Evaluation of an Artificial Retina in Rodent Models of Photoreceptor Degeneration

  • Sherry L. Ball
  • Machelle T. Pardue
  • Alan Y. Chow
  • Vincent Y. Chow
  • Neal S. Peachey


In many retinal disorders, the photoreceptor layer degenerates while inner retinal layers are spared (Eisenfeld et al., 1984; Flannery et al., 1989; Stone et al., 1992; Santos et al., 1997). Based on evaluation of patients with photoreceptor degeneration, the inner layers retain some capacity to transmit and process visual information (Humayun et al., 1995,Humayun 1996). Consequently, replacing the photoreceptor layer with healthy retina or an “artificial retina” could restore vision in affected individuals. This objective has been approached by: transplantation of adult photoreceptors (Gouras et al., 1994; Silverman and Hughes, 1989; Huang et al., 1998), embryonic retina (Humayun et al. 2000; Juliusson et al. 1993; Seiler and Aramant, 1998; Seiler et al. 1999), or full thickness retina (Aramant et al., 1999; Ghosh et al. 1998; Seiler et al. 1995) or by implantation of electrodes onto the retinal surface (Eckmiller, 1999; Grumet, et al. 2000; Humayun et al., 1999) or an electronic device into the subretinal space (Peachey and Chow, 1999; Zrenner et al., 1999; Chow et al., 2001a,Chow et al., 2001b).


Glial Fibrillary Acidic Protein Retinal Pigment Epithelium Retinitis Pigmentosa Retinal Degeneration Retinal Tissue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aramant, R., Seiler, M.J., and Ball, S.L., 1999, Successful cotransplantation of intact sheets of fetal retina with retinal pigment epithelium, Invest. Ophthalmol Vis. Sci. 40:1557–1564.PubMedGoogle Scholar
  2. Bignami, A. and Dahl, D., 1979, The radial glia of Müller in the rat retina and their response to injury. An immunofluorescence study with antibodies to the glial fibrillary acidic (GFA) protein, Exp. Eye Res. .28:63–69.PubMedCrossRefGoogle Scholar
  3. Chow, A.Y., Pardue, M.T., Chow, V.Y., Peyman, G.A., Liang, C., Perlman, J.I. and Peachey, N.S., 2001a, Implantation of semiconductor-based photodiodes into the cat subretinal space, IEEE Trans. Rehab. Eng. in press.Google Scholar
  4. Chow, A.Y., Pardue, M.T., Perlman, J.I., Ball, S.L., Chow, V.Y., Hetling, J.R., Peyman, G.A., Liang, C., Stubbs, E.B. and Peachey, N.S., 2001 b, Subretinal implantation of semiconductor-based photodiodes. I. Biocomptibility and function of novel implant designs and laser ablation of overlying retina, Exp. Eye Res. submitted.Google Scholar
  5. Dowling, J.E., and Sidman, R.L., 1962, Inherited retinal dystrophy in the rat, J. Cell Biol. 14:73–109.PubMedCrossRefGoogle Scholar
  6. Eckmiller, R., 1975, Electronic stimulation of the vertebrate retina, IEEE Trans. Biomed. Eng. 22:305–311.PubMedCrossRefGoogle Scholar
  7. Eisenfeld A.J., Bunt-Milam A.H., and Sarthy P.V., 1984, Müller cell expression of glial fibrillary acidic protein after genetic and experimental photoreceptor degeneration in the rat retina, Invest. Ophthalmol. Vis. Sci. 25:1321–1328.PubMedGoogle Scholar
  8. Erickson P.A., Fisher S.K., Guérin C.J., Anderson D.H., and Kaska D.D., 1987, Glial fibrillary acidic protein increases in Müller cells after retinal detachment, Exp. Eye Res. 44:37–48.PubMedCrossRefGoogle Scholar
  9. Flannery, J.G., Farber, D.B., Bird, A.C, and Bok, D., 1989, Degenerative changes in a retina affected with autosomal dominant retinitis pigmentosa, Invest. Ophthalmol. Vis. Sci. 30:191–211PubMedGoogle Scholar
  10. Ghosh, F., Arnfr, K., Ehinger, B., 1998, Transplantation of full-thickness embryonic rabbit retina using pars plana vitrectomy, Retina 18:136–142.PubMedCrossRefGoogle Scholar
  11. Gouras, P., Du, J., Kjeldbye, H., Yamamoto, S., Zack, D.J., 1994, Long-term photoreceptor transplants in dystrophic and normal mouse retina, Inves.t Ophthalmol. Vis Sci. 35:3145–53.Google Scholar
  12. Grumet, A.E., Wyatt, J.L., and Rizzo, J.F., 2000, Multi-electrode stimulation and recording in the isolated retina, J. Neurosci. Meth. 101:31–42.CrossRefGoogle Scholar
  13. Huang, J.C., Ishida, M., Hersh, P., Sugino, I.K., and Zarbin, M.A., 1998, Preparation and transplantation of photoreceptor sheets, Curr. Eye Res. 17:573–85.PubMedCrossRefGoogle Scholar
  14. Humayun, M.S., del Cerro, M., deJuan, E. Jr., Dagnelie, G., Radner, W., Sadd, S.R., and del Cerro, C., 2000,Human retinal transplantation, Invest. Ophthalmol. Vis. Sci. 41:3100–3106.PubMedGoogle Scholar
  15. Humayun M.S., de Juan E. Jr., Weiland, J.D., Dagnelie, G., Katona, S., Greenberg, R., Suzuki, S., 1999, Pattern electrical stimulation of the human retina, Vis. Res. 39:2569–2576.PubMedCrossRefGoogle Scholar
  16. Humayun M.S., de Juan E. Jr., Dagnelie G., Greenburg R.J., Propst R.H., and Philips H., 1996, Visual perception elicited by electrical stimulation of retina in blind humans, Arch. Ophthalmol 114:40–46.PubMedCrossRefGoogle Scholar
  17. Humayun M., Sato Y., Propst R., and de Juan E. Jr., 1995, Can potentials from the visual cortex be elicited electrically despite severe retinal degeneration and a markedly reduced electroretinogram? Ger. J. Ophthalmol 4:57–64.PubMedGoogle Scholar
  18. Juliusson, B., Bergstrbm, A., van Veen, T., and Ehinger, B., 1993, Cellular organization in retinal transplants using cell suspensions or fragments of embryonic retinal tissue, Cell Transplant. 2:411–418.PubMedGoogle Scholar
  19. Lewis G.P., Guérin C.J., Anderson D.H., Matsumoto B., and Fisher S.K., 1994, Rapid changes in the expression of glial cell proteins caused by experimental retinal detachment, Amer. J. Ophthalmol. 118:368–376.Google Scholar
  20. Narfström K., and Nilsson S.E., 1986, Progressive retinal atrophy in the Abyssinian cat: electron microscopy, Invest. Ophthalmol. Vis. Sci. 27:1569–1576.Google Scholar
  21. Pardue, M.T., Ball, S.L., Hetling, J.R., Chow, V.Y., Chow, A.Y., and Peachey, N.S., 2001, Visual evoked potentials to infrared stimulation in normal cats and rats, Doc. Ophthalmol, in press.Google Scholar
  22. Pardue M.T., Stubbs E.B. Jr., Perlman J.I., Chow A.Y., Narfström K., and Peachey N.S., 1999, Immunocytochemical analysis of the cat retina following subretinal implantation of microphotodiode-based retinal prostheses. ARVO Abstracts, Invest. Ophthalmol. Vis. Sci. 40:S731.Google Scholar
  23. Peachey N.S., and Chow A.Y., 1999, Subretinal implantation of semiconductor-based photodiodes: Progress and challenges, J. Rehab. Res. & Devel. 36:371–378.Google Scholar
  24. Santos A., Humayun M.A., de Juan E., Jr., Greenburg R.J., March M.J., Klock LB., and Milam A.H., 1997, Preservation of the inner retina in retinitis pigmentosa, Arch. Ophthalmol. 115:511–515.PubMedCrossRefGoogle Scholar
  25. Seiler, M.J., Aramant, R.B., and Ball, S.L., 1999, Photoreceptor function of retinal transplants implicated by light-dark shift of S-antigen and rod transducin, Vis. Res. 39:2589–2596.PubMedCrossRefGoogle Scholar
  26. Seiler, M.J. and Aramant, R.B., 1998, Intact sheets of fetal retina transplanted to restore damaged rat retinas, Invest. Ophthalmol Vis. Sci. 39:2121–2131.PubMedGoogle Scholar
  27. Seiler, M.J., Aramant, R.B, and Bergstrom, A., 1995, Co-transplantation of embryonic retina and retinal pigment epithelial cells to rabbit retina, Curr. Eye Res. 14:199–207.PubMedCrossRefGoogle Scholar
  28. Silverman, M.S. and Hughes, S.E., 1989, Transplantation of photoreceptors to light-damaged retinajnvest. Ophthalmol. Vis. Sci. 30:1684–1690.Google Scholar
  29. Stone J.L., Barlow W.E., Humayun M.S., de Juan E., Jr., and Milam A.H., 1992, Morphometric analysis of macular photoreceptors and ganglion cells in retinas with retinitis pigmentosa, Arch. Ophthalmol. 110:1634–1639.PubMedCrossRefGoogle Scholar
  30. Villegas-Pérez, M.P., Lawrence, J.M., Vidal-Sanz, M., Lavail, M.M., and Lund, R.D., 1998, Ganglion cell loss in RCS rat retina: a result of compression of axons by contracting intraretinal vessels linked to the pigment epithelium, J. Comp. Neurol. 392:58–77.PubMedCrossRefGoogle Scholar
  31. Zrenner, E., Stett A., Weiss S., Aramant R.B., Guenther E., Kohler K., Miliczek K.D., Seiler M.J., and Haemmerle H., 1999, Can subretinal microphotodiodes successfully replace degenerated photoreceptors? Vision Res. 39:2555–2567.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Sherry L. Ball
    • 1
    • 2
  • Machelle T. Pardue
    • 3
  • Alan Y. Chow
    • 4
  • Vincent Y. Chow
    • 4
  • Neal S. Peachey
    • 1
    • 2
  1. 1.Cleveland VA Medical CenterClevelandUSA
  2. 2.Cole Eye InstituteCleveland Clinic FoundationClevelandUSA
  3. 3.Atlanta VA Medical CenterDecaturUSA
  4. 4.Optobionics CorporationWheatonUSA

Personalised recommendations