Evolution of Sediment Fluxes and Ocean Salinity

  • William W. Hay
  • Christopher N. Wold
  • Emanuel Söding
  • Sascha Floegel
Part of the Computer Applications in the Earth Sciences book series (CAES)


Knowledge of the rates of geological processes is an important aspect of basin modeling. Much of the surficial geology of the Earth is the result of erosion and deposition of sediment. Inspection of the inventory of sediments and sedimentary rocks existing today indicates that the global rates of these processes have changed markedly during the Phanerozoic.


Ocean Crust Foreland Basin Sediment Flux Accretionary Wedge Sedimentary Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berggren, W. A., Kent, D. V., Swisher, C. C., and Aubry, M.P., 1995, A revised Cenozoic geochronology and chronostratigraphy, in Berggren, W.A., D. V. Kent, D.V. Aubry, M.P. and Hardenbol, J., eds., Geochronology, time scales and global stratigraphic correlation: SEPM Spec. Publ. 54, p. 129–212.CrossRefGoogle Scholar
  2. Berner, R. A., 1998, The carbon cycle and CO, over Phanerozoic time: the role of land plants: Philosophical Trans. Royal Soc., London, Ser. B, v. 353, no. 1365, p. 75–82.CrossRefGoogle Scholar
  3. Elick, J. M., Driese, S. G., and Mora, C. I., 1998, Very large plant and root traces from Early to middle Devonian: Implications for terrestrial ecosystems and atmospheric p(CO2): Geology, v. 26, no. 2, p. 143–146.CrossRefGoogle Scholar
  4. Floegel, S., Wold, C. N., and Hay, W. W., 2000, Evolution of sediments and salinity: Abstracts, 31“ Intern. Geol. Congress (Rio de Janeiro, Brazil), CD-ROM, 4 p.Google Scholar
  5. Garrets, R. M., and Mackenzie, F. T., 1971, Evolution of sedimentary rocks: Norton, New York, 397 p. Gilluly, J., 1969, Geological perspectives and the completeness of the geologic record: Geol. Soc. America Bull., v. 80, no. 11, p. 2303–2312.Google Scholar
  6. Gradstein, F. M., and Ogg, J. G.,1996, A Phanerozoic time scale: Episodes, v. 19, no. 1–2, p. 3–5.Google Scholar
  7. Gradstein, F. M., Agterberg, F. P., Ogg, J. G., Hardenbol, J., Van Veen, P., and Huang, Z., 1995, A Mesozoic time scale: Jour. Geophys. Research, v. 99B, no. 12, p. 24051–24074.Google Scholar
  8. Hay, W. W., 1994, Pleistocene-Holocene fluxes are not the Earth’s norm, in Hay, W.W., and Usgelman, T.M., eds., Material fluxes on the surface of the Earth: Studies in Geophysics, National Academy Press, Washington, D.C., p. 15–27.Google Scholar
  9. Hay, W. W., 1999, Carbonate sedimentation through the late Precambrian and Phanerozoic: Zentralblatt f¨¹r Geologie und Paläontologie, Teil I, 1998, Heft 5–6,p. 435–445.Google Scholar
  10. Hay, W. W., and Wold, C. N., 1997, Preliminary reconstruction of the salinity of the ocean in the Cenozoic and Mesozoic: Freiberger Forschunghefte, C 468 Geowissenschaften- Paläontologie, Paläontologie, Stratigraphie, Fazies, Heft 5, Karl-Armin-Tröger Festschrift, p. 119–127.Google Scholar
  11. Hay, W. W., Shaw, C. A. and Wold, C. N., 1989, Mass-balanced paleogeographic maps: Geol. Rundschau, v. 78, no. 1, p. 207–242.CrossRefGoogle Scholar
  12. Hay, W. W., Sloan, J. L. II, and Wold, C. N., 1988, Mass/Age distribution and composition of sediments on the ocean floor and the global rate of sediment subduction: Jour. Geophys. Research, v. 93, no. 12, p. 14933–14940.Google Scholar
  13. Holser, W. T., Hay, W. W., Tory, D. E., and O’Connell, W. J., 1980, A census of evaporites and its implications for oceanic geochemistry (abst.): Geol. Soc. America, Abstracts with Programs, v. 12, no. 7, p. 448.Google Scholar
  14. Howell, D. G., and Murray, R. W., 1986, A budget for continental growth and denudation: Science, v. 233, no. 4762, p. 446–449.CrossRefGoogle Scholar
  15. Knauth, L. P., 1998, Salinity history of the Earth’s early history: Nature, v. 395, no. 6702, p. 554.CrossRefGoogle Scholar
  16. Land, L. S., 1995, The role of saline formation water in crustal cycling: Aquatic Geochemistry, v. I, no. 2, p. 137–145.CrossRefGoogle Scholar
  17. McArthur, J. M., Howarth, R. J., and Bailey, T. R., 2001, Strontium isotope stratigraphy: LOWESS version 3. Best-fit to the marine Sr-isotope curve for 0–509 Ma and accompanying look-up table for deriving numerical age: Jour. Geology, v. 109, no. 2, p. 155–170.CrossRefGoogle Scholar
  18. Obradovich, J. D., 1993, A Cretaceous timescale, in Caldwell, W. G. E., ed., Evolution of the Western Interior Foreland Basin: Geol. Assoc. Canada, Spec. Paper 39, p. 379–396.Google Scholar
  19. Pinet, P., and Souriau, M., 1988, Continental erosion and large-scale relief: Tectonics, v. 7, no. 3, p. 563–582.CrossRefGoogle Scholar
  20. Ronov, A. B. 1961, Some general patterns of evolution in the epeirogenic movements of the continents (based on volumetric data): Problems of Tectonics (Voprosi Tektonik’i): Gosgeotechhizdat, Moscow, p. 118–164.Google Scholar
  21. Ronov, A. B., 1980, The Earth’s sedimentary shell (quantitative patterns of its structure, compositions, and evolution). - The 20th V. I. Vernadski Lecture, March 12, 1978 (in Russian), in Yaroshevskii, A.A., ed., The Earth’s Sedimentary shell (quantitative patterns of its structure, compositions, and evolution): Moscow, Nauka, 80 p. [English translation in Intern. Geology Review, v. 24, no. 20, p. 1313–1388 (1982); also Am. Geol. Inst. Reprint Series, v. 5, 73 p. (1983)].Google Scholar
  22. Ronov, A. B., 1993, Stratisfera - Ili Osadochnaya Obolochka Zemli (Kolichestvennoe Issledovanie): Nauka, Moskva, 143 p.Google Scholar
  23. Shackleton, N. J., Crowhurst, S., Hagelberg, T., Pisias, N. G., and Schneider, D. A., 1995, A new late Neogene time scale: Application to Leg 138 Sites, in Pisias, N.G., Mayer, L. A., Janacek, T. R., Palmer-Julsen, A., and van Andel, T. H., eds., Proc. Ocean Drilling Program, Scientific Results, v. 138, p. 73-I0I.Google Scholar
  24. Sibley, D. F., and Wilband, J. T., 1981, Chemical balance of the Earth’s crust: Geochimica et Cosmochimica Acta, v. 41, no. 4, p. 545–554.CrossRefGoogle Scholar
  25. Southam, J. R., and Hay, W. W., 1981, Global sedimentary mass balance and sea level changes, in Emiliani, C., ed., The sea: Wiley-Interscience, New York, p. 1617–1684.Google Scholar
  26. Veizer, J., and Jansen, S.L., 1985, Basement and sedimentary recycling - 2: Time dimension to global tectonics: Jour. Geology, v. 93, no. 6, p. 625–664.CrossRefGoogle Scholar
  27. Von Huene, R., and Scholl, D. W., 1991, Observations at convergent margins concerning sediment subduction, subduction erosion, and growth of continental crust: Reviews of Geophysics, v. 29, p. 279–316.CrossRefGoogle Scholar
  28. Wold, C. N., and Hay, W. W., 1990, Estimating ancient sediment fluxes: Am. Jour. Science, v. 290, no. 9, p.1069–1089.CrossRefGoogle Scholar
  29. Wold, C. N., and Hay, W. W., 1993, Reconstructing the age and lithology of eroded sediment: Geoinformatics, v. 4, no. 3, p. 137–144.Google Scholar
  30. Wright, V. P., 1985, The precursor environment for vascular plant colonization: Philosophical Trans. Royal Soc., London, Ser. B, v. 309, no. 1138, p.143–145.CrossRefGoogle Scholar
  31. Young, G. C., and Laurie, J. R., eds., 1996, An Australian Phanerozoic timescale: Oxford Univ. Press, Oxford, UK, 286 p.Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • William W. Hay
    • 1
  • Christopher N. Wold
    • 2
  • Emanuel Söding
    • 1
  • Sascha Floegel
    • 1
  1. 1.GEOMAR, Christian-Albrechts-UniversityKielGermany
  2. 2.Platte River AssociatesBoulderUSA

Personalised recommendations