Skip to main content

Is the Vertebrate Respiratory Central Pattern Generator Conserved?

Insights from in-vitro and in-vivo amphibian models

  • Chapter
Frontiers in Modeling and Control of Breathing

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 499))

Abstract

There have been considerable advances in our understanding of the anatomical substrates, neural connections and modulation of the mammalian respiratory central pattern generator (CPG). Despite these advances, however, relatively little is known about the regulation of CPGs for breathing in other vertebrates. It has been proposed that CPGs supporting a variety of motor behaviors such as breathing, locomotion, scratching and chewing, have been conserved in the course of vertebrate evolution. 14, 15 At present, there is little experimental support for this hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Broch, A.V. Sandoval, R.D. Morales, and M.S. Hedrick, Regulation of central respiratory rhythm by GABA and glycine receptors in the isolated brainstem of larval and adult bullfrogs, FASEB J. 14(4), A44 (2000).

    Google Scholar 

  2. J.L. Feldman and J.C. Smith, Cellular mechanisms underlying modulation of breathing pattern in mammals, Ann. NY. Acad. Sci. 563, 114–130 (1989).

    Article  PubMed  CAS  Google Scholar 

  3. M.J. Gdovin, C.S. Torgerson, and J.E. Remmers, The fictively breathing tadpole brainstem preparation as a model for the development of respiratory pattern generation and central chemoreception, Comp. Biochem. Physiol. 124A, 275–286 (1999).

    CAS  Google Scholar 

  4. F. Hayashi and J. Lipski, The role of inhibitory amino acids in control of respiratory motor output in an arterially-perfused rat, Respir. Physiol. 89, 47–63 (1992).

    Article  PubMed  CAS  Google Scholar 

  5. M. S. Hedrick, R.D. Morales, J. M. Parker, and J.L.H. Pacheco, Nitric oxide modulates respiratory-related neural activity in the isolated brainstem of the bullfrog, Neurosci. Leu. 251, 81–84 (1998).

    Article  CAS  Google Scholar 

  6. P. S. Katz and R. Hams-Warrick, The evolution of neuronal circuits underlying species-specific behavior, Curr. Opin. Neurobiol. 9, 628–633 (1999).

    Article  PubMed  CAS  Google Scholar 

  7. J. Lewis, M. Bachoo, C. Polosa, and L. Glass, The effects of superior laryngeal nerve stimulation on respiratory rhythm: phase-resetting and aftereffects, Brain Res. 517, 44–50 (1990).

    Article  PubMed  CAS  Google Scholar 

  8. S.P. Lieske, M. Thoby-Brisson, P. Telgkamp, and J. M. Ramirez, Reconfiguration of the neural network controlling mutiple breathing patterns: eupnea, sighs and gasps, Nature Neurosci. 3(6), 600–607 (2000).

    Article  PubMed  CAS  Google Scholar 

  9. J. F. R. Paton and D. W. Richter, Role of fast inhibitory synaptic mechanisms in respiratory rhythm generation in the maturing mouse, J. Physiol. 484, 505–521 (1995).

    PubMed  CAS  Google Scholar 

  10. D. Paydarfar and F. L. Eldridge, Phase resetting and dysrhythmac responses of the respiratory oscillator, Am. J. Physiol. 252, R55–R62 (1987).

    PubMed  CAS  Google Scholar 

  11. D. Paydarfar and D.M. Buerkel, Dysrhythmias of the respiratory oscillator, Chaos 5, 18–29 (1995).

    Article  PubMed  Google Scholar 

  12. J. E. Remmers, Central Neural Control of Breathing, in: Control of Breathing in Health and Disease, edited by M.D. Altose and Y. Kawakami, (Marcel Dekker, New York, 1999), pp. 1–40.

    Google Scholar 

  13. C. M. Rovainen, Generation of respiratory activity by the lamprey brain exposed to picrotoxin and strychnine, and weak synaptic inhibition in motoneurons, Neurosci. 10, 875–882 (1983).

    Article  CAS  Google Scholar 

  14. K. K. Smith, Are neuromotor systems conserved in evolution? Brain Behay. Evol. 43, 293–305 (1994).

    Article  CAS  Google Scholar 

  15. A.J. Tierney, Evolutionary implications of neural circuit structure and function, Behay. Proc. 35, 171–182 (1996).

    Google Scholar 

  16. T. Wang, E.W. Taylor, S. G. Reid, and W. K. Milsom, Lung deflation stimulates fictive ventilation in decerebrate, paralysed and unidirectionally ventilated toads (Bufo marinus), Respir. Physiol. 118, 181–191 (1999).

    Article  PubMed  CAS  Google Scholar 

  17. A. T. Winfree, The Geometry of Biological Time, (Springer-Verlag, New York, 1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hedrick, M.S., Broch, L., Martinez, M., Powell, J.L., Wade, R.E. (2001). Is the Vertebrate Respiratory Central Pattern Generator Conserved?. In: Poon, CS., Kazemi, H. (eds) Frontiers in Modeling and Control of Breathing. Advances in Experimental Medicine and Biology, vol 499. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1375-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1375-9_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5522-9

  • Online ISBN: 978-1-4615-1375-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics