New Approaches in Spin Labeling and Spin Trapping. Part One: ESR Studies of Local Chemical Environment

  • Valery V. Khramtsov


Spin labeling and spin trapping techniques are based on detection of ESR spectra of spin labels/probes or spin adducts which in many cases are nitroxyl radicals (NR). Spin traps have high reactivity towards free radical chemistry while spin labels are designed to prevent involvement of their paramagnetic fragment in chemical reactions. As a matter of fact the chemical reactions of nitroxides are often considered as a factor that compromises the stability of the paramagnetic fragment of NR and therefore limits their applications in spin labeling.


Nitric Oxide Spin Label Dynamic Nuclear Polarisation Nitroxyl Radical Nitronyl Nitroxides 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akaike, T., Yoshida, M., Miyamoto, Y., Sato, K., Kohno, M., Sasamoto, K., Miyazaki, K.,Ueda, S., and Maeda, H., 1993, Antagonistic action of imidazolineoxyl N-oxides against endothelium-derived relaxing factor/ NO through a radical reaction. Biochemistry 32:827–832.PubMedCrossRefGoogle Scholar
  2. Balakirev, M., and Khramtsov, V., 1993, New pH-sensitive aminoxyls - application to the study of biomembrane transport processes, J.Chem.Soc. Perkin Trans. 2/11: 2157–2160.Google Scholar
  3. Balakirev, M.Yu, and Khramtsov, V.V., 1996, EPR study of free radical decomposition of NN-bis(arilsulfonil)hydroxylamines in organic solution. J.Org.Chem. 61: 7263–7269.Google Scholar
  4. Balakirev, M.Yu., Khramtsov, V.V., Berezina, T.A., Martin, V.V., and Volodarsky L.B., 1992,The synthesis of amidine derivatives of imidazoline nitroxides - a new series of pH-sensitive spin probes and labels, Synthesis 12: 1223–1225.CrossRefGoogle Scholar
  5. Boyne, A. F., and Ellman, G. L. ,1972, A methodology for analysis of tissue sulfhydryl components. Anal Biochem. 46: 639–653.PubMedCrossRefGoogle Scholar
  6. Busse, E., Zimmer, G., and Kornhuber, B., 1992a, Plasma-membrane fluidity studies of murine neuroblastoma and malignant melanoma cells under irradiation. Strahlenther Onkol. 168:419–422.PubMedGoogle Scholar
  7. Busse, E., Zimmer, G., Schopohl, B., and Kornhuber, B., 1992b, Influence of alpha-lipoic acid on intracellular glutathione in vitro and in vivo. Arzneim.-Forsch./Drug Res. 42:829–831.Google Scholar
  8. Foster, M.A., Grigor’ev, I.A., Lurie, D.J., Khramtsov, V.V., Hutchison, J.M.S., McCallum, S.,Panagiotelis, I., and Nicholson, I., 1999, Further low-field ESR studies with the pH-sensitive spin probe HMI. In Abstr. Intern. Workshop Biomed. Applications of In Vivo EPR and PEDRI, Aberdeen (Scotland), pp. 49.Google Scholar
  9. Foster, M.A., Seimenis, I., and Lurie, D.J., 1998, The application of PEDRI to the study of free radicals in vivo. Phys.Med.Biol. 43: 1893–1897.PubMedCrossRefGoogle Scholar
  10. Gallez, B., Mäder, K., and Swartz, H.M., 1996, Noninvasive measurement of the pH inside the gut by using pH-sensitive nitroxides: An in vivo EPR study. Magn. Reson. Med. 36: 694–697.PubMedCrossRefGoogle Scholar
  11. Glazachev, Yu.I., Grigor’ev, I.A., Foster, M.A., Reijerse, E.J., and Khramtsov, V.V., 2000,EPR studies of 15N and 2H-substituted imidazoline spin pH probe. In Abstr. of Seventh Intern. Summer School on Biophysics, Rovinj (Croatia), 2000, pp.85.Google Scholar
  12. Haseloff, R.F., Zöllner, S., Kiriljuk, I.A., Grigor’ev, I.A., Reszka, R., Bernhardt, R., Mertsch,K., Roloff, B., and Blasig, I.E., 1997, Superoxide-mediated reduction of the nitroxide group can prevent detection of nitric oxide by nitronyl nitroxides. Free Radical Res. 26:7–17.CrossRefGoogle Scholar
  13. Ignarro, L.J., 1990, Biosynthesis and metabolism of endothelium-derived nitric oxide.Annu.Rev.Pharmacol. Toxicol. 30: 535–560.PubMedCrossRefGoogle Scholar
  14. Joseph, J., Kalynaraman, B., and Hyde, J.S., 1993, Trapping of nitric oxide by nitronyl nitroxides: an electron spin resonance investigation. Biochem.Biophys.Res.Commun. 192:926–934.PubMedCrossRefGoogle Scholar
  15. Keana, J.F.W., Acarregui, M.J. and Boyle, S.L.M., 1982, 2,2-Disubstituted-4,4-dimethylimidazolidinyl-3-oxy nitroxides indicators of aqueous acidity through variation of aN with pH. J.Am.Chem.Soc. 104: 827–830.CrossRefGoogle Scholar
  16. Khlestkin, V.K, Mazhukin, D.G, Tikhonov, A.Ya, Bagryanskaja, I.Yu., Gatilov, Yu.V,Utepbergenov, D.I, Khramtsov, V.V., and Volodarsky, L.B., 1996, Unexpected transformation of 1,2-bis(N-methoxy-N-nitrosoamino)cycloalkanes: First synthesis of 4,5-dihydro-l,2,3-triazole 2-oxides. Tetrahedron Lett. 37, 5997–6000.Google Scholar
  17. Khramtsov, V.V., and Volodarsky, L.B., 1998, Use of imidazoline nitroxides in studies of chemical reactions: ESR measurements of concentration and reactivity of protons, thiols and nitric oxide. In Biological Magnetic Resonance, Volume 14: Spin Labeling: The Next Millennium (L.J.Berliner, ed.), Plenum Press, New York. pp. 109–180.Google Scholar
  18. Khramtsov, V.V., Grigor’ev, I.A., Foster, M.A., Lurie, D.J., and Nicholson, I., 2000, Biological applications of spin pH probes. Cell.Mol.Biol. 46/8: 1361–1374.PubMedGoogle Scholar
  19. Khramtsov, V.V., Marsh, D., Weiner, L.M., and Reznikov, V.A., 1992, The application of pH-sensitive spin labels to studies of surface potential and polarity of phospholipid membranes and proteins. Bioch.Bioph.Acta, 1104: 317–324.CrossRefGoogle Scholar
  20. Khramtsov, V.V., Panteleev, M.V., and Weiner, L.M., 1989, ESR study of proton transport across phospholipid vesicle membranes. J.Bioch.Biophys.Methods, 18: 237–246.CrossRefGoogle Scholar
  21. Khramtsov, V.V., Utepbergenov, D.I., Woldman, Ya.Yu., Vlassenko, L.P., Markel, A.L.,Mazhukin, D.G., Kiriljuk, I.A., Grigor’ev, I.A., Tikhonov, A.Ya., and Volodarsky, L.B.,1996, In vitro and in vivo studies of the derivatives of 1,2-diazetine and nitronylnitroxides as donors and acceptors of nitric oxide. Biochemistry (Moscow) 61: 1223–1231.Google Scholar
  22. Khramtsov, V.V., Weiner, L.M., Eremenko, S.I., Belchenko, O.I., Schastnev, P.V., Grigor’ev,I.A., and Reznikov, V.A., 1985, Proton exchange in stable nitroxyl radicals of imidazoline and imidazolidine series. J. Magn. Res., 61: 397–408.CrossRefGoogle Scholar
  23. Khramtsov, V.V., Weiner, L.M., Grigor’ev, I.A., and Volodarsky, L.B., 1982, Proton exchange in stable nitroxyl radicals. EPR study of the pH of aqueous solutions. Chem.Phys.Lett. 91:69–72.CrossRefGoogle Scholar
  24. Khramtsov, V.V., Weiner, L.M., Rar, V.A., Berezina, T.A., Martin, V.V., and Volodarsky, L.B., 1990, Macromolecular spin pH probes based on human serum albumin. Biochemistry (Moscow) 55: 1014–1017.Google Scholar
  25. Khramtsov, V.V., Yelinova, V.l., Glazachev, Yu.I., Reznikov, V.A., and Zimmer, G., 1997, Quantitative determination and reversible modification of thiols using imidazolidine biradical disulfide label. J. Biochem.Biophys. Methods, 35/2: 115–128.Google Scholar
  26. Khramtsov, V.V., Yelinova, V.l., Weiner, L.M., Berezina, T.A., Martin, V.V., and Volodarsky, L.B., 1989, Quantitative determination of SH groups in low- and high-molecular-weight compounds by an electron spin resonance method. Anal. Biochem. 182:58–63.PubMedCrossRefGoogle Scholar
  27. Kirilyuk, I.A., Utepbergenov, D.I., Mazhukin, D.G., Fechner, K., Mertsch, K., Khramtsov, V.V., Blasig, I.E., and Haseloff, R.F., 1998, Thiol-Induced Nitric Oxide Release from 3-Halogeno-3,4-dihydrodiazete 1,2-Dioxides. J.Med.Chem., 41/7: 1027–1033.PubMedCrossRefGoogle Scholar
  28. Komarov, A., Mattson, D., Jones, M.M., Singh, P.K., and Lai, C.S., 1993, In vivo spin trapping of nitric oxide in mice.Biochem.Biophys.Res. Commun. 195: 1191–1198.PubMedCrossRefGoogle Scholar
  29. Korth, H.-G., Sustmann, R., Lommes, P., Paul, T., Ernst, A., de Groot, H., Hughs, L., and Ingold, K.U., 1994, Nitric oxide cheletropic traps (NOCTs) with improved thermal stability and water solubility. J.Am.Chem.Soc. 116: 2767–2770.CrossRefGoogle Scholar
  30. Kosower, N.S., and Kosower, E.M., 1995, Diamide: an oxidant probe for thiols. Methods Enzymol. 251:123–133.PubMedCrossRefGoogle Scholar
  31. Kroll, C., Mäder, K., Stößer, R. and Borchert, H.H., 1995, Direct and continuous determination of pH values in nontransparent w/o systems by means of EPR spectroscopy. European J. Pharmaceutical Sciences 3: 21 -26.CrossRefGoogle Scholar
  32. Lurie, D.J., Nicholson, I., and Mallard, J.R., 1991, Low-field EPR measurements by field-cycled dynamic nuclear polarisation. J.Magn.Reson. 95: 405–409.CrossRefGoogle Scholar
  33. Lurie, D.J., 2000, Proton-electron double-resonance imaging (PEDRI). In Biological Magnetic Resonance (L.J. Berliner, ed.), vol. 18, Plenum Press, New York.Google Scholar
  34. Mäder, K., 1998, Pharmaceutical applications of in vivo EPR. Phys.Med.Biol 43: 1931–1935.PubMedCrossRefGoogle Scholar
  35. Mäder, K., Gallez, B., Liu, K.J. and Swartz, H.M., 1996, Non-invasive in vivo characterization of release processes in biodegradable polymers by low-frequency electron paramagnetic resonance spectroscopy. Biomaterials 17: 457–461.PubMedCrossRefGoogle Scholar
  36. Molochnikov, L.S., Kovalyova, E.G., Grigor’ev, I.A., and Reznikov, V.A., 1996, Determination of acidity in the interior of the cross-linked polyelectrolyte grain by the use of pH-sensitive probes. In Metal-Containing Polymeric Materials (C.U.Pittman, C.E.Carraher, M.Zeldin, J.E.Sheats and B.M.Culbertson, eds.), Plenum Press, New York and London, pp.395–401.Google Scholar
  37. Mordvintcev, P., Mulsh, A., Busse, R., and Vanin, A., 1991, On line detection of nitric oxide formation in liquid aqueous phase by Electron Paramagnetic Resonance spectroscopy. Anal.Biochem. 199: 142–146.PubMedCrossRefGoogle Scholar
  38. Nadeau, J.S., and Boocock, D.G.B., 1977, Stable free radical reagent and solid phase suitable for a nitric oxide dosimeter. Anal.Chem., 49: 1672–1676.CrossRefGoogle Scholar
  39. Naschimento, L.M., Neto, L.M., and Wajnberg, J., 1991, Tunneling within localized states in nitrosyl myoglobin. J.Chem.Phys. 95: 2265–2268.CrossRefGoogle Scholar
  40. Newton, G.L., Fahey, R.C., 1995, Determination of biothiols by bromobiamane labeling and high-performance liquid chromatography. Methods Enzymol. 251:148–166.PubMedCrossRefGoogle Scholar
  41. Nicholson, I., Robb, F.J.L., and Lurie, D.J. 1994, Imaging paramagnetic species using radiofrequency longitudinally detected ESR (LODESR imaging), J.Magn.Reson. Series B, 104: 284 -288.CrossRefGoogle Scholar
  42. Nohl, H., Stolze, K., and Weiner, L.M. 1995, Noninvasive measurement of thiol status levels in cells and isolated organs. Methods Enzymol. 251:191–203.PubMedCrossRefGoogle Scholar
  43. Pietraforte, D., Mallozzi, C., Scorza, G. and Minetti, M., 1995, Role of thiols in the targeting of S-nitroso thiols to red blood cells. Biochemistry 34: 7177–7185.PubMedCrossRefGoogle Scholar
  44. Sies, H., 1999, Glutathione and its role in cellular function. Free Radic. Biol. Med. 27: 916–921.PubMedCrossRefGoogle Scholar
  45. Singh, R.J., Hogg, N., Joseph, J., and Kalyanaraman, B., 1995, Photosensitized decomposition of S-nitrosothiols and 2-methyl-2-nitrosopropane. Possible use for site-directed nitric oxide production. FEBS Lett. 360: 47–51.PubMedCrossRefGoogle Scholar
  46. Sotgiu, A., Mäder, K., Alecci, M., Ursini, C.L. and Placidi, G., 1996, EPR spectroscopy/imaging at RF (280 MHz) with pH-sensitive paramagnetic probes: a model study for in vivo applications, Proc.Internat.Soc.Magn.Reson.Med., 3: 1375.Google Scholar
  47. Sotgiu, A., Mäder, K., Placidi, G., Colacicchi, S., Ursini, C.L. and Alecci, M., 1998, pH-sensitive imaging by low-frequency EPR: a model study for biological applications.Phys.Med.Biol. 43: 1921–1930.PubMedCrossRefGoogle Scholar
  48. Swartz, H.M., and Berliner, L.J., 1997, In vivo EPR. In: Foundations of Modern EPR(G.R.Eaton and S.Eaton, eds.), World Scientific Publ. pp.362–380.Google Scholar
  49. Utepbergenov, D.I., Khramtsov, V.V., Vlassenko, L.P., Markel, A.L., Mazhukin, D.G.,Tikhonov, A.Ya., and Volodarsky, L.B. 1995, Kinetics of nitric oxide liberation by 3,4-dihydro-l,2-diazete 1,2-dioxides and their vasodilatory properties in vitro and in vivo.Bioch.Biophys.Res.Comm. 214: 1023–1032.Google Scholar
  50. Weiner, L.M., Hu, H., and Swartz, H.M. 1991, EPR method for the measurement of cellular sulfhydryl groups. FEBS Letters 290: 243–246.PubMedCrossRefGoogle Scholar
  51. Woldman, Ya.Yu., Khramtsov.V.V., Grigor’ev, I.A., Kiriljuk, I.A., and Utepbergenov, D.I.,1994, Spin trapping of nitric oxide by nitronylnitroxides: measurement of activity of NO synthase from rat cerebellum. Bioch.Bioph.Res.Comm. 202: 195–203.Google Scholar
  52. Yelinova, V.I., Glazachev, Y.I., Khramtsov, V.V., Kudryashova, L.N., Rykova, V., and Salganik, R.I., 1996, Studies of human and rat blood under oxidative stress: changes in plasma thiol level, antioxidant enzyme activity, protein carbonyl content and fluidity of erythrocyte membrane. Biochem. Biophys. Res. Comm. 221:300–303.PubMedCrossRefGoogle Scholar
  53. Yelinova, V.I., Khramtsov, V.V., and Markel, A.L., 1999, Manifestation of Oxidative Stress in the Pathogenesis of Arterial Hypertension in ISIAH Rats. Biochem. Biophys. Res. Commun. 263: 450–453.PubMedCrossRefGoogle Scholar
  54. Yelinova, V.I., Mazhukin, D.G., and Khramtsov, V.V., 2000, Synthesis of novel nitronylnitroxide and its application for nitric oxide trapping. In 6th International Symposium on Spin Trapping. Marselle (France), pp. 113.Google Scholar
  55. Yoshida, M., Akaike, T., Wada, Y., Sato, K., Ikeda, K., Ueda, S., and Maeda, H., 1994,Therapeutic effect of imidazolineoxyl N-oxide agains endotoxin shock through its direct nitric oxide-scavenging activity. Biochem.Biophys.Res. Commun. 202: 923–930.PubMedCrossRefGoogle Scholar
  56. Zamaraev, K.I., Romannikov, V.N., Salganik, R.I., Wlassoff, W.A., and Khramtsov, V.V., 1997,Modelling of Prebiotic Synthesis of Oligopeptides: Silicate Catalysts help to overcome the critical stage. Origins Life Evol.Biosphere 27: 325–337.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Valery V. Khramtsov
    • 1
  1. 1.Institute of Chemical Kinetics and CombustionNovosibirskRussia

Personalised recommendations