Peripheral and Central Chemosensitivity: Multiple Mechanisms, Multiple Sites?

A Workshop Summary
  • Eugene E. Nattie
  • Nanduri R. Prabhakar
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 499)


The importance of peripheral chemoreceptors, especially the carotid bodies in control of breathing during hypoxia is being increasingly appreciated. Currently there are two views as to how hypoxia augments carotid body activity1. According to one view, a redox sensitive protein in the glomus cell is the oxygen sensor, and a variety of mitochondria) and non-mitochondrial redox-sensitive proteins have been proposed as potential 02 sensors. The other view assumes that a K+ channel in glomus cell is the primary 02 sensor. The most challenging question is whether transduction involves a “single” or “multiple” 02 sensors’. It is more than likely that multiple sensors are needed for oxygen sensing allowing the carotid body to respond to a wide range of arterial P02’s resulting in a curvilinear stimulus-response curve.


Carotid Body Ventilatory Response Glomus Cell Peripheral Chemoreceptor Carotid Body Chemoreceptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. R. Prabhakar. Oxygen sensing by the carotid body chemoreceptors. J. Appl. Physiol. 88: 2287–2295, (2000).PubMedGoogle Scholar
  2. 2.
    S. Lahiri and R.G. DeLaney. Stimulus interaction in the responses of carotid body chemoreceptor single afferent fibers, Respir. Physiol. 24, 249–266 (1975).PubMedCrossRefGoogle Scholar
  3. 3.
    A. Roy, C. Rozanov, A. Mokashi, and S. Lahiri. P02–PCO2 stimulus interaction in [Ca 2+]i and CSN activity in the adult rat carotid body. Respir. Physiol. 122: 15–26, (2000).PubMedCrossRefGoogle Scholar
  4. 4.
    K.M. Spyer and T. Thomas. Sensing arterial CO2 levels: a role for medullary P2X receptors. J.Auton. Nerv. Syst. 81:228–235, (2000).PubMedCrossRefGoogle Scholar
  5. 5.
    R.S. Fitzgerald, R.S. and D. Parks. Effect of hypoxia on carotid chemoreceptor response to carbon dioxide in cats. Respir Physiol 12: 218–229, (1971).PubMedCrossRefGoogle Scholar
  6. 6.
    Dasso, L.L, K.J. Buckler, and R.D. Vaughan-Jones. Interactions between hypoxia and hypercapnic acidosis on calcium signaling in carotid body type I cells. Am. J. Physiol. Lung Cell Mol Physiol 279: L36–L42, (2000).PubMedGoogle Scholar
  7. 7.
    R.S. Fitzgerald. Oxygen and carotid body chemotransduction: the cholinergic hypothesis - a brief history and new evaluation. Respir Physiol 120: 89–104, (2000).PubMedCrossRefGoogle Scholar
  8. 8.
    Zhang, M., H. Zhong, C. Vollmer, and C.A. Nurse. Co-release of ATP and ACh mediates hypoxic signaling at rat carotid body chemoreceptors. J. Physiol (London) 525: 143–158, (2000).CrossRefGoogle Scholar
  9. 9.
    E. E. Nattie. Central chemoreceptors, pH, and respiratory control, in: PH and Brain Function, edited by K. Kaila and B. R. Ransom (John Wiley and Sons, Inc., New York, 1998), pp 535–560.Google Scholar
  10. 10.
    E. E. Nattie. CO2, brainstem chemoreceptors, and breathing, Prog Neurobiol 59, 299–331 (1999).PubMedCrossRefGoogle Scholar
  11. 11.
    E. Nattie. Multiple sites for central chemoreception: their roles in response sensitivity and in sleep and wakefulness, Respir. Physiol. 122, 223–235, (2000).PubMedCrossRefGoogle Scholar
  12. 12.
    A. Li, M. Randall, and E. E. Nattie. CO2 microdialysis in the retrotrapezoid nucleus of the rat increases breathing in wakefulness but not in sleep, J Appl Physiol 87, 910–919, (1999).PubMedGoogle Scholar
  13. 13.
    A. Li and E. E. Nattie. CO2 microdialysis in the raphe of the unanesthetized rat increases breathing in sleep, J Appl Physiol (in press) (2001).Google Scholar
  14. 14.
    I.D. Clement, J.J. Pandit, D.A. Bascom, K.L. Dorrington, D.F. O’Connor, and P.A. Robbins. An assessment of central-peripheral ventilatory chemoreflex interaction using acid and bicarbonate infusions in humans, J. Physiol.,485, 561–570 (1995).PubMedGoogle Scholar
  15. 15.
    J.H.G.M. van Beek, A. Berkenbosch, J. de Goede, and C.N. Olievier. Influence of peripheral 02 tension on the ventilatory response to CO2 in cats,Respir. Physiol 51, 379–390 (1983).PubMedCrossRefGoogle Scholar
  16. 16.
    J. P. Miller, D.J.C. Cunningham, B.B. Lloyd, and J.M. Young. The transient respiratory effects in man of sudden changes in alveolar CO2 in hypoxia and in high oxygen, Respir. Physiol 20, 17–31 (1974).PubMedCrossRefGoogle Scholar
  17. 17.
    M. E. F. Pedersen, M. Fatemian, and P.A. Robbins. Identification of fast and slow ventilatory responses to carbon dioxide under hypoxic and hyperoxic conditions in humans, J. Physiol. 521, 273–287 (1999).PubMedCrossRefGoogle Scholar
  18. 18.
    M. A. Fatemian, A. Dahan, S. Meinesz, A. van der Mey, and P.A. Robbins, Modelling the bilateral carotid body resection, in: Frontiers in Modeling and Control of Breathing: Integration at Molecular Cellular and Systems Levels, edited by C-S. Poon. New York: Kluwer Academic/Plenum, 2000, p. submitted.Google Scholar
  19. 19.
    J. W. Bellville, B.J. Whipp, R.D. Kaufman, G.D. Swanson, K.A. Aqleh, and D.M. Wiberg. Central and peripheral chemoreflex loop gain in normal and carotid body-resected subjects, J. Appl. Physiol . 46, 843–853 (1979).PubMedGoogle Scholar
  20. 20.
    L. G. Pan, H.V. Forster, P. Martino, P.J. Strecker, J. Beales, A. Serra, T.F. Lowry, M.M. Forster, and A. L. Forster. Important role of carotid afferents in control of breathing. J. Appl. Physiol. 85, 1299–1306 (1998).PubMedGoogle Scholar
  21. 21.
    T. F. Lowry, H. V. Forster, L. G. Pan, M. A. Korducki, J. Probst, R. A. Franciosi, and M. Forster. Effect of carotid body denervation on breathing in neonatal goats, J. Appl Physiol 87, 1026–34 (1999).PubMedGoogle Scholar
  22. 22.
    T. F. Lowry, H. V. Forster, L. G. Pan, A. Serra, J. Wenninger, R. Nash, D. Sheridan, and R. A. Franciosi. Effects on breathing of carotid body denervation in neonatal piglets, J Appl Physiol 87, 2128–35 (1999).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Eugene E. Nattie
    • 1
  • Nanduri R. Prabhakar
    • 2
  1. 1.Department of PhysiologyDartmouth Medical SchoolLebanonUSA
  2. 2.Department of Physiology and BiophysicsCase Western Reserve UniversityClevelandUSA

Personalised recommendations