Skip to main content

Gene Transfer into Eukaryotic Cells

  • Chapter
Manufacturing of Gene Therapeutics

Abstract

Gene transfer into eukaryotic cells has become a powerful tool in the study and control of gene expression, for example in biochemical characterisation, mutational analysis, or investigation of the effects of regulatory elements or cell growth behaviour. Gene transfer can be performed either into cultured cells in vitro, or in vivo, directly into cells living in their natural environment in the body.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cotten, M., Baker, A., Saltik, M., Wagner, E., and Buschle, M., 1994, Lipopolysaccharide is a frequent contaminant of plasmid DNA preparations and can be toxic to primary human cells in the presence of adenovirus. Gene Ther. 1:239–246

    PubMed  CAS  Google Scholar 

  2. Cotten, M. and Saltik, M., 1997, Intracellular delivery of lipopolysaccharide during DNA transfection activates a lipid A-dependent cell death response that can be prevented by polymyxin B. Hum Gene Ther. 8:555–561

    Article  PubMed  CAS  Google Scholar 

  3. Weber, M., Möller, K., Welzeck, M., and Schorr, J., 1995, Effect of lipopolysaccharide on transfection efficiency in eukaryotic cells. BioTechniques 19:930–939

    PubMed  CAS  Google Scholar 

  4. Vaheri, A. and Pagano, J.S., 1965, Infectious poliovirus RNA: A sensitive method of assay. Virology 27:434–436

    Article  PubMed  CAS  Google Scholar 

  5. Gluzman, Y., 1981, SV40-transformed simian cells support the replication of early SV40 mutants. Cell 23:175–182

    Article  PubMed  CAS  Google Scholar 

  6. Lopata, M.A., Cleveland, D.W., and Sollner-Webb, B., 1984, High level transient expression of a chloramphenicol acetyltransferase gene by DEAE-dextran mediated DNA transfection coupled with a dimethylsulfoxid or glycerol shock treatment. Nucl. Acids Res. 12:5707–5717

    Article  PubMed  CAS  Google Scholar 

  7. Graham, F.L. and Van der Eb, A.J., 1973, A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52:456–467

    Article  PubMed  CAS  Google Scholar 

  8. Brash, D.E., Reddel, R.R., Quanrud, M., Yang, K., Farrell, M.P., and Harris, C.C., 1987, Strontium phosphate transfection of human cells in primary culture: stable expression of the Simian Virus 40 Large-T-Antigen gene in primary human bronchial epithelial cells. Mol. Cell Biol. 7:2031–2034

    PubMed  CAS  Google Scholar 

  9. Wong, T.K. and Neumann, E., 1982, Electric field mediated gene transfer. Biochem. Biophys. Res. Commun. 107:584–587

    Article  PubMed  CAS  Google Scholar 

  10. Neumann, E., Schaefer-Ridder, M., Wang, Y., and Hofschneider, P.H., 1982, Gene transfer into mouse glyoma cells by electroporation in high electric fields. EMBO J. 1:841–845

    PubMed  CAS  Google Scholar 

  11. Banga, A.K., and Prausnitz, M.R., 1998, Assessing the potential of skin electroporation for the delivery of protein- and gene-based drugs. Trends Biotechnol. 16:408–412

    Article  PubMed  CAS  Google Scholar 

  12. Oshima, Y., Sakamoto, T., Yamanaka, I., Nishi, T., Ishibashi, T., and Inomata, H., 1998, Targeted gene transfer to corneal endothelium in vivo by electric pulse. Gene Ther. 5:1347–1354

    Article  PubMed  CAS  Google Scholar 

  13. Aihara, H., and Miyazaki, J., 1998, Gene transfer into muscle by electroporation in vivo. Nature Biotechnol. 16:867–870.

    Article  CAS  Google Scholar 

  14. Ali, M., Lemoine, N.R., and Ring, C.J.A., 1994, The use of DNA virus as vectors for gene therapy. Gene Ther. 1:367–384

    PubMed  CAS  Google Scholar 

  15. Grandgenett, D.P. and Mumm, S.R., 1990, Unravelling retrovirus integration. Cell 60:3–4

    Article  PubMed  CAS  Google Scholar 

  16. Herz, J. and Gerard, R.D., 1993, Adenovirus-mediated low-density accelerated cholesterol clearence in mice. Proc. Natl. Acad. Sci. USA 90:2812–2816

    Article  PubMed  CAS  Google Scholar 

  17. Qiu, P., Ziegelhoffer, P., Sun, J., and Yang, N.S., 1996, Gene gun delivery of mRNA in situ results in efficient transgene expression and genetic immunisation. Gene Ther. 3:262–268

    PubMed  CAS  Google Scholar 

  18. Yang, N.S., Burkholder, J., Roberts, B., Martinell, B., and McCabe, D., 1990, In vivo and in vitro gene transfer to mammalian somatic cells by particle bombardment. Proc. Natl. Acad. Sci. USA 87:9568–9572

    Article  PubMed  CAS  Google Scholar 

  19. Burkholder, J.K., Decker, J., and Yang, N.S., 1993, Rapid transgene expression in lymphocyte and macrophage primary cultures after particle bombardment-mediated gene transfer. J. Immunol. Methods 165:149–156

    Article  PubMed  CAS  Google Scholar 

  20. Ye, G.N., Daniell, H. and Sanford, J.C., Optimisation of delivery of foreign DNA into higher-plant chloroplasts. Plant Mol. Biol. 15:809–819

    Google Scholar 

  21. McNeill, P.L. and Warder, E., 1987, Glass beads load macromolecules into living cells. J. Cell Science 88:669–678

    Google Scholar 

  22. Capecchi, M.R., 1989, The new mouse genetics: altering the genome by gene targeting. Trends Genet. 5:70–76

    Article  PubMed  CAS  Google Scholar 

  23. Feigner, P.L., Gadek, T.R., Holm, M., Roman, R., Chan, H.W., Wenz, M., Northrop, J.P., Ringold, G.M., and Danielsen, M., 1987, Lipofection: A highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci. USA 84: 7413–7417

    Article  Google Scholar 

  24. Litzinger, D.C., and Huang. L., 1992, Phosphatidethanolamine liposomes: drug delivery, gene transfer and immunodiagnostic applications. Biochim. Biophys. Acta 1113:201–227 15.

    Article  PubMed  CAS  Google Scholar 

  25. Farhood, H., Servina, N.S., and Huang, L., 1995, The role of dioleoylphosphatidyl-ethanolamine in cationic liposome mediated gene transfer. Biochim. Biophys. Acta 1235:289–295

    Article  PubMed  Google Scholar 

  26. Behr, J.P., Demeneix, B., Loeffler, J.P., and Mutul, J.P., 1989, Efficient gene transfer into mammalian primary endocrine cells with lipopolyamine-coated DNA. Proc. Natl. Acad. Sci. USA 86:6982–6986

    Article  PubMed  CAS  Google Scholar 

  27. Leventis, R., and Silvius, J.R., 1990, Interactions of mammalian cells with lipid dispersions containing novel metabolizable cationic amphiphiles. Biochem. Biophys. Acta 1023:124–132

    Article  PubMed  CAS  Google Scholar 

  28. Gao, X., and Huang. L., 1991, A novel cationic liposome reagent for efficient transfection of mammalian cells. Biophys. Res. Comm. 179:280–285

    Article  CAS  Google Scholar 

  29. Sternberg, B., Sorgi, F.L., and Huang, L., 1994, New structures in complex formation between DNA and cationic liposomes visualized by freeze-fracture electron microscopy. FEBS Letters 356:362–366

    Article  Google Scholar 

  30. Loeffler, J.P., Batthel, F., Feltz, P., Behr. J.P., Sassone-Corsi, P., and Feltz, A., 1990, Lipopolyamin-mediated transfection allows gene expression studies in primary neuronal cells. J. Neurochem. 54:1812–1815

    Article  PubMed  CAS  Google Scholar 

  31. Caplen, N.J., Alton, E.W.F.W., Middleton, P.G., Dorin, J.R., Stevenson, B.J., Gao, X., Durham, S.R., Jeffery, P.K., Hodson, M.E., Coutelle, C., Huang, L., Porteous, D.J., Williamson, R., and Geddes, D.M., 1995, Liposome-mediated CFTR gene transfer to the nasal epithelium of patients with cystic fibrosis. Nature Medicine 1:39–46

    Article  PubMed  CAS  Google Scholar 

  32. Barron, L.G., Gagné, L., and Szoka, F.C., 1999, Lipoplex-mediated gene delivery to the lung occurs within 60 minutes of intravenous administration. Hum Gene Ther. 10:1683–1694

    Article  PubMed  CAS  Google Scholar 

  33. Smith, J. Zhang. Y.L., and Niven, R., 1997, Toward development of a non-viral gene-therapeutic. Adv. Drug Del. Rev. 26:135–150

    Article  CAS  Google Scholar 

  34. Filion, M.C., and Phillips, N.C., 1998, Major limitations in the use of cationic liposomes for DNA delivery. Int. J. Pjarmaceut. 162:159–170

    Article  CAS  Google Scholar 

  35. The QIAGEN transfection resource book, 1999, QIAGEN, 12-18

    Google Scholar 

  36. Weber, M., 2000, Neue Techniken zum Gentransfer in Eukaryontenzellen. Nachrichten aus der Chemie 48:18–23

    Article  CAS  Google Scholar 

  37. Schwartz, B., Ivanov, M.A., Pitard, B., Escriou, V., Rangara, R., Byk, G., Wils, P., Crouzet, J., and Scherman, D., 1999, Synthetic DNA-compacting peptides derived from human sequence enhance cationic lipid-mediated gene transfer in vitro and in vivo. Gene Ther. 6:282-292

    Article  PubMed  CAS  Google Scholar 

  38. Plank, C., Oberhauser, B., Mechtler, K., Koch C., and Wagner, E., 1994, The influence of endosome-disruptive peptides on gene transfer using synthetic virus-like gene transfer systems. J. Biol. Chem 269:12918–12924

    PubMed  CAS  Google Scholar 

  39. Subramaniam, A., Ranganathan, P, and Diamond, S.L., 1999, Nuclear targeting peptide scaffolds for lipofection of nondividing mammalian cells. Nat. Biotechnol. 17:873–877

    Article  Google Scholar 

  40. Boussif, O., Lezoualc’h, F., Zanta, M.A., Mergny, M.D., Scherman, D., Demeneix, B., and Behr, J.P, 1995, A versatile vector for gene and oligonucleatide transfer into cells in culture and in vivo: Polyethylenimine. Proc. Natl. Acad. Sci. USA 92:7297–7301

    Article  PubMed  CAS  Google Scholar 

  41. Kukowska-Latallo, J.F., Bielinska, A.U., Johnson, J., Spindler, R., Tomalia, D.A., and Baker, J.R, 1996, Efficient transfer of genetic material into mammalian cells using Starburst polyamidoamine dendrimers. Proc. Natl. Acad. Sci. USA 93:4897–4902

    Article  PubMed  CAS  Google Scholar 

  42. Haensler, J., and Szoka, F.C., 1993, Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjug. Chem. 4:372–379

    Article  PubMed  CAS  Google Scholar 

  43. Tang, M.X., Redemann, C.T., and Szoka, F.C., 1996, In vitro gene delivery by degraded polyamidoamine dendrimers. Bioconjug. Chem. 7:703–714

    Article  PubMed  CAS  Google Scholar 

  44. Tang, M.X., and Szoka, F.C., 1997, The influence of polymer structure on the interactions of cationic polymers with DNA and morphology of the resulting complex. Gene Ther. 4:823–832

    Article  PubMed  CAS  Google Scholar 

  45. Hudde, T., Rayner, S.A., Comer, R.M., Weber, M., Isaacs, J.D., Waldmann, H., Larkin, D.F.P., and George, A.J.T, 1999, Activated polyamidoamine dendrimers, a non-viral vector for gene transfer to the corneal endothelium. Gene Ther. 6:939–943

    Article  PubMed  CAS  Google Scholar 

  46. Turunen, M.P., Hiltunen, M.O., Ruponen, M., Vikamäki, L., Szoka, F.C., Urtti, A., and Ylä-Herttuala, S., 1999, Efficient adventitial gene delivery to rabbit carotid artery with cationic polymer-plasmid complexes. Gene Ther. 6:6–11

    Article  PubMed  CAS  Google Scholar 

  47. Howard, D.S., Rizzierri, D.A., Grimes, B., Upchurch, D., Phillips, G.L., Stewart, A.K., Yannelli, J.R., Jordan, C.T., 1999, Genetic manipulation of primitive leukemic and normal hematopoietic cells using a neovel method of adenovirus-mediated gene transfer. Leukemia 13:1608–1616

    Article  PubMed  CAS  Google Scholar 

  48. Dunphy, E.J., Redman, R.A., Herweijer, H., Cripe, T.P., 1999, Reciprocal Enhancement of Gene Transfer by Combinatorial Adenovirus Transduction and Plasmid DNA Transfection in Vitro and in Vivo. Hum. Gene Ther. 10:2407–2417

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Weber, M. (2002). Gene Transfer into Eukaryotic Cells. In: Subramanian, G. (eds) Manufacturing of Gene Therapeutics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1353-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1353-7_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5512-0

  • Online ISBN: 978-1-4615-1353-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics