A2E Inhibits Mitochondrial Function, Causes the Release of Pro-Apoptotic Proteins and Induces Apoptosis in Mammalian Cells

  • Christian Grimm
  • Marianne Suter
  • Andreas Wenzel
  • Marja Jäättela
  • Peter Esser
  • Norbert Kociok
  • Marcel Leist
  • Christoph Richter
  • Charlotte E. Remé


Age-related macular degeneration (AMD) is the leading cause of severe visual impairment in humans living in industrialized countries. A precondition for AMD appears to be the accumulation of the age pigment lipofuscin in lysosomes of retinal pigment epithelial (RPE) cells. Here we show that A2E (N-retinyl-N-retinylidene ethanolamine) the major fluorophore of lipofuscin, induces apoptosis in RPE and other cells at concentrations found in human retina. Apoptosis is accompanied by appearance of the pro-apoptotic proteins cytochrome c and apoptosis inducing factor (AIF) in the cytoplasm and the nucleus but does not involve activation of caspase-3. Biochemical examinations show that A2E inhibits mitochondrial function by specifically targeting cytochrome oxidase (COX). With both, isolated mitochondria and purified COX, A2E inhibits oxygen consumption synergistically with light. Inhibition is reversed by addition of cytochrome c or cardiolipin. Loss of RPE cell viability through inhibition of mitochondrial function might constitute a pivotal step towards the progressive degeneration of the central retina. We present a working hypothesis that suggests that A2E, once released from lysosomes (by lysosomal rupture or by ‘overflow’ of the lysosomal capacity) can target mitochondria and inhibit mitochondrial function. This causes the release of the pro-apoptotic proteins and the induction of cell death.


Retinal Pigment Epithelium Retinal Pigment Epithelium Cell Apoptosis Induce Factor Human Retinal Pigment Epithelial Cell Human Retinal Pigment Epithelium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Klein, B. E. Klein, K. L. Linton, Prevalence of age-related maculopathy. The Beaver Dam Eye Study, Ophthalmology 99(6), 933–943 (1992).PubMedGoogle Scholar
  2. 2.
    R. Allikmets, N. F. Shroyer, N. Singh, J. M. Seddon, R. A. Lewis, P. S. Bernstein, A. Peiffer, N. A. Zabriskie, Y. Li, A. Hutchinson, M. Dean, J. R. Lupski, M. Leppert, Mutation of the Stargardt disease gene (ABCR) in age-related macular degeneration, Science 277(5333), 1805–1807 (1997).PubMedCrossRefGoogle Scholar
  3. 3.
    R. Allikmets, Molecular genetics of age-related macular degeneration: current status, Eur. J. Ophthalmol. 9(4), 255–265 (1999).PubMedGoogle Scholar
  4. 4.
    M. B. Gorin, J. C. Breitner, P. T. De Jong, G. S. Hageman, C. C. Klaver, M. H. Kuehn, J. M. Seddon, The genetics of age-related macular degeneration, Mol. Vis. 5, 29 (1999). Scholar
  5. 5.
    G. Silvestri, Age-related macular degeneration: genetics and implications for detection and treatment, Mol. Med. Today 3(2), 84–91 (1997).PubMedCrossRefGoogle Scholar
  6. 6.
    K. J. Cruickshanks, R. Klein, B. E. Klein, Sunlight and age-related macular degeneration. The Beaver Dam Eye Study, Arch. Ophthalmol. 111(4), 514–518 (1993).PubMedCrossRefGoogle Scholar
  7. 7.
    H. M. Leibowitz, D. E. Krueger, L. R. Maunder, R. C. Milton, M. M. Kini, H. A. Kahn, R. J. Nickerson, J. Pool, T. L. Colton, J. P. Ganley, J. I. Loewenstein, T. R. Dawber, The Framingham Eye Study monograph: An ophthalmological and epidemiological study of cataract, glaucoma, diabetic retinopathy, macular degeneration, and visual acuity in a general population of 2631 adults, 1973–1975, Surv. Ophthalmol. 24(Suppl), 335–610 (1980).Google Scholar
  8. 8.
    N. L. Mata, J. Weng, G. H. Travis, Biosynthesis of a major lipofuscin fluorophore in mice and humans with ABCR-mediated retinal and macular degeneration, Proc. Natl. Acad. Sci. USA 97(13), 7154–7159 (2000).PubMedCrossRefGoogle Scholar
  9. 9.
    J. Weng, N. L. Mata, S. M. Azarian, R. T. Tzekov, D. G. Birch, G. H. Travis, Insights into the function of Rim protein in photoreceptors and etiology of Stargardt’s disease from the phenotype in abcr knockout mice, Cell 98(1), 13–23(1999).PubMedCrossRefGoogle Scholar
  10. 10.
    G. E. Eldred, M. R. Lasky, Retinal age pigments generated by self-assembling lysosomotropic detergents, Nature 361(6414), 724–726 (1993).PubMedCrossRefGoogle Scholar
  11. 11.
    C. A. Parish, M. Hashimoto, K. Nakanishi, J. Dillon, J. Sparrow, Isolation and one-step preparation of A2E and iso-A2E, fluorophores from human retinal pigment epithelium, Proc. Natl. Acad. Sci. USA 95(25), 14609–14613 (1998).PubMedCrossRefGoogle Scholar
  12. 12.
    J. R. Sparrow, C. A. Parish, M. Hashimoto, K. Nakanishi, A2E, a lipofuscin fluorophore, in human retinal pigmented epithelial cells in culture, Invest. Ophthalmol. Vis. Sci. 40(12), 2988–2995 (1999).PubMedGoogle Scholar
  13. 13.
    F. G. Holz, F. Schutt, J. Kopitz, H. E. Volcker, [Introduction of the lipofuscin-fluorophor A2E into the lysosomal compartment of human retinal pigment epithelial cells by coupling to LDL particles. An in vitro model of retinal pigment epithelium cell aging], Ophthalmologe 96(12), 781–785 (1999).PubMedCrossRefGoogle Scholar
  14. 14.
    G. E. Eldred, Lipofuscin fluorophore inhibits lysosomal protein degradation and may cause early stages of macular degeneration, Gerontology 41(Suppl 2), 15–28 (1995).PubMedCrossRefGoogle Scholar
  15. 15.
    F. G. Holz, F. Schutt, J. Kopitz, G. E. Eldred, F. E. Kruse, H. E. Volcker, M. Cantz, Inhibition of lysosomal degradative functions in RPE cells by a retinoid component of lipofuscin, Invest. Ophthalmol. Vis. Sci. 40(3), 737–743 (1999).PubMedGoogle Scholar
  16. 16.
    J. R. Sparrow, K. Nakanishi, C. A. Parish, The lipofuscin fluorophore A2E mediates blue light-induced damage to retinal pigmented epithelial cells, Invest. Ophthalmol. Vis. Sci. 41(7), 1981–1989 (2000).PubMedGoogle Scholar
  17. 17.
    R. W. Young, D. Bok, Participation of the retinal pigment epithelium in the rod outer segment renewal process,J. Cell Biol. 42(2), 392–403 (1969).PubMedCrossRefGoogle Scholar
  18. 18.
    R. W. Young, Visual cells and the concept of renewal, Invest. Ophthalmol. Vis. Sci. 15(9), 700–725 (1976).PubMedGoogle Scholar
  19. 19.
    L. Feeney, Lipofuscin and melanin of human retinal pigment epithelium. Fluorescence, enzyme cytochemical, and ultrastructural studies, Invest. Ophthalmol. Vis. Sci. 17(7), 583–600 (1978).PubMedGoogle Scholar
  20. 20.
    T. Ishibashi, R. Patterson, Y. Ohnishi, H. Inomata, S. J. Ryan, Formation of drusen in the human eye, Am. J. Ophthalmol. 101(3), 342–353 (1986).PubMedGoogle Scholar
  21. 21.
    G. Z. Xu, W. W. Li, M. O. Tso, Apoptosis in human retinal degenerations, Trans. Am. Ophthalmol. Soc. 94,411–430(1996).PubMedGoogle Scholar
  22. 22.
    J. F. Kerr, A. H. Wyllie, A. R. Currie, Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics, Br. J. Cancer 26(4), 239–257 (1972).PubMedCrossRefGoogle Scholar
  23. 23.
    C. B. Thompson, Apoptosis in the pathogenesis and treatment of disease, Science 267(5203), 1456–1462 (1995).PubMedCrossRefGoogle Scholar
  24. 24.
    I. Wertz, M. R. Hanley, Diverse molecular provocation of programmed cell death, Trends Biol. Science (TIBS) 21, 359–364 (1996).Google Scholar
  25. 25.
    A. Ashkenazi, V. M. Dixit, Death receptors: signaling and modulation, Science 281(5381), 1305–1308 (1998).PubMedCrossRefGoogle Scholar
  26. 26.
    G. Kroemer, J. C. Reed, Mitochondrial control of cell death, Nat. Med. 6(5), 513–519 (2000).PubMedCrossRefGoogle Scholar
  27. 27.
    D. C. Wallace, Mitochondrial diseases in man and mouse, Science 283(5407), 1482–1488 (1999).PubMedCrossRefGoogle Scholar
  28. 28.
    M. Leist, B. Single, H. Naumann, E. Fava, B. Simon, S. Kuhnle, P. Nicotera, Inhibition of mitochondrial ATP generation by nitric oxide switches apoptosis to necrosis, Exp. Cell Res. 249(2), 396–403 (1999).PubMedCrossRefGoogle Scholar
  29. 29.
    S. A. Susin, H. K. Lorenzo, N. Zamzami, I. Marzo, B. E. Snow, G. M. Brothers, J. Mangion, E. Jacotot, P. Costantini, M. Loeffler, N. Larochette, D. R. Goodlett, R. Aebersold, D. P. Siderovski, J. M. Penninger, G. Kroemer, Molecular characterization of mitochondrial apoptosis-inducing factor, Nature 397(6718), 441–446 (1999).PubMedCrossRefGoogle Scholar
  30. 30.
    E. Daugas, S. A. Susin, N. Zamzami, K. F. Ferri, T. Irinopoulou, N. Larochette, M. C. Prevost, B. Leber, D. Andrews, J. Penninger, G. Kroemer, Mitochondrio-nuclear translocation of AIF in apoptosis and necrosis, FasebJ. 14(5), 729–739 (2000).Google Scholar
  31. 31.
    S. A. Susin, H. K. Lorenzo, N. Zamzami, I. Marzo, C. Brenner, N. Larochette, M. C. Prevost, P. M. Alzari, G. Kroemer, Mitochondrial release of caspase-2 and -9 during the apoptotic process, J. Exp. Med. 189(2), 381–394(1999).PubMedCrossRefGoogle Scholar
  32. 32.
    P. Esser, S. Grisanti, N. Kociok, H. Abts, A. Hueber, K. Unfried, K. Heimann, M. Weller, Expression and upregulation of microtubule-associated protein 1B in cultured retinal pigment epithelial cells, Invest. Ophthalmol. Vis. Sci. 38(13), 2852–2856 (1997).PubMedGoogle Scholar
  33. 33.
    A. Schousboe, E. Meier, J. Dreijer, L. Hertz, Preparation of primary cultures of mouse (rat) cerebellar granule cells, in A dissection and tissue culture manual of the nervous system, A. Sahar, et al., Editors. 1989, Liss, A.R.: New York. p. 203–206.Google Scholar
  34. 34.
    M. Leist, C. Volbracht, E. Fava, P. Nicotera, l-Methyl-4-phenylpyridinium induces autocrine excitotoxicity, protease activation, and neuronal apoptosis, Mol. Pharmacol. 54(5), 789–801 (1998).PubMedGoogle Scholar
  35. 35.
    C. Volbracht, M. Leist, P. Nicotera, ATP controls neuronal apoptosis triggered by microtubule breakdown or potassium deprivation, Mol. Med. 5(7), 477–489 (1999).PubMedGoogle Scholar
  36. 36.
    M. Leist, B. Single, A. F. Castoldi, S. Kuhnle, P. Nicotera, Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis, J. Exp. Med. 185(8), 1481–1486 (1997).PubMedCrossRefGoogle Scholar
  37. 37.
    M. Leist, E. Fava, C. Montecucco, P. Nicotera, Peroxynitrite and nitric oxide donors induce neuronal apoptosis by eliciting autocrine excitotoxicity, Eur. J. Neurosci. 9(7), 1488–1498 (1997).PubMedCrossRefGoogle Scholar
  38. 38.
    B. Single, M. Leist, P. Nicotera, Simultaneous release of adenylate kinase and cytochrome c in cell death, Cell Death Differ. 5(12), 1001–1003 (1998).PubMedCrossRefGoogle Scholar
  39. 39.
    M. Latta, G. Kunstle, M. Leist, A. Wendel, Metabolic depletion of ATP by fructose inversely controls CD95- and tumor necrosis factor receptor 1-mediated hepatic apoptosis, J. Exp. Med. 191(11), 1975–1986 (2000).PubMedCrossRefGoogle Scholar
  40. 40.
    M. Suter, C. E. Reme, C. Grimm, A. Wenzel, M. Jaattela, P. Esser, N. Kociok, M. Leist, C. Richter, Age-related macular degeneration: The lipofuscin component A2E detaches pro-apoptotic proteins from mitochondria and induces apoptosis in mammalian retinal pigment epithelial cells, J Biol Chem 275, 39625–39630 (2000).PubMedCrossRefGoogle Scholar
  41. 41.
    G. E. Eldred, M. L. Katz, Fluorophores of the human retinal pigment epithelium: separation and spectral characterization, Exp. Eye Res. 47(1), 71–86 (1988).PubMedCrossRefGoogle Scholar
  42. 42.
    J. Schlegel, M. Schweizer, C. Richter, ’Pore’ formation is not required for the hydroperoxide-induced Ca2+ release from rat liver mitochondria, Biochem. J. 285(Pt 1), 65–69 (1992).PubMedGoogle Scholar
  43. 43.
    J. Cai, D. P. Jones, Superoxide in apoptosis. Mitochondrial generation triggered by cytochrome c loss, J. Biol. Chem. 273(19), 11401–11404 (1998).PubMedCrossRefGoogle Scholar
  44. 44.
    C. Richter, M. Schweizer, A. Cossarizza, C. Franceschi, Control of apoptosis by the cellular ATP level, FEBS Lett. 378(2), 107–110 (1996).PubMedCrossRefGoogle Scholar
  45. 45.
    J. F. Krebs, R. C. Armstrong, A. Srinivasan, T. Aja, A. M. Wong, A. Aboy, R. Sayers, B. Pham, T. Vu, K. Hoang, D. S. Karanewsky, C. Leist, A. Schmitz, J. C. Wu, K. J. Tomaselli, L. C. Fritz, Activation of membrane-associated procaspase-3 is regulated by Bcl-2, J Cell Biol 144(5), 915–926 (1999).PubMedCrossRefGoogle Scholar
  46. 46.
    R. J. Carmody, T. G. Cotter, Oxidative stress induces caspase-independent retinal apoptosis in vitro, Cell Death Differ. 7(3), 282–291 (2000).PubMedCrossRefGoogle Scholar
  47. 47.
    J. Nylandsted, M. Rohde, K. Brand, L. Bastholm, F. Elling, M. Jäättela, Selective depletion of heat shock protein 70 (Hsp70) activates a tumor-specific death program that is independent of caspases and bypasses Bcl-2, Proc. Natl. Acad. Sci. USA 97(14), 7871–7876 (2000).PubMedCrossRefGoogle Scholar
  48. 48.
    Z. Salamon, G. Tollin, Surface plasmon resonance studies of complex formation between cytochrome c and bovine cytochrome c oxidase incorporated into a supported planar lipid bilayer. II. Binding of cytochrome c to oxidase-containing cardiolipin/phosphatidylcholine membranes, Biophys. J. 71(2), 858–867 (1996).PubMedCrossRefGoogle Scholar
  49. 49.
    G. L. Wing, G. C. Blanchard, J. J. Weiter, The topography and age relationship of lipofuscin concentration in the retinal pigment epithelium., Invest. Ophthalmol. Vis. Sci. 17, 601–607 (1978).PubMedGoogle Scholar
  50. 50.
    D. M. Snodderly, Evidence for protection against age-related macular degeneration by carotenoids and antioxidant vitamins, Am. J. Clin. Nutr. 62(6 Suppl), 1448S–1461S (1995).PubMedGoogle Scholar
  51. 51.
    B. N. Ames, M. K. Shigenaga, T. M. Hagen, Mitochondrial decay in aging, Biochim. Biophys. Acta 1271(1), 165–170(1995).PubMedCrossRefGoogle Scholar
  52. 52.
    A. Maftah, M. H. Ratinaud, M. Dumas, F. Bonte, A. Meybeck, R. Julien, Human epidermal cells progressively lose their cardiolipins during ageing without change in mitochondrial transmembrane potential, Mech. Ageing. Dev. 77(2), 83–96 (1994).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Christian Grimm
    • 1
  • Marianne Suter
    • 2
  • Andreas Wenzel
    • 1
  • Marja Jäättela
    • 3
  • Peter Esser
    • 4
  • Norbert Kociok
    • 4
  • Marcel Leist
    • 5
  • Christoph Richter
    • 2
  • Charlotte E. Remé
    • 1
  1. 1.Department of OphthalmologyUniversity Hospital ZurichZurichSwitzerland
  2. 2.Institute of Biochemistry, Swiss Federal Institute of Technology (ETH)ZurichSwitzerland
  3. 3.Danish Cancer SocietyApoptosis LaboratoryCopenhagenDenmark
  4. 4.Eye ClinicUniversity of CologneCologneGermany
  5. 5.Department of Neurobiology, H. Lundbeck A/SValbyDenmark

Personalised recommendations