Skip to main content

Plasmid DNA Manufacturing

  • Chapter
  • 236 Accesses

Abstract

Substantial progress in medicine and biopharmaceutical research may once enable to cure diseases at the level of the specific gene defects rather than at the conventional phenotype level1,2. In addition, the preventive or curative vaccination against pathogenes like bacteria or viruses3,4,5,67; (review: Ref. 8) turns out to be at least working in animal studies. Recent examples for the application of plasmid DNA show that the process of regeneration after surgery can be supported with gene therapeutic techniques1,10.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alton, E.W.F.W., Middleton, P.G., Caplen, N.J., Smith, S.N., Steel, D.M., Munkonge, F.M., Jeffery, P.K., Geddes, D.M., Hart, S.L., Williamson, R., Fasold, K.I., Miller, A.D., Dickinsons, P., Stevenson, B.J., McLachlan, G., Dorins, J.R., and Porteous, D.J. (1993): Non-invasive liposome-mediated gene delivery can correct the ion transport defect in cystic fibrosis mutant mice.Nature Genetics 5:135–142.

    Article  PubMed  CAS  Google Scholar 

  2. Caplen, N.J., Gao, X., Hayers, P., Elaswarapu, R., Fisher, G. et al. (1994): Gene therapy for cystic fibrosis in humans by liposome-mediated DNA transfer: U.K. regulatory process and production of resources.Gene Ther. 1:139–147.

    PubMed  CAS  Google Scholar 

  3. Michel, M.-L., Davis, H.L., Schleef, M., Mancini, M., Tiollais, P., and Whalen, R.G. (1995): DNA-mediated immunization to the hepatitis B surface antigen in mice: Aspects of the humoral response mimic hepatitis B viral infection in humans.Proc. Natl. Acad. Sci. USA 92:5307–5311.

    Article  PubMed  CAS  Google Scholar 

  4. Major, M.E., Vitvitski, L., Mink, M.A., Schleef, M., Whalen, R.G., Trépo, C., and Inchauspé, G. (1995): DNA based immunisation using chimeric vectors for the induction of immune responses against the hepatitis C virus nucleocapsid.J. Virology 69:5798–5805.

    PubMed  CAS  Google Scholar 

  5. Le Borgne, S., Mancini, M., Le Grand, R., Schleef, M., Dormont, D., Tiollais, P., Riviere, Y., and Michel, M.-L. (1998): In vivo induction of specific cytotoxic T lymphocytes in mice and rhesus macaques immunized with DNA vector encoding HIV epitope fused with hepatitis B surface antigen.Virology 240:304–315.

    Article  PubMed  Google Scholar 

  6. Gregoriadis, G. (1998): Genetic vaccines: strategies for optimization.Pharm. Res.15:661–670.

    Article  PubMed  CAS  Google Scholar 

  7. Schirmbeck, R., van Kampen, J., Metzger, K., Wild, J., Grüner, B., Schleef, M., Hauser, H., and Reimann, J. (1999): DNA-based vaccination with polycistronic expression 1. plasmids. In: Lowrie, D.B., and Whalen, R.G. (Eds.) “DNA Vaccines: Methods and Protocols”, pp. 313–322,Humana Press, Totowa, NJ.

    Google Scholar 

  8. Liljeqvist, S., and Stahl, S. (1999): Production of recombinant subunit vaccines: protein immunogens, live delivery systems and nucleic acid vaccines.J. Biotechnol.73:1–33.

    Article  PubMed  CAS  Google Scholar 

  9. Bonadio, J., Smiley, E., Patil, P., and Goldstein, S. (1999): Localized, direct plasmid gene delivery in vivo: prolonged therapy results in reproducible tissue regeneration.Nature Medicine 5:753–759.

    Article  PubMed  CAS  Google Scholar 

  10. Shea, L.D., Smiley, E., Bonadio, J., and Mooney, D.J. (1999): DNA delivery from polymer matrices for tissue engineering.Nature Biotechnology 17:551–554.

    Article  PubMed  CAS  Google Scholar 

  11. Nikol, S., and Höfling, B. (1996): Aktueller Stand der Gentherapie.Dt. Ärztebl.93:A-2620–A2628.

    Google Scholar 

  12. Gottschalk, U., and Chan, S. (1998): Somatic gene therapy, present situation and future perspective.Arzneim.-Forsch./Drug Res.48:1111–1120.

    CAS  Google Scholar 

  13. CBER (1996): Points to consider on plasmid DNA vaccines for preventive infectious disease indications. (HFM-630), Center for Biologics Evaluation and Research, FDA, Rockville, MD.

    Google Scholar 

  14. CBER (1998): Guidance for industry: guidance for human somatic cell therapy and gene therapy. Center for Biologics Evaluation and Research, FDA, Rockville, MD.

    Google Scholar 

  15. Meager, A., Robertson, J.S. (1998): Regulatory and standardization issues for DNA and vectored vaccines. Curr. Res. Mol. Ther.1:262–265.

    CAS  Google Scholar 

  16. Robertson, J., and Griffiths, E. (1998): WHO guidelines for assuring the quality of DNA vaccines.Biologicals 26:205–212.

    Article  PubMed  CAS  Google Scholar 

  17. Schleef, M. (2001),“Plasmids for therapy and vaccination”, Wiley-VCH, Weinheim

    Book  Google Scholar 

  18. Schleef, M. (1999): Issues of large-scale plasmid manufacturing. In: Rehm, H.-J., Reed, G., Pühler, A., and Stadler, P. (Eds.)Biotechnology Vol. 5a: Recombinant proteins, monoclonal antibodies and therapeutic genes(Volume Eds.: A. Mountain, U. Ney, and D. Schomburg), pp. 443–470,Wiley-VCH, Weinheim.

    Google Scholar 

  19. Schmidt, T., Friehs, K., Schleef, M., Voss, K., and Flaschel, E. (1999): Quantitative analysis of plasmid forms by agarose and capillary gel electrophoresis.Analyt. Biochem.274:235–240.

    Article  PubMed  CAS  Google Scholar 

  20. Schmidt, T., Friehs, K., and Flaschel, E. (2001): Structures of plasmid DNA, in: M. Schleef (Ed.):Plasmids for therapy and vaccination, pp.29–43, Wiley-VCH, Weinheim.

    Chapter  Google Scholar 

  21. Wolff, J.A., Williams, P., Acsadi, G., Jiao, S., Jani, A., and Chong, W. (1991): Conditions affecting direct gene transfer into redent muscle in vivo.Biotechniques 11:474–485.

    PubMed  CAS  Google Scholar 

  22. Vogel, F.R., Sarver, H. (1995): Nucleic acid vaccines.Clin. Microbiol. Rev.8:406–410. 20.

    PubMed  CAS  Google Scholar 

  23. Donnelly, J.J., Ulmer, J.B., Liu, M. (1997): DNA Vaccines.Life Sci.60:163–172.

    Article  PubMed  CAS  Google Scholar 

  24. Helinski, D. (1979): Bacterial plasmids: autonomous replication and vehicles for gene cloning.CRC Crit. Rev. Biochem. 7:83–101.

    Article  PubMed  CAS  Google Scholar 

  25. Summers, D.K. (1996):The Biology of Plasmids. Oxford: Blackwell Science.

    Book  Google Scholar 

  26. Schumann, W. (2001): The biology of plasmids, in: M. Schleef (Ed.):Plasmids for therapy and vaccination,pp. 1–43, Wiley-VCH, Weinheim.

    Chapter  Google Scholar 

  27. Davis, B.D., Dulbecco, R., Eisen, H.H. (1980):Microbiology. 3rd. Edn. Philadelphia, PA: Harper and Row.

    Google Scholar 

  28. Devlin, T.M. (1997):Textbook of biochemistry with clinical correlations. 4th Edition, Wiley-Liss, New York.

    Google Scholar 

  29. Schleef, M., Schmidt, T., and Flaschel, E. (2000): Plasmid DNA for pharmaceutical applications, in:Development and Clinical Progress of DNA Vaccines, Brown, F., Cichutek, K., and Robertson, J. (Eds.), Dev. Biol., vol. 104, 2000, pp.25–31, Karger, Basel,

    Google Scholar 

  30. Bio World (1999): Entstehungsgeschichte eines neuen Medikamentes.Bio World 2:31–34.

    Google Scholar 

  31. Braun, R., Babiuk, L.A., and van Drunen Littel-van den Hurk, S. (1998): Compatibility of plasmids expressing different antigens in a single DNA vaccine formulation.J. Gen. Virol. 79:2965–2970.

    PubMed  CAS  Google Scholar 

  32. Schneider, J., Gilbert, S.C., and Hill, A. (2001): pSG.MEPfTRAP - a first generation malaria DNA vaccine vector, in: M. Schleef (Ed.):Plasmids for therapy and vaccination, pp. 103–117, Wiley-VCH, Weinheim.

    Chapter  Google Scholar 

  33. Clinical Trial Database (1999): Clinical trials - charts and statistics. www.wiley.co.uk/wileychi/genmed

    Google Scholar 

  34. Fan, H., Lin, Q, Morrissey, G.R., and Khavari, P.A. (1999): Immunization via hair follicles by topical application of naked DNA to normal skin.Nature Biotechnology17:870–872.

    Article  PubMed  CAS  Google Scholar 

  35. Colpan, M., Schorr, J., and Moritz, P. (1995): Process for producing endotoxin-free or endotoxin-poor nucleic acids and/or oligonucleotides for gene therapy.WO 95/21177.

    Google Scholar 

  36. Thatcher, D.R., Hitchcock, A.G., Hanak, J.A., and Varley, D.L. (1997): Method of plasmid DNA production and purification.WO 97/29190.

    Google Scholar 

  37. Bussey, L., Adamson, R., and Atchley, A. (1998): Methods for purifying nucleic acids.WO 98/05673.

    Google Scholar 

  38. Schorr, J., Moritz, P., and Schleef, M. (1999): Production of plasmid DNA in industrial quantities accorging to cGMP guidelines. In: Lowrie, D.B., and Whalen, R.G. (Eds.)DNA Vaccines: Methods and Protocols, pp. 11–21, Humana Press, Totowa, NJ.

    Chapter  Google Scholar 

  39. Ferreira„ G.N.M., Prazeres, D.M.F., Cabral, J.M.S., and Schleef, M. (2001):Plasmid manufacturing - an overview; in: M. Schleef (Ed.): Plasmids for therapy and vaccination, pp. 193–236, Wiley-VCH, Weinheim.

    Chapter  Google Scholar 

  40. Horn, N., Budahazi, G., Marquet, M. (1998) Purification of plasmid DNA during column chromatography. U.S. Patent 5 707 812

    Google Scholar 

  41. Green, A.P. (1999): Purification of supercoiled plasmid. In: Lowrie, D.B., and Whalen, R.G. (Eds.)DNA Vaccines: Methods and Protocols, pp. 1–9, Humana Press, Totowa, NJ.

    Chapter  Google Scholar 

  42. DeLeys, R.J., and Jackson, D.A. (1975): Dye titrations of covalently closed supercoiled DNA analysed by agarose gel electrophoresis.Biochem. Biophys. Res. Commun.69:446–454.

    Article  Google Scholar 

  43. Johnson, P.H., and Grossmann, L.I. (1977): Electrophoresis of DNA in agarose gels. Optimizing separations of conformational isomers of double- and single-stranded DNAs.Biochemistry 16:4217–4225.

    Article  PubMed  CAS  Google Scholar 

  44. Johnson, P.H., and Grossman, L.I. (1977), Electrophoresis of DNA in agarose gels. Optimizing separations of conformational isomers of double- and single-stranded DNAs.Biochemistry 16:4217–4225

    Article  PubMed  CAS  Google Scholar 

  45. Meyers, J.A., Sanchez, D., Elwell, L.P., and Falkow, S. (1976): Simple agarose gel electrophoretic method for the identification and characterization of plasmid deoxyribonucleic acid.J. Bacteriol.127:1529–1537.

    PubMed  CAS  Google Scholar 

  46. Pulleyblank, D.E., and Morgan, A.R. (1975): The sense of naturally occuring superhelices and the unwinding angle of intercalated ethidium.J. Mol. Biol.91:1–13.

    Article  PubMed  CAS  Google Scholar 

  47. Tse, Y.-C., and Wang, J.C. (1980):E. coli and M. luteusDNA topoisomerase I can catalyze catenation or decatenation of double-stranded rings.Cell 22:269–276.

    Article  PubMed  CAS  Google Scholar 

  48. Martin, R. (1996):Gel Electrophoresis: Nucleic Acids, Bios Scientific, London, UK.

    Google Scholar 

  49. Sinden, R.R. (1994):DNA structure and function, Academic Press, San Diego, CA.

    Google Scholar 

  50. Oliver, S.G., and Ward, J.M. (1985):A dictionary of genetic engineering, Cambridge Univ. Press, Cambridge, UK.

    Google Scholar 

  51. Serwer, P., and Allen, J.A. (1984): : Conformation of double-stranded DNA during agarose gel electrophoresis: Fractionation of linear and circular molecules with molecular weights between 3*106and 25*106.Biochemistry 23:922–927.

    Article  PubMed  CAS  Google Scholar 

  52. Garner, M.M., and Chrambach, A. (1992): Resolution of circular, nicked circular and linear DNA, 4 kb in length, by electrophoresis in polyacrylamide solutions.Electrophoresis 13:176–178.

    Article  PubMed  CAS  Google Scholar 

  53. Courtney, B.C., Williams, K.C., Bing, Q.A., and Schlager, J. (1995): Capillary gel electrophoresis as a method to determine ligation efficency.Anal. Biochem.228:281–286.

    Article  PubMed  CAS  Google Scholar 

  54. Nackerdien, Z., Morris, S., Choquette, S., Ramos, B., and Atha, D. (1996): Analysis of laser-induced plasmid DNA photolysis by capillary electrophoresis.J. Chromatogr. B 683:91–96.

    Article  CAS  Google Scholar 

  55. Hammond, R.W., Oana, H., Schwinefus, J.J., Bonadio, J., Levy, R.J., and MOrris, M.D. (1997). Capillary electrophoresis of supercoiled and linear DNA in dilute hydroxyethyl cellulose solution.Anal. Chem.69:1192–1196.

    Article  PubMed  CAS  Google Scholar 

  56. Schmidt, T., Friehs, K., Flaschel, E. (1996). Rapid determination of plasmid copy number.J.Biotechnol.49:219–229.

    Article  PubMed  CAS  Google Scholar 

  57. Scrip Report (1995):Vectors for gene therapy: Current status and future prospects. PJB Publications Ltd.

    Google Scholar 

  58. Edwards, P.M. (1999):Contract manufacturing - the way ahead for biopharma?. Helix 05/1999 11–13.

    Google Scholar 

  59. Bridson, E. (1994):The development, manufacture and control of microbiological culture media. Unipath Ltd., Basingstoke, UK.

    Google Scholar 

  60. Chen, Z., and Ruffher, D. (1998): Compositions and methods for rapid isolation of plasmid DNA. WO 98/16653.

    Google Scholar 

  61. Murphy, J.C., Wibbenmeyer, J.A., Fax, G.E., and Willson, R.C. (1999): Purification of plasmid DNA using selective precipitation by compaction agents.Nature Biotechnol.17:822–823.

    Article  CAS  Google Scholar 

  62. Southern, E.M. (1975): Detection of specific sequences among DNA fragments separated by gel electrophoresis.J. Mol. Biol.98:503–517.

    Article  PubMed  CAS  Google Scholar 

  63. Smith III, G.J., Helf, M., Nesbet, C., Betita, H.A., Mek, J., and Ferre, F. (1999): Fast and accurate method for quantitating E.coli host-cell DNA contamination in plasmid DNA preparationsBioTechniques 26:518–526.

    PubMed  CAS  Google Scholar 

  64. Levy, M.S., Collins, I.J., Tsai, J.T., Shamlou, P.A., Ward, J.M., and Dunnill, P. (2000): Removal of contaminant nucleic acids by nitrocellulose filtration during pharmaceutical-grade plasmid DNA processing.J. Biotech.76:197–205.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schleef, M., Schmidt, T., Friehs, K., Flaschel, E. (2002). Plasmid DNA Manufacturing. In: Subramanian, G. (eds) Manufacturing of Gene Therapeutics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1353-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1353-7_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5512-0

  • Online ISBN: 978-1-4615-1353-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics