Advertisement

Rhodopsin Mutations in Sectorial Retinitis Pigmentosa

  • S. Kaushal
  • D. A. R. Bessant
  • A. M. Payne
  • S. M. Downes
  • G. E. Holder
  • S. S. Bhattacharya
  • A. C. Bird

Summary

Nearly 100 mutations in the rhodopsin gene have been described in association with autosomal dominant retinitis pigmentosa (ADRP), autosomal recessive retinitis pigmentosa (ARRP) and congenital stationary night blindness (CSNB), a nonprogressive disease. Additionally, mutations in the rhodopsin gene have been observed in patients with sectorial retinitis pigmentosa (SRP). We set out to determine the prevalence of rhodopsin mutations in sectorial RP, and the nature of the ocular phenotype associated with each mutation. Separately, we have also studied the biochemical phenotype of some of these mutant opsin by expression studies in COS cells.

Keywords

Retinitis Pigmentosa Spectral Ratio Retinal Degeneration Snellen Visual Acuity Secondary Structure Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. K., Department of Ophthalmology, University of Minnesota. D.A.R.B., Department of Molecular Genetics. A.M.P., Institute of Ophthalmology. S.M.D., Moorfield Eye Hospital, London. G.E.H., Department of Molecular Genetics and Institute of Ophthalmology. A.C.B., Moorfield Eye Hospital, London and Institute of Ophthalmology.Google Scholar
  2. 2.
    Bundey S, Crews SJ. (1984) A study of retinitis pigmentosa in the city of Birmingham - I. Prevalence.J. Med. Genet.21: 417–420PubMedCrossRefGoogle Scholar
  3. 3.
    Bird AC. (1995) Retinal photoreceptor dystrophies.Am. J. Ophthalmol.119: 543–562PubMedGoogle Scholar
  4. 4.
    Jay M. (1982) On the heredity of retinitis pigmentosa.Br. J. Ophthalmol.66: 405–416PubMedCrossRefGoogle Scholar
  5. 5.
    Kaushal, S. & Khorana, G. Structure and function in rhodopsin. 7. Point mutations associated with autosomal dominant retinitis pigmentosa.Biochemistry 33, 6121–6128 (1994).PubMedCrossRefGoogle Scholar
  6. 6.
    Roof, D.J., Adamian, M. & Hayes, A. Rhodopsin accumulation at abnormal sites in retinas of mice with a human P23H rhodopsin transgene.Invest Ophthalmol Vis Sci 35, 4049–62 (1994).PubMedGoogle Scholar
  7. 7.
    Sullivan L, Makris M, Dickinson P, Mulhall M, Forrest S, Cotton R, Loughnan M. A new codon 15 rhodopsin gene mutation in autosomal dominant retinitis pigmentosa is associated with sectorial disease.Arch. Ophthalmol.111: 1512–7 (1993)PubMedCrossRefGoogle Scholar
  8. 8.
    Hayakawa M., Y. Hotta, Y. Imai, K. Fujiki, A. Nakamura, K. Yanashima & A. Kanai. Clinical features of autosomal dominant retinitis pigmentosa with rhodopsin gene codon 17 mutation and retinal neovascularization in a Japanese patient.Am J Ophthalmol 115: 168–73 (1993)PubMedGoogle Scholar
  9. 9.
    Stone E.M., A. E. Kimura, B. E. Nichols, P. Khadivi, G. A. Fishman & V. C. Sheffield. Regional distribution of retinal degeneration in patients with the proline to histidine mutation in codon 23 of the rhodopsin gene.Ophthalmology 98: 1806–13(1991)PubMedGoogle Scholar
  10. 10.
    Berson E.L., B. Rosner, M. A. Sandberg & T. P. Dryja. Ocular findings in patients with autosomal dominant retinitis pigmentosa and a rhodopsin gene defect (Pro-23-His).Arch Ophthalmol 109: 92–101 (1991)PubMedCrossRefGoogle Scholar
  11. 11.
    Fishman G.A., E. M. Stone, L. D. Gilbert, P. Kenna & V. C. Sheffield. Ocular findings associated with a rhodopsin gene codon 58 trans version mutation in autosomal dominant retinitis pigmentosa.Arch Ophthalmol 109: 1387–93 (1991)PubMedCrossRefGoogle Scholar
  12. 12.
    Fishman, E. M. Stone, L. D. Gilbert & V. C. Sheffield. Ocular findings associated with a rhodopsin gene codon 106 mutation. Glycine-to-arginine change in autosomal dominant retinitis pigmentosa.Arch Ophthalmol 110: 646–53 (1992)PubMedCrossRefGoogle Scholar
  13. 13.
    Nathans J, Hogness DS. Isolation and nucleotide sequence of the gene encoding human rhodopsin.Proc. Natn. Acad. Sci.81: 4851–4855 (1984)CrossRefGoogle Scholar
  14. 14.
    Keen J, Lester D, Inglehearn CF, Curtis A, Bhattacharya SS. (1991) Rapid determination of single base pair mismatches as heteroduplexes on Hydrolink gels.Trends Genet.7 (1): 5PubMedCrossRefGoogle Scholar
  15. 15.
    Marmor MF, Holder GE, Porciatti V, Trick G, Zrenner E. (1996) Guidelines for pattern electroretinography: recommendations by the International Society for Clinical Electrophysiology of Vision.Doc Ophthalmol.91: 291–298.CrossRefGoogle Scholar
  16. 16.
    Karnik, S.S., Sakmar, T.P., Chen, H.B. & Khorana, H.G. Cysteine residues 100 and 187 are essential for the fomration of correct structure in bovine rhodopsin.Proc Natl Acad Sci USA 85, 8459–8463 (1988).PubMedCrossRefGoogle Scholar
  17. 17.
    Doi, T., Molday, R.S. & Khorana, H.G. Role of the intradiscal domain in rhodopsin assembly and function.Proc Natl Acad Sci USA 87, 4991–4995 (1990).PubMedCrossRefGoogle Scholar
  18. 18.
    Ellgaard, L., Molinari, M. & Helenius, A. Setting the standards: quality control in the secretory pathway.Science 286, 1882–1888 (1999).PubMedCrossRefGoogle Scholar
  19. 19.
    Gething, M.J. & Sambrook, J. Protein folding in the cell.Nature 355, 33–45 (1992).PubMedCrossRefGoogle Scholar
  20. 20.
    Matouschek, A. Recognizing misfolded proteins in the endoplasmic reticulum.Nature Struct.Biol.7 Google Scholar
  21. 21.
    Aridor M, Balch WE Integration of endoplasmic reticulum signaling in health and diseaseNature Med.7,, 265–266 (2000).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • S. Kaushal
  • D. A. R. Bessant
  • A. M. Payne
  • S. M. Downes
  • G. E. Holder
  • S. S. Bhattacharya
  • A. C. Bird

There are no affiliations available

Personalised recommendations