Skip to main content

Peripheral and Central Chemosensitivity: Multiple Mechanisms, Multiple Sites?

A Workshop Summary

  • Chapter
Frontiers in Modeling and Control of Breathing

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 499))

Abstract

The importance of peripheral chemoreceptors, especially the carotid bodies in control of breathing during hypoxia is being increasingly appreciated. Currently there are two views as to how hypoxia augments carotid body activity1. According to one view, a redox sensitive protein in the glomus cell is the oxygen sensor, and a variety of mitochondria) and non-mitochondrial redox-sensitive proteins have been proposed as potential 02 sensors. The other view assumes that a K+ channel in glomus cell is the primary 02 sensor. The most challenging question is whether transduction involves a “single” or “multiple” 02 sensors’. It is more than likely that multiple sensors are needed for oxygen sensing allowing the carotid body to respond to a wide range of arterial P02’s resulting in a curvilinear stimulus-response curve.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. R. Prabhakar. Oxygen sensing by the carotid body chemoreceptors. J. Appl. Physiol. 88: 2287–2295, (2000).

    PubMed  CAS  Google Scholar 

  2. S. Lahiri and R.G. DeLaney. Stimulus interaction in the responses of carotid body chemoreceptor single afferent fibers, Respir. Physiol. 24, 249–266 (1975).

    Article  PubMed  CAS  Google Scholar 

  3. A. Roy, C. Rozanov, A. Mokashi, and S. Lahiri. P02–PCO2 stimulus interaction in [Ca 2+]i and CSN activity in the adult rat carotid body. Respir. Physiol. 122: 15–26, (2000).

    Article  PubMed  CAS  Google Scholar 

  4. K.M. Spyer and T. Thomas. Sensing arterial CO2 levels: a role for medullary P2X receptors. J.Auton. Nerv. Syst. 81:228–235, (2000).

    Article  PubMed  CAS  Google Scholar 

  5. R.S. Fitzgerald, R.S. and D. Parks. Effect of hypoxia on carotid chemoreceptor response to carbon dioxide in cats. Respir Physiol 12: 218–229, (1971).

    Article  PubMed  CAS  Google Scholar 

  6. Dasso, L.L, K.J. Buckler, and R.D. Vaughan-Jones. Interactions between hypoxia and hypercapnic acidosis on calcium signaling in carotid body type I cells. Am. J. Physiol. Lung Cell Mol Physiol 279: L36–L42, (2000).

    PubMed  CAS  Google Scholar 

  7. R.S. Fitzgerald. Oxygen and carotid body chemotransduction: the cholinergic hypothesis - a brief history and new evaluation. Respir Physiol 120: 89–104, (2000).

    Article  PubMed  CAS  Google Scholar 

  8. Zhang, M., H. Zhong, C. Vollmer, and C.A. Nurse. Co-release of ATP and ACh mediates hypoxic signaling at rat carotid body chemoreceptors. J. Physiol (London) 525: 143–158, (2000).

    Article  CAS  Google Scholar 

  9. E. E. Nattie. Central chemoreceptors, pH, and respiratory control, in: PH and Brain Function, edited by K. Kaila and B. R. Ransom (John Wiley and Sons, Inc., New York, 1998), pp 535–560.

    Google Scholar 

  10. E. E. Nattie. CO2, brainstem chemoreceptors, and breathing, Prog Neurobiol 59, 299–331 (1999).

    Article  PubMed  CAS  Google Scholar 

  11. E. Nattie. Multiple sites for central chemoreception: their roles in response sensitivity and in sleep and wakefulness, Respir. Physiol. 122, 223–235, (2000).

    Article  PubMed  CAS  Google Scholar 

  12. A. Li, M. Randall, and E. E. Nattie. CO2 microdialysis in the retrotrapezoid nucleus of the rat increases breathing in wakefulness but not in sleep, J Appl Physiol 87, 910–919, (1999).

    PubMed  CAS  Google Scholar 

  13. A. Li and E. E. Nattie. CO2 microdialysis in the raphe of the unanesthetized rat increases breathing in sleep, J Appl Physiol (in press) (2001).

    Google Scholar 

  14. I.D. Clement, J.J. Pandit, D.A. Bascom, K.L. Dorrington, D.F. O’Connor, and P.A. Robbins. An assessment of central-peripheral ventilatory chemoreflex interaction using acid and bicarbonate infusions in humans, J. Physiol.,485, 561–570 (1995).

    PubMed  CAS  Google Scholar 

  15. J.H.G.M. van Beek, A. Berkenbosch, J. de Goede, and C.N. Olievier. Influence of peripheral 02 tension on the ventilatory response to CO2 in cats,Respir. Physiol 51, 379–390 (1983).

    Article  PubMed  Google Scholar 

  16. J. P. Miller, D.J.C. Cunningham, B.B. Lloyd, and J.M. Young. The transient respiratory effects in man of sudden changes in alveolar CO2 in hypoxia and in high oxygen, Respir. Physiol 20, 17–31 (1974).

    Article  PubMed  CAS  Google Scholar 

  17. M. E. F. Pedersen, M. Fatemian, and P.A. Robbins. Identification of fast and slow ventilatory responses to carbon dioxide under hypoxic and hyperoxic conditions in humans, J. Physiol. 521, 273–287 (1999).

    Article  PubMed  CAS  Google Scholar 

  18. M. A. Fatemian, A. Dahan, S. Meinesz, A. van der Mey, and P.A. Robbins, Modelling the bilateral carotid body resection, in: Frontiers in Modeling and Control of Breathing: Integration at Molecular Cellular and Systems Levels, edited by C-S. Poon. New York: Kluwer Academic/Plenum, 2000, p. submitted.

    Google Scholar 

  19. J. W. Bellville, B.J. Whipp, R.D. Kaufman, G.D. Swanson, K.A. Aqleh, and D.M. Wiberg. Central and peripheral chemoreflex loop gain in normal and carotid body-resected subjects, J. Appl. Physiol . 46, 843–853 (1979).

    PubMed  CAS  Google Scholar 

  20. L. G. Pan, H.V. Forster, P. Martino, P.J. Strecker, J. Beales, A. Serra, T.F. Lowry, M.M. Forster, and A. L. Forster. Important role of carotid afferents in control of breathing. J. Appl. Physiol. 85, 1299–1306 (1998).

    PubMed  CAS  Google Scholar 

  21. T. F. Lowry, H. V. Forster, L. G. Pan, M. A. Korducki, J. Probst, R. A. Franciosi, and M. Forster. Effect of carotid body denervation on breathing in neonatal goats, J. Appl Physiol 87, 1026–34 (1999).

    PubMed  CAS  Google Scholar 

  22. T. F. Lowry, H. V. Forster, L. G. Pan, A. Serra, J. Wenninger, R. Nash, D. Sheridan, and R. A. Franciosi. Effects on breathing of carotid body denervation in neonatal piglets, J Appl Physiol 87, 2128–35 (1999).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nattie, E.E., Prabhakar, N.R. (2001). Peripheral and Central Chemosensitivity: Multiple Mechanisms, Multiple Sites?. In: Poon, CS., Kazemi, H. (eds) Frontiers in Modeling and Control of Breathing. Advances in Experimental Medicine and Biology, vol 499. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1375-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1375-9_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5522-9

  • Online ISBN: 978-1-4615-1375-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics