Advertisement

Electrons and Ions in Relativistic Laser Fields

  • Y. I. Salamin
  • M. W. Walser
  • S. X. Hu
  • C. H. Keitel

Abstract

In general, theoretical analysis of the interaction of a single electron with the radiation field, in vacuum, may be carried out at various levels of sophistication, with the transition from one level to the next made on clear physical grounds. Under conditions to be described below, a nonrelativistic classical description is adequate. However, in the presence of fields of sufficiently high intensity the electron gets accelerated to speeds close to that of light, in which case a relativistic treatment becomes essential18. On the other hand, in situations where the electron motion takes place over small spatial dimensions, rules of the quantum world rather than those of Newtonian mechanics apply9,10 even the spin degree of freedom becomes important in this regime1113. Still, at a more sophisticated level it becomes necessary to second quantize both fields, matter (the electron) and radiation.

Keywords

Radiation Field Laser Field Magnetic Component Magnetic Dipole Moment Ionic Core 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. H. Eberly and A. Sleeper, Phys. Rev.1761570 (1968).CrossRefGoogle Scholar
  2. 2.
    E. S. Sarachik and G. T. Schappert, Phys. Rev. D1, 2738 (1970).CrossRefGoogle Scholar
  3. 3.
    E. Esarey, S. K. Ride, and P. Sprangle, Phys. Rev. E48, 3003 (1993).CrossRefGoogle Scholar
  4. 4.
    E. Esarey and P. Sprangle, Phys. Rev. A45, 5872 (1992).CrossRefGoogle Scholar
  5. 5.
    Y. I. Salamin and F. H. M. Faisal, Phys. Rev. A54, 4383 (1996).CrossRefGoogle Scholar
  6. 6.
    Y. I. Salamin and F. H. M. Faisal, J. Phys. A31, 1319 (1997).CrossRefGoogle Scholar
  7. 7.
    Y. I. Salamin and F. H. M. Faisal, Phys. Rev. A55, 3964 (1997).CrossRefGoogle Scholar
  8. 8.
    F. V. Hartemann, A. L. Troha, and N. C. Luhmann, Jr., Phys. Rev. E54, 2956 (1996).CrossRefGoogle Scholar
  9. 9.
    L. S. Brown and T. W. B. Kibble, Phys. Rev.133, A705, (1964).CrossRefGoogle Scholar
  10. 10.
    T. W. B. Kibble,Lectures in Physics, ed. M. Levy (Gordon and Breach, New York, 1968).Google Scholar
  11. 11.
    M. W. Walser, C. Szymanowski, and C. H. Keitel, Europhys. Lett.48, 533 (1999).CrossRefGoogle Scholar
  12. 12.
    M. W. Walser and C. H. Keitel, J. Phys. B33, L22l (2000).CrossRefGoogle Scholar
  13. 13.
    S. X. Hu and C. H. Keitel, Phys. Rev. Lett.83, 4709 (1999).CrossRefGoogle Scholar
  14. 14.
    H. R. Reiss, Prog. Quantum Electron.16, 1 (1992).CrossRefGoogle Scholar
  15. 15.
    D. M. Perry, D. Pennington, and V. Yanovsky, Opt. Lett.24, 160 (1999).CrossRefGoogle Scholar
  16. 16.
    C. I. Moore, J. P. Knauer, and D. D. Meyerhofer, Phys. Rev. Lett.74, 2439 (1995).CrossRefGoogle Scholar
  17. 17.
    C. Bula et al., Phys. Rev. Lett.76, 3116 (1996).CrossRefGoogle Scholar
  18. 18.
    C. H. Keitel, C. Szymanowski, P. L. Knight, and A. Maquet, J. Phys. B31, L75 (1998).CrossRefGoogle Scholar
  19. 19.
    A. Loeb, L. Friedland, and S. Eliezer, Phys. Rev. A35, 1692 (1987).CrossRefGoogle Scholar
  20. 20.
    M. S. Hussein, M. P. Pato, Phys. Rev. Lett.68, 1136 (1992).CrossRefGoogle Scholar
  21. 21.
    M. S. Hussein, M. P. Pato, and A. K. Kerman, Phys. Rev. A46, 3562 (1992).CrossRefGoogle Scholar
  22. 22.
    Y. I. Salamin and F. H. M. Faisal, Phys. Rev. A61, 043801 (2000).CrossRefGoogle Scholar
  23. 23.
    Y. I. Salamin, F. H. M. Faisal, and C. H. Keitel, Phys. Rev. A62, 053809 (2000).CrossRefGoogle Scholar
  24. 24.
    Y. I. Salamin and C. H. Keitel, Appl. Phys. Lett.77, 1082 (2000).CrossRefGoogle Scholar
  25. 25.
    J. X. Wang et ai., Phys. Rev. E58, 6575 (1998).CrossRefGoogle Scholar
  26. 26.
    J. X. Wang et ai., Phys. Rev. E60, 7473 (1999).CrossRefGoogle Scholar
  27. 27.
    I. V. Pogorelsky, Nucl. Instr. & Meth. in Phys. Res. A411, 172 (1998).Google Scholar
  28. 28.
    S. X. Hu and C. H. Keitel, Europhys. Lett47, 318 (1999).CrossRefGoogle Scholar
  29. 29.
    N. J. Kylstra, A. M. Ermolaev, C. J. Joachain, J. Phys. B30, L449 (1997).CrossRefGoogle Scholar
  30. 30.
    U. W. Rathe, C. H. Keitel, M. Protopapas and P. L. Knight, J. Phys. B30, L53l (1997).CrossRefGoogle Scholar
  31. 31.
    C. Szymanowski, et ai., Phys. Rev. A56, 3846 (1997).CrossRefGoogle Scholar
  32. 32.
    R. Taïeb, V. Véniard and A. Maquet, Phys. Rev. Lett.81, 2882 (1998).CrossRefGoogle Scholar
  33. 33.
    J. W. Braun, Q. Su and R. Grobe, Phys. Rev. A59, 604 (1999).CrossRefGoogle Scholar
  34. 34.
    J. Grochmalicki, M. Lewenstein, K. Rzazewski, Phys. Rev. Lett.661038 (1991).CrossRefGoogle Scholar
  35. 35.
    C. H. Keitel, P. L. Knight, and K. Burnett, Europhys. Lett.24, 539 (1993).CrossRefGoogle Scholar
  36. 36.
    T. Katsouleas and W. B. Mori, Phys. Rev. Lett.70, 1561 (1993).CrossRefGoogle Scholar
  37. 37.
    F. H. M. Faisal and T. Radozycki, Phys. Rev. A47, 4464 (1993).CrossRefGoogle Scholar
  38. 38.
    O. Latinne, C. J. Joachain, and M. Dörr, Europhys. Lett.26, 333 (1994).CrossRefGoogle Scholar
  39. 39.
    C. H. Keitel and P. L. Knight, Phys. Rev. A41, 1420 (1995).CrossRefGoogle Scholar
  40. 40.
    M. Protopapas, C. H. Keitel, and P. L. Knight, J. Phys. B29, L59l (1996).CrossRefGoogle Scholar
  41. 41.
    D. B. Milosevic and A. F. Starace, Phys. Rev. Lett.82, 2653 (1999).CrossRefGoogle Scholar
  42. 42.
    R. E. Wagner, Q. Su, and R. Grobe, Phys. Rev. Lett.84, 3282 (2000).CrossRefGoogle Scholar
  43. 43.
    J. R. V. de Aldana and L. Roso, Phys. Rev. A61, 3403 (2000).Google Scholar
  44. 44.
    N. J. Kylstra, et al., Phys. Rev. Lett.85, 1835 (2000).CrossRefGoogle Scholar
  45. 45.
    J. V. R. de Aldana and L. Roso, J. Phys. B33, 3701 (2000).CrossRefGoogle Scholar
  46. 46.
    J. San Roman, L. Roso, and H. R. Reiss. J. Phys. B33, 1869 (2000).CrossRefGoogle Scholar
  47. 47.
    G. H. Rutherford and R. Grobe, J. Phys. A31, 9331 (1998).CrossRefMATHGoogle Scholar
  48. 48.
    M. W. Walser, C. H. Keitel, A. Scrinzi, and T. Brabec, Phys. Rev. Lett. 85, in press.Google Scholar
  49. 49.
    T. Brabec T, F. Krausz, Rev. Mod. Phys.72, 545 (2000).CrossRefGoogle Scholar
  50. 50.
    C. J. Joachain, M. Dörr, N. Kylstra, Adv. At. Mol. Opt. Phys.42, 225 (2000).CrossRefGoogle Scholar
  51. 51.
    G. A. Mourou, C. P. J. Barty and M. D. Perry, Phys. Tod.51, 22 (1998).CrossRefGoogle Scholar
  52. 52.
    M. Protopapas, C. H. Keitel, and P. L. Knight, Rep. Progr. Phys.60, 389 (1997).CrossRefGoogle Scholar
  53. 53.
    S. X. Hu and C. H. Keitel, submitted.Google Scholar
  54. 54.
    D. J. Urbach and C.H. Keitel, Phys. Rev. A61, 043409 (2000).CrossRefGoogle Scholar
  55. 55.
    C. M. Haaland, Opt. Commun.114, 280 (1995).CrossRefGoogle Scholar
  56. 56.
    E. Esarey, P. Sprangle, and J. Krall, Phys. Rev. E52, 5443 (1995).CrossRefGoogle Scholar
  57. 57.
    Y. C. Huang, D. Zheng, W. M. Tulloch, and R. L. Beyer, Appl. Phys. Lett.68, 753 (1996).CrossRefGoogle Scholar
  58. 58.
    Y. C. Huang and R. L. Beyer, Appl. Phys. Lett.69, 2175 (1996).CrossRefGoogle Scholar
  59. 59.
    Y. C. Huang and R. L. Beyer, Instr. and Meth. in Phys. Res. A407, 316 (1998).Google Scholar
  60. 60.
    Y. C. Huang and R. L. Beyer, Rev. Sci. Instrum.69, 2629 (1998).CrossRefGoogle Scholar
  61. 61.
    Y. I. Salamin, G. R. Mocken, and C. H. Keitel, submitted.Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Y. I. Salamin
    • 1
  • M. W. Walser
    • 1
  • S. X. Hu
    • 1
  • C. H. Keitel
    • 1
  1. 1.Theoretische Quantendynamik Fakultät für PhysikUniversität FreiburgFreiburgGermany

Personalised recommendations