Sustained Moderate Hyperoxia Augments the Acute Hypdxic Response in a Wake Goats

  • Jay K. Herman
  • Ken D O’Halloran
  • Gerald E. Bisgard
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 499)


Sustained exposure to low oxygen induces a time-dependent increase in pulmonary ventilation that is termed ventilatory acclimatization to hypoxia (VAH). The time it takes for this increase in ventilation to reach a stable plateau varies greatly across species but in the goat it occurs in about 4-6 h1. Previous reports in the goat have indicated that this process is not only dependent on intact carotid bodies (CB)2, but also on the progressive increase in CB output that occurs with prolonged hypoxic but not hypercapnic stimulation3,4. It is unclear, however, whether or not acclimatization occurs over an oxygen continuum or whether it is strictly a function of a hypoxic stimulus.


Carotid Body Pulmonary Ventilation Hyperoxic Exposure Hypoxic Ventilatory Response Hyperoxic Lung Injury 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. E. Bisgard, and J. A. Neubauer, Peripheral and central effects of hypoxia on control of ventilation, in: Regulation of Breathing edited by J. A. Dempsey and A. I. Pack (Dekker, New York, 1995), Second edition. Vol. 79. pp. 617–668.Google Scholar
  2. 2.
    C. A. Smith, G. E. Bisgard, A. M. Nielsen, L. Daristotle, N. S. Kressin, H. V. Forster, and J. A. Dempsey, Carotid bodies are required for ventilatory acclimatization to chronic hypoxia, J. Appl. Physiol. 60 1003–1010 (1986).PubMedGoogle Scholar
  3. 3.
    G. E. Bisgard, M. A. Busch, L. Daristotle, A. Bressenbrugge, and H. V. Forster, Carotid body hypercapnia does not elicit ventilatory acclimatization in goats, Respir. Physiol. 65 113–125 (1986).PubMedCrossRefGoogle Scholar
  4. 4.
    A. M. Nielsen, G. E. Bisgard, and E. H. Vidruk, Carotid chemoreceptor activity during acute and sustained hypoxia in goats, J. Appl. Physiol. 65 1796–1802 (1988).PubMedGoogle Scholar
  5. 5.
    D. Torbati, A. Mokashi, and S. Lahiri, Effects of acute hyperbaric oxygenation on respiratory control in cats, J. Appl. Physiol. 67 2351–2356 (1989).PubMedGoogle Scholar
  6. 6.
    R. Arieli, D. Kerem, and Y. Melamed, Hyperoxic exposure affects the ventilatory response to hypoxia in awake rats, J. Appl. Physiol. 64 181–186 (1988).PubMedGoogle Scholar
  7. 7.
    I. Liberzon, R. Arieli, and D. Kerem, Attenuation of hypoxic ventilation by hyperbaric 02; effects of pressure and exposure time, J. Appl. Physiol. 66 851–856 (1989).PubMedCrossRefGoogle Scholar
  8. 8.
    D. Torbati, A. K. Sherpa, S. Lahiri, A. Mokashi, K. H. Albertine, and C. Digiulio, Hyperbaric oxygenation alters carotid body ultrastructure and function, Respir. Physiol. 92 183–196 (1993).PubMedCrossRefGoogle Scholar
  9. 9.
    R. Arieli, Normoxic, hyperoxic, and hypoxic ventilation in rats continuously exposed for 60 h. to IATA 02, Aviat. Space Environ. Med. 65 1122–1127 (1994).PubMedGoogle Scholar
  10. 10.
    S. Lahiri, A. Mokashi, M. Shirahata, S. Andronikou, Chemical respiratory control in chronically hyperoxic cats, Respir. Physiol. 82 201–215 (1990).PubMedCrossRefGoogle Scholar
  11. 11.
    L. E. Otterbein, L. L. Mantell, and A. M. Choi, Carbon monoxide provides protection against hyperoxic lung injury, Am. J. Phyiol. 276 L688–L694 (1999).Google Scholar
  12. 12.
    C. Di Giulio, M. Di Muzio, G. Sabatino, L. Spoletini, F. Amicarelli, C. Di Ilio, and A. Modesti, Effect of chronic hyperoxia on young and old rat carotid body ultrastructure, Exp. Gerontol,33 319–29.Google Scholar
  13. 13.
    R. Greif, 0. Akca, E.-P. Horn, A. Kurz, and D. I. Sessler, Supplemental perioperative oxygen to reduce the incidence of surgical-wound infection, N. Engl. J. Med. 342 161–167 (2000).PubMedCrossRefGoogle Scholar
  14. 14.
    . J. K. Herman, K. D. O’Halloran, G. S. Mitchell, and G. E. Bisgard, Methysergide augments the acute, but not the sustained, hypoxic ventilatory response in goats. Respir. Physiol. 118 25–37 (1999).PubMedCrossRefGoogle Scholar
  15. 15.
    X. Ren, M. Fatemian, and P. A. Robbins, Changes in respiratory control in humans induced by 8 h of hyperoxia, J. Appl. Physiol. 89 655–662 (2000).PubMedGoogle Scholar
  16. 16.
    Y. Honda, H. Tani, A. Masuda, T. Kobayashi, T. Nishino, H. Kimura, S. Masuyama, and T. Kuriyama, Effect of prior 02 breathing on ventilatory response to sustained isocapnic hypoxia in adult humans, J. Appl. Physiol. 81 1627–1632 (1996).PubMedGoogle Scholar
  17. 17.
    D. Gozal, Potentiation of hypoxic ventilatory response by prior 02 breathing is modulated by nNOS activity in the conscious rat, J. Appl. Physiol. 85 129–132 (1998).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Jay K. Herman
    • 1
  • Ken D O’Halloran
    • 2
  • Gerald E. Bisgard
    • 1
  1. 1.Department of Comparative BiosciencesUniversity of WisconsinMadisonUSA
  2. 2.Department of PhysiologyUniversity CollegeDublin, Dublin2Ireland

Personalised recommendations