Skip to main content

Human Lactoferrin in the Milk of Transgenic Mice Increases Intestinal Growth in Ten-Day-Old Suckling Neonates

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 501))

Abstract

Regulatory roles and a signaling receptor have been proposed for the milk protein lactoferrin (Lf), but none has been definitively characterized. Nichols and colleagues (1987) observed that human lactoferrin (hLf) stimulated thymidine incorporation into the DNA of rat intestinal crypt cells. We tested the hypothesis that chronic Lf administration stimulates intestinal growth by studying neonatal mice suckling transgenic dams secreting about 12 mg/mL hLf in their milk Specifically, nontransgenic litters were adjusted to eight pups each and cross-fostered to transgenic dams. Controls were pups suckling nontransgenic dams of the same strain. On day 10 postpartum pups were weighed, sacrificed, and the small intestines were weighed, measured, and stored for later determination of enzyme activities. The results indicate that intestinal growth was increased in neonates suckling transgenic dams. The weight of the small intestine was increased about 27% when the pups received milk containing hLf. Intestinal length only increased about 6.5% suggesting that Lf in milk enhanced mucosal growth. The ratio of maltase to lactase in the duodenal segment of the small intestine, an indicator of maturation, was also significantly increased in the pups suckling transgenic milks. Our results imply that chronic oral consumption of human Lf promotes the growth and maturation of the intestinal mucosa, and suggest a possible therapeutic role for the agent in premature infants as well as in patients with bowel damage.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amouric M, Marvaldi J, Pichon J, Bellot F, Figarella C. Effect of lactoferrin on the growth of a human colon adenocarcinoma cell line—Comparison with transferrin. In Vitro 1984;20:543–548.

    Article  PubMed  CAS  Google Scholar 

  • Azuma N, Mori H, Kaminogawa S, Yamauchi K. Stimulatory effect of human lactoferrin on DNA syn-thesis in BALB/c 3T3 cells. Agric Biol Chem 1989;53:31–35.

    Article  CAS  Google Scholar 

  • Berseth CL, Lichtenberger LM, Morriss FIT Jr. Comparison of the gastrointestinal growth-promoting effects of rat colostrum and mature milk in newborn rats in vivo. Am J Clin Nutr 1983;37:52–60.

    PubMed  CAS  Google Scholar 

  • Britton JR, Koldovsky O. Gastric luminal digestion of lactoferrin and transferrin by preterm infants. Early Hum Dev 1989;19:127–135.

    Article  PubMed  CAS  Google Scholar 

  • Brown KD, Blakeley DM. Cell growth-promoting activity in mammary secretions of the goat, cow and sheep. Br Vet J 1983;139:68–78.

    PubMed  CAS  Google Scholar 

  • Byatt JC, Schmuke JJ, Comens PG, Johnson DA, Collier RJ. The effect of bovine lactoferrin on muscle growth in vivo and in vitro. Biochem Biophys Res Commun 1990;173:548–553.

    Article  PubMed  CAS  Google Scholar 

  • Carpenter G. Epidermal growth factor is a major growth-promoting agent in human milk. Science 1980;210:198–199.

    Article  PubMed  CAS  Google Scholar 

  • Dahlqvist A. Assay of intestinal disaccharidases. Anal Biochem 1968;22:99–107.

    Article  PubMed  CAS  Google Scholar 

  • Davidson LA, Lonnerdal B. Persistence of human milk proteins in the breast-fed infant. Acta Paediatr Scand 1987;76:733–740.

    Article  PubMed  CAS  Google Scholar 

  • Davidson LA, Lonnerdal B. Specific binding of lactoferrin to brush-border membrane: ontogeny and effect of glycan chain. Am J Physiol 1988;254:G580–G585.

    PubMed  CAS  Google Scholar 

  • Goldman AS, Garza C, Schanler RJ, Goldblum RM. Molecular forms of lactoferrin in the stool and urine from infants fed human milk. Pediatr Res 1990;27:252–255.

    Article  PubMed  CAS  Google Scholar 

  • Hashizume S, Kuroda K, Murakami H. Identification of lactoferrin as an essential growth factor for human lymphocytic cell lines in serum-free medium. Biochim Biophys Acta 1983;763:377–382.

    Article  PubMed  CAS  Google Scholar 

  • Heird WC, Schwarz SM, Hansen Ili. Colostrum-induced enteric mucosal growth in beagle puppies. Pediatr Res 1984;18:512–515.

    Article  PubMed  CAS  Google Scholar 

  • Hennart PF, Brasseur DJ, Delogne-Desnoeck JB, Dramaix MM, Robyn CE. Lysozyme, lactoferrin, and secretory immunoglobulin A content in breast milk: influence of duration of lactation, nutrition status, prolactin status, and parity of mother. Am J Clin Nutr 1991;53:32–39.

    PubMed  CAS  Google Scholar 

  • Hu WL, Mazurier J, Sawatzki G, Montreuil J, Spik G. Lactotransferrin receptor of mouse small-intestinal brush border. Binding characteristics of membrane-bound and Triton X-100-solubilized forms. Biochem J 1988;249:435–441.

    PubMed  CAS  Google Scholar 

  • Hu WL, Mazurier J, Montreuil J, Spik G. Isolation and partial characterization of a lactotransferrin receptor from mouse intestinal brush border. Biochemistry 1990;29:535–541.

    Article  PubMed  CAS  Google Scholar 

  • Kawakami H, Lonnerdal B. Isolation and function of a receptor for human lactoferrin in human fetal intestinal brush border membranes. Am J Physiol 1991; 261:G841–G846.

    PubMed  CAS  Google Scholar 

  • Klagsbrun M. Human milk stimulates DNA synthesis and cellular proliferation in cultured fibroblasts. Proc Nat] Acad Sci USA 1978;75:5057–5061.

    Article  CAS  Google Scholar 

  • Klagsburn MK, Neumann J, Tapper D. The mitogenic activity of breast milk. J Surg Res 1979;26:417–422. Lebenthal E, Lee PC, Heitlinger LA. Impact of development of the gastrointestinal tract on infant feeding. J Pediatr 1983;102:1–9.

    Google Scholar 

  • Lewis-Jones DI, Lewis-Jones MS, Connolly RC, Lloyd DC, West CR. Sequential changes in the antimicrobial protein concentrations in human milk during lactation and its relevance to banked human milk. Pediatr Res 1985;19:561–565.

    Article  PubMed  CAS  Google Scholar 

  • Mazurier J, Montreuil J, Spik G. Visualization of lactoferrin brush-border receptors by ligand-blotting. Biochim Biophys Acta 1985;821:453–460.

    Article  PubMed  CAS  Google Scholar 

  • Neville MC, Chatfield K, Hanson L, Lewis A, Monks J, Nuijens J, 011ivier-Bousquet M, Schanbacher F, Sawicki V, Zhang P. Lactoferrin secretion into mouse milk. Development of secretory activity, the localization of lactoferrin in the secretory pathway, and interactions of lactoferrin with milk iron. Adv Exp Med Biol 1998;443:141–153.

    PubMed  CAS  Google Scholar 

  • Nichols BL, McKee KS, Henry JF, Putman M. Human lactoferrin stimulates thymidine incorporation into DNA of rat crypt cells. Pediatr Res 1987;21:563–567.

    Article  PubMed  CAS  Google Scholar 

  • Nichols BL, McKee KS, Huebers HA. Iron is not required in the lactoferrin stimulation of thymidine incorporation into the DNA of rat crypt enterocytes. Pediatr Res 1990;27:525–528.

    Article  PubMed  CAS  Google Scholar 

  • Oguchi S, Walker WA, Sanderson IR. Iron saturation alters the effect of lactoferrin on the proliferation and differentiation of human enterocytes (Caco-2 cells). Biol Neonate 1995;67:330–339.

    Article  PubMed  CAS  Google Scholar 

  • Prentice A, MacCarthy A, Stirling DM, Vasquez-Velasquez L, Ceesay SM. Breast-milk IgA and lactoferrin survival in the gastrointestinal tract—a study of rural Gambian children. Acta Paediatr Scand 1989;78:505–512.

    Article  PubMed  CAS  Google Scholar 

  • Schanler R, Goldblum R, Garza C, Goldman AS. Enhanced fecal excretion of selected immune factors in very low birth weight infants fed fortified human milk. Pediatr Res 1986;20:711–715.

    Article  PubMed  CAS  Google Scholar 

  • Spik G, Brunet B, Mazunier-Dehaine C, Fontaine G, Montreuil T. Characterization and properties of the human and bovine lactotransferrins extracted from the feces of newborn infants. Acta Paediatr Scand 1982;71:979–985.

    Article  PubMed  CAS  Google Scholar 

  • Widdowson EM. Development of the digestive system: comparative animal studies. Am J Clin Nutr 1985;41:384–390.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zhang, P., Sawicki, V., Lewis, A., Hanson, L., Nuijens, J.H., Neville, M.C. (2001). Human Lactoferrin in the Milk of Transgenic Mice Increases Intestinal Growth in Ten-Day-Old Suckling Neonates. In: Newburg, D.S. (eds) Bioactive Components of Human Milk. Advances in Experimental Medicine and Biology, vol 501. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1371-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1371-1_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5521-2

  • Online ISBN: 978-1-4615-1371-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics