Skip to main content

Notion Formation in Machine Learning

  • Chapter
  • 90 Accesses

Abstract

In Artificial Intelligence, and, specifically in Machine Learning, to form a new notion usually means to build up a “concept” or a “category”. The simplest way to consider a category is extensional: a category is a set of “equivalent” objects,1 i.e., objects that share properties.2 Categories are organized into taxonomies, linked through the set inclusion relation.1 A concept is sometime considered as the intensional representation of a category, i.e., a description of the objects in the category,2 called also the instances of the concept. Actually, most frequently, the denotations “concept” and “category” are used as synonyms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Rosch, Principles of categorization, in E. Rosch & B. Lloyd eds., Cognition and Categorization, Erlbaum, Hillsdale, NJ (1978).

    Google Scholar 

  2. L.G. Murphy and D.L. Medin, The role of theories in conceptual coherence, Psychological Review, 92, pp. 289-316 (1985).

    Article  Google Scholar 

  3. J.P. Desclés, Implication entre concepts: la notion de typicalité, in M. Riegel & I. Tamba eds., L’implication dans les langues naturelles et dans les langages artificiels, Klincksieck, Paris, France, pp. 179-202 (1987).

    Google Scholar 

  4. G. Frege, Grundgesetze der Aritmetik, Begriffsschriftlich Abgeleitet, Vol. I. Jena, Germany (1893).

    Google Scholar 

  5. L. Wittgenstein, Philosophical Investigations, Blackwell, Oxford, UK (1953).

    Google Scholar 

  6. E. Rosch and C.B. Mervis, Family resemblance studies in the internal structure of categories, Cognitive Psychology, 7, pp. 573-605 (1975).

    Article  Google Scholar 

  7. L. Barsalou, Cognitive Psychology, Erlbaum, Hillsdale, NJ (1992).

    Google Scholar 

  8. R. Michalski, A Theory and methodology of inductive learning. In R. Michalski, T. Mitchell & J. Carbonell eds., Machine Learning, Vol. I, Tioga Publ. Co., Palo Alto, CA, pp. 83-134 (1983).

    Google Scholar 

  9. T. Mitchell, Generalization as search, Artificial Intelligence,18, pp. 203-226 (1982).

    Article  MathSciNet  Google Scholar 

  10. A. Aamodt, Knowledge-intensive Case-based Reasoning and Sustained Learning, in Proc. of the ECAI Conference, Stockholm, Sweden, pp. 1-6 (1990).

    Google Scholar 

  11. J. Kolodner, Judging which is the best case for a Case-Based reasoner, in Proc. of the Case-Based Reasoning Workshop, Pensacola, FL, pp. 77-81 (1989).

    Google Scholar 

  12. R. C. Schank and D.B. Leake, Creativity and learning in a Case-Based explainer, Artificial Intelligence, 40, pp. 353-385 (1989).

    Article  Google Scholar 

  13. C. Smith, J. Snir, and L. Grosslight, Using conceptual models to facilitate conceptual change: the case of weight-density differentiation, Cognition and Instruction, 9, pp. 221-283 (1992).

    Article  Google Scholar 

  14. A. Tversky and I. Gati, Studies of similarity, in E. Rosch & B. Lloyd eds., Cognition and Categorization, Erlbaum, Hillsdale, NJ (1978).

    Google Scholar 

  15. D. L. Medin, W. D. Wattenmaker, and S. Hamson, Family resemblance, conceptual cohesiveness and category construction, Cognitive Psychology, 19, pp. 242-279 (1987).

    Article  Google Scholar 

  16. L.J. Rips, Similarity, typicality, and categorization, in S. Vosniadou & A. Ortony eds., Similarity and Analogical Reasoning, Cambridge University Press, New York, NY, pp. 23-59 (1989).

    Google Scholar 

  17. D.L. Medin, R.L. Goldstone, and D. Gentner, Respects for similarity, Psychological Review, 100, pp. 254- 238 (1993).

    Article  Google Scholar 

  18. J. Hoffman and M. Ziessler, The integration of visual and functional classifications in concept formation, Psychological Research, 48, pp. 69-78 (1986).

    Article  Google Scholar 

  19. L.W. Barsalou, Deriving categories to achieve goals, in G.H. Bower ed.. The Psychology of Learning and Motivation: Advances in Research and Theory, Academic Press, New York, NY, pp. 1-64 (1991).

    Google Scholar 

  20. R. S. Michalski and R. Stepp, Learning from observation: conceptual clustering, in R. S. Michalski, J. G. Carbonell & T. Mitchell eds., Machine Learning: An Artificial Intelligence Approach, Vol. I, Tioga Publishing Co., Palo Alto, CA, pp. 331-363 (1983).

    Google Scholar 

  21. R. Stepp and R.S. Michalski, Conceptual clustering, inventing goal-oriented classifications of structured objects, in Michalski R., Carbonell J. & Mitchell T. eds., Machine Learning: An AI Approach, Vol. II, Morgan Kaufmann, Los Altos, CA, pp. 471-498.

    Google Scholar 

  22. M. Lebowitz, Experiments with incremental concept formation: UNIMEM, Machine Learning, 2, pp. 103- 138 (1987).

    Google Scholar 

  23. P. Langley and J. M. Zytkow, Data-driven approaches to empirical discovery, Artificial Intelligence, 40, pp. 283-312 (1989).

    Article  Google Scholar 

  24. D. H. Fisher, Knowldge Acquisition via Incremental Conceptual Clustering, Machine Learning, 2, pp. 139-172 (1987).

    Google Scholar 

  25. J-U. Kietz and K. Morik, A polynomial approach to the constructive induction of structural knowledge, Machine Learning, 14, pp. 193-218 (1994).

    Article  MATH  Google Scholar 

  26. R. Goldstone and L. Barsalou Reuniting perception and conception, Cognition, 65, pp. 231-262 (1998).

    Article  Google Scholar 

  27. M. Li, and P. Vitányi, An Introduction to Kolmogorov Complexity and Its Applications, Springer-Verlag, New York, NY (1997).

    MATH  Google Scholar 

  28. K. Brassel, and R. Weibel, A review and conceptual framework of automated map generalization, Int. J. of Geographical Information Systems, 2, pp. 229-244 (1988).

    Article  Google Scholar 

  29. M.P. Armstrong, Knowledge classification and organisation in map generalization: Making rules for knowledge representation, in McMaster & Buttendfield ed., Longman Scientific & Technical, pp. 86- 102.

    Google Scholar 

  30. J-F. Hangouët, Approaches et Méthodes pour l’Automatisation de la Généralisation Cartographique; Application en Bord de Ville, Ph.D. Thesis, Univ. of Marne-la-Vallée, France (1998).

    Google Scholar 

  31. S. Mustière, GALBE: Adaptive Generalisation. The need for an adaptive process for automated generalisation, an example on roads, in Proc. GIS’Planet-1, Lisbon, Portugal (1998).

    Google Scholar 

  32. R. Weibel, S. Keller, and T. Reichenbacher, Overcoming the knowledge acquisition bottleneck in map generalization: the role of interactive systems and computional intelligence, in Proceedings of COSIT’95, pp. 139-156 (1995).

    Google Scholar 

  33. S. Mustière, J-D. Zucker, and L. Saitta, An abstraction-based machine learning approach to cartographic generalization, in Proc. Int Conf. on Spatial Data Handling, Bejing, China, in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Saitta, L., Esposito, R. (2001). Notion Formation in Machine Learning. In: Cantoni, V., Di Gesù, V., Setti, A., Tegolo, D. (eds) Human and Machine Perception 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1361-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1361-2_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5516-8

  • Online ISBN: 978-1-4615-1361-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics