Cone Arrestin Expression and Induction in Retinoblastoma Cells

  • Yushun Zhang
  • Aimin Li
  • Xuemei Zhu
  • Ching H. Wong
  • Bruce Brown
  • Cheryl M. Craft


Arrestins are regulatory proteins that down-regulate phosphorylated G-protein coupled receptors (GPCRs). The arrestin superfamily includes visual arrestins, beta-arrestins (βarrestins) and insect chemosensory arrestins. Two members of visual arrestins have been identified in vertebrate photoreceptors: rod arrestin (also known as S-antigen or Arrestin 1) and cone arrestin (X-arrestin or Arresting. Rod arrestin was the first member to be molecularly characterized,1 and its structure and function have been extensively studied in recent years. In vertebrate rod photoreceptors, rod arrestin quenches the light-induced phototransduction cascade by binding preferentially to the light-activated, phosphorylated rhodopsin.2,3 Subsequently, βarrestinl4 and βarrestin25 were identified and shown to have a ubiquitous expression pattern. βarrestins have an analogous function to rod arrestin in the termination of GPCR signaling by sterically inhibiting the coupling of phosphorylated receptors to their respective G proteins.4, 5 Recent evidence suggests additional roles for βarrestins in both termination of receptor signaling and signaling to downstream effectors by interacting with clathrin-coated pits and the tyrosine kinase c-Src.6-11


Sodium Butyrate Human Retina Cone Photoreceptor Retinoblastoma Cell Retinoblastoma Cell Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Shinohara, B. Dietzschold, C. M. Craft, G. Wistow, J. J. Early, L. A. Donoso, J. Horwitz, and R. Tao, Primary and secondary structure of bovine retinal S antigen (48-kDa protein), Proc Natl Acad Sci U S A 84(20), 6975–6979 (1987).PubMedCrossRefGoogle Scholar
  2. 2.
    H. Kuhn, S. W. Hall, and U. Wilden, Light-induced binding of 48-kDa protein to photoreceptor membranes is highly enhanced by phosphorylation of rhodopsin, FEBS Lett 176(2), 473–478 (1984).PubMedCrossRefGoogle Scholar
  3. 3.
    H. Kuhn, and U. Wilden, Deactivation of photoactivated rhodopsin by rhodopsin-kinase and arrestin, J Recept Res 7(1-4), 283–298 (1987).PubMedGoogle Scholar
  4. 4.
    M. J. Lohse, J. L. Benovic, J. Codina, M. G. Caron, and R. J. Lefkowitz, beta-Arrestin: a protein that regulates beta-adrenergic receptor function, Science 248(4962), 1547–1550 (1990).PubMedCrossRefGoogle Scholar
  5. 5.
    H. Attramadal, J. L. Arriza, C. Aoki, T. M. Dawson, J. Codina, M. M. Kwatra, S. H. Snyder, M. G. Caron, and R. J. Lefkowitz, Beta-arrestin2, a novel member of the arrestin/beta-arrestin gene family, J Biol Chem 267(25), 17882–17890 (1992).PubMedGoogle Scholar
  6. 6.
    R. J. Lefkowitz, G protein-coupled receptors. III. New roles for receptor kinases and beta-arrestins in receptor signaling and desensitization, J Biol Chem 273(30), 18677–18680 (1998).PubMedCrossRefGoogle Scholar
  7. 7.
    R. A. Hall, R. T. Premont, and R. J. Lefkowitz, Heptahelical receptor signaling: beyond the G protein paradigm, J Cell Biol 145(5), 927–932 (1999).PubMedCrossRefGoogle Scholar
  8. 8.
    O. B. Goodman, Jr., J. G. Krupnick, F. Santini, V. V. Gurevich, R. B. Penn, A. W. Gagnon, J. H. Keen, and J. L. Benovic, Beta-arrestin acts as a clathrin adaptor in endocytosis of the beta2- adrenergic receptor, Nature 383(6599), 447–450 (1996).PubMedCrossRefGoogle Scholar
  9. 9.
    O. B. Goodman, Jr., J. G. Krupnick, V. V. Gurevich, J. L. Benovic, and J. H. Keen, Arrestin/clathrin interaction. Localization of the arrestin binding locus to the clathrin terminal domain, J Biol Chem 272(23), 15017–15022(1997).PubMedCrossRefGoogle Scholar
  10. 10.
    L. M. Luttrell, S. S. Ferguson, Y. Daaka, W. E. Miller, S. Maudsley, G. J. Delia Rocca, F. Lin, H. Kawakatsu, K. Owada, D. K. Luttrell, M. G. Caron, and R. J. Lefkowitz, Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes [see comments], Science 283(5402), 655–661 (1999).PubMedCrossRefGoogle Scholar
  11. 11.
    W. E. Miller, S. Maudsley, S. Ahn, K. D. Khan, L. M. Luttrell, and R. J. Lefkowitz, beta-arrestin 1 interacts with the catalytic domain of the tyrosine kinase c-SRC. Role of beta-arrestin 1-dependent targeting of c-SRC in receptor endocytosis, J Biol Chem 275(15), 11312–11319 (2000).PubMedCrossRefGoogle Scholar
  12. 12.
    C. M. Craft, D. H. Whitmore, and A. F. Wiechmann, Cone arrestin identified by targeting expression of a functional family [published erratum appears in J Biol Chem 1994 Jul 1;269(26): 17756], J Biol Chem 269(6), 4613–4619 (1994).PubMedGoogle Scholar
  13. 13.
    A. Murakami, T. Yajima, H. Sakuma, M. J. McLaren, and G. Inana, X-arrestin: a new retinal arrestin mapping to the X chromosome, FEBS Lett 334(2), 203–209 (1993).PubMedCrossRefGoogle Scholar
  14. 14.
    N. Bobola, P. Briata, C. Ilengo, N. Rosatto, C. Craft, G. Corte, and R. Ravazzolo, OTX2 homeodomain protein binds a DNA element necessary for interphotoreceptor retinoid binding protein gene expression, Mech Dev 82(1-2), 165–169 (1999).PubMedCrossRefGoogle Scholar
  15. 15.
    C. M. Craft, J. Xu, V. Z. Slepak, X. Zhan-Poe, X. Zhu, B. Brown, and R. N. Lolley, PhLPs and PhLOPs in the phosducin family of G beta gamma binding proteins, Biochemistry 37(45), 15758–15772 (1998).PubMedCrossRefGoogle Scholar
  16. 16.
    C. M. Craft, D. H. Whitmore, and L. A. Donoso, Differential expression of mRNA and protein encoding retinal and pineal S-antigen during the light/dark cycle, J Neurochem 55(5), 1461–1473 (1990).PubMedCrossRefGoogle Scholar
  17. 17.
    C.M. Craft, J. Murage, B. Brown, and X. Zhan-Poe, Bovine Arylalkylamine N-Acetyltransferase Activity Correlated with mRNA Expression in Pineal and Retina, Brain Research. Molecular Brain Research 65(1), 44–51 (1999).PubMedCrossRefGoogle Scholar
  18. 18.
    X. Zhu, and C. M. Craft, Modulation of CRX transactivation activity by phosducin isoforms, Mol Cell Biol 20(14), 5216–5226 (2000).PubMedCrossRefGoogle Scholar
  19. 19.
    A. Szel, T. Diamantstein, and P. Rohlich, Identification of the blue-sensitive cones in the mammalian retina by anti-visual pigment antibody, J Comp Neurol 273(4), 593–602 (1988).PubMedCrossRefGoogle Scholar
  20. 20.
    A. Szel, L. Takacs, E. Monostori, T. Diamantstein, I. Vigh-Teichmann, and P. Rohlich, Monoclonal antibody-recognizing cone visual pigment, Exp Eye Res 43(6), 871–883 (1986).PubMedCrossRefGoogle Scholar
  21. 21.
    F. M. DeMonasterio, S. J. Schein, and E. P. McCrane, Staining of blue-sensitive cones of the macaque retina by a fluorescent dye, Science 213(4513), 1278–1281 (1981).PubMedCrossRefGoogle Scholar
  22. 22.
    I. Nir, and N. Ransom, S-antigen in rods and cones of the primate retina: different labeling patterns are revealed with antibodies directed against specific domains in the molecule, J Histochem Cytochem 40(3), 343–352 (1992).PubMedCrossRefGoogle Scholar
  23. 23.
    G. J. Chader, Multipotential differentiation of human Y-79 retinoblastoma cells in attachment culture, Cell Differ 20(2-3), 209–216 (1987).PubMedCrossRefGoogle Scholar
  24. 24.
    S. Rajagopalan, M. Rodrigues, T. Polk, D. Wilson, G. J. Chader, and B. J. Hayden, Modulation of retinoblastoma cell characteristics by hexamethylene bis- acetamide and other differentiating agents in culture, J Histochem Cytochem 41(9), 1331–1337 (1993).PubMedCrossRefGoogle Scholar
  25. 25.
    R. M. Conway, M. C. Madigan, N. J. King, F. A. Billson, and P. L. Penfold, Human retinoblastoma: in vitro differentiation and immunoglobulin superfamily antigen modulation by retinoic acid, Cancer Immunol Immunother 44(4), 189–196 (1997).PubMedCrossRefGoogle Scholar
  26. 26.
    M. C. Madigan, G. Chaudhri, P. L. Penfold, and R. M. Conway, Sodium butyrate modulates p53 and Bcl-2 expression in human retinoblastoma cell lines, Oncol Res 11(7), 331–337 (1999).PubMedGoogle Scholar
  27. 27.
    H. Sakuma, G. Inana, A. Murakami, T. Higashide, and M. J. McLaren, Immunolocalization of X-arrestin in human cone photoreceptors, FEBS Lett 382(1-2), 105–110 (1996).PubMedCrossRefGoogle Scholar
  28. 28.
    E. Bogenmann, M. A. Lochrie, and M. I. Simon, Cone cell-specific genes expressed in retinoblastoma, Science 240(4848), 76–78 (1988).PubMedCrossRefGoogle Scholar
  29. 29.
    R. L. Hurwitz, E. Bogenmann, R. L. Font, V. Holcombe, and D. Clark, Expression of the functional cone phototransduction cascade in retinoblastoma., J.Clin.Invest. 85,1872–1878 (1990).PubMedCrossRefGoogle Scholar
  30. 30.
    M. A. Yorek, P. H. Figard, T. L. Kaduce, and A. A. Spector, A comparison of lipid metabolism in two human retinoblastoma cell lines, Invest Ophthalmol Vis Sci 26(8), 1148–1154 (1985).PubMedGoogle Scholar
  31. 31.
    M. Giuliano, M. Lauricella, G. Calvaruso, M. Carabillo, S. Emanuele, R. Vento, and G. Tesoriere, The apoptotic effects and synergistic interaction of sodium butyrate and MG132 in human retinoblastoma Y79 cells, Cancer Res 59(21), 5586–5595 (1999).PubMedGoogle Scholar
  32. 32.
    M. Lauricella, M. Giuliano, S. Emanuele, M. Carabillo, R. Vento, and G. Tesoriere, Increased cyclin E level in retinoblastoma cells during programmed cell death, Cell Mol Biol (Noisy-le-grand) 44(8), 1229–1235 (1998).Google Scholar
  33. 33.
    M. Lauricella, M. Giuliano, S. Emanuele, R. Vento, and G. Tesoriere, Apoptotic effects of different drugs on cultured retinoblastoma Y79 cells, Tumour Biol 19(5), 356–363 (1998).PubMedCrossRefGoogle Scholar
  34. 34.
    A. F. Wiechmann, and M. A. Burden, Regulation of AA-NAT and HIOMT gene expression by butyrate and cyclic AMP in Y79 human retinoblastoma cells, J Pineal Res 27(2), 116–121 (1999).PubMedCrossRefGoogle Scholar
  35. 35.
    A. P. Kyritsis, B. Wiggert, L. Lee, and G. J. Chader, Butyrate enhances the synthesis of interphotoreceptor retinoid-binding protein (IRBP) by Y-79 human retinoblastoma cells, J Cell Physiol 124(2), 233–239 (1985).PubMedCrossRefGoogle Scholar
  36. 36.
    A. F. Wiechmann, Recoverin in cultured human retinoblastoma cells: enhanced expression during morphological differentiation, J Neurochem 67(1), 105–110 (1996).PubMedCrossRefGoogle Scholar
  37. 37.
    M. Campbell, and G. J. Chader, Retinoblastoma cells in tissue culture, Ophthalmic Paediatr Genet 9(3), 171–199(1988).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Yushun Zhang
    • 1
  • Aimin Li
    • 1
  • Xuemei Zhu
    • 1
  • Ching H. Wong
    • 1
  • Bruce Brown
    • 1
  • Cheryl M. Craft
    • 1
  1. 1.The Mary D. Allen Laboratory for Vision Research, Doheny Eye Institute and Department of Cell and Neurobiologythe Keck School of Medicine of at University of Southern CaliforniaLos AngelesUSA

Personalised recommendations