37. 37.
    S. Bagen et al., “Novel Low Cost Process Technologies for Application and Curing of Polyimide Films,” Int. J. Microcircuits & Electron, 19, p. 418, 1996.Google Scholar
  38. 38.
    A. Krauss, E. Kamem, C. Chng and A. The, “Process Control of Material Deposition by Meniscus Coating for Low Cost MCM Prototyping,” Proc. International Symposium on Microelectronics, pp. 174–9, 1997.Google Scholar
  39. 39.
    R. S. Patel, T. F Redmond, C. Tessler, D. Tudryn and D. Pulaski, “Laser Via Ablation Technology for IBMs Thin Film Packaging,” Int. J. Microcircuits & Electron., vol. 18, p. 266, 1995.Google Scholar
  40. 40.
    T. F. Redmond et al., “The Application of Laser Process Technology to Thin Film Packaging,” IEEE Trans. Components, Hybrids, Manuf. Technol. 16, p. 6, 1993.CrossRefGoogle Scholar
  41. 41.
    E. Perfecto et al., “Engineering Photosensitive Polyimides for MCM-D Applications,” Int. J. Microcircuits & Electron, 16, p. 319, 1993.Google Scholar
  42. 42.
    A. Strandjord et al., “MCM-D Fabrication with Photo-BCB: Processing, Solder Bumping, Systems Assembly and Testing,” Proceedings ISHM, p. 402, 1995.Google Scholar
  43. 43.
    J. Franco, J. Havas and L. Rompala, “Method for Forming Patterned Metal Films Utilizing a Transparent Lift-off Mask,” U.S. Patent 4004044, 1977.Google Scholar
  44. 44.
    K. Wong, S. Kaja and P. DeHaven, “Metallization by Plating for High Performance Multichip Modules,” IBM J. Res. Develop., 42, p. 587, 1998.CrossRefGoogle Scholar
  45. 45.
    John Rector, private communication, 1996.Google Scholar
  46. 46.
    Ronald Lasky, private communication, 1996.Google Scholar
  47. 47.
    D. Scheid, “Advanced MCM D with Embedded Resistors,” Proc. International Conference on Multichip Modules, pp. 273–278, 1994.Google Scholar
  48. 48.
    R. Kola et al., “Thin Film Resistors and Capacitors for Advanced Packaging,” Proceedings 3rd International Symposium on Advanced Packaging Materials Processes, Properties and Interfaces, pp. 71–4,1997.Google Scholar
  49. 49.
    D. Nelms, R. Ulrich, L. Schaper and S. Reeder, “Anodization for Forming Thin Film Embed-ded Capacitors in MCM D and L Substrates,” Proc. 48th ECTC (IEEE), pp. 247–251,1998.Google Scholar
  50. 50.
    M. Peters, M. Lee, Y. Takahashi and S. Beilin, “Thermally Stable Thin Film Tantalum Pentoxide Capacitor for MCM Applications,” Int. J. Microcircuits & Electron, 19, p. 364, 1996.Google Scholar
  51. 51.
    G. Lie Van and P. Ludlow, “MCM D Consortium,” Proc. International Conference on Multichip Modules, pp. 249–252,1995.Google Scholar
  52. 52.
    R. J. DeKenipp et al., “Design and Build of HDI on Diamond MCMs,” Proc. International Conference on Multichip Modules, pp. 364–369,1995.Google Scholar
  53. 53.
    C. Narayan, S. Purushothaman, F. Doany and A. Deutsch, “Thin Film Transfer Process for Low Cost MCM-D Fabrication,” IEEE Trans. Components Packages Manuf. Technol. B, 18, p. 42, 1995.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • John U. Knickerbocker
    • 1
  • Thomas F. Redmond
    • 1
  1. 1.IBM MicroelectronicsUSA

Personalised recommendations